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Abstract: Categorization is a fundamental information processing phenomenon in the brain. It is
critical for animals to compress an abundance of stimulations into groups to react quickly and
efficiently. In addition to labels, categories possess an internal structure: the goodness measures
how well any element belongs to a category. Interestingly, this categorization leads to an altered
perception referred to as categorical perception: for a given physical distance, items within a category
are perceived closer than items in two different categories. A subtler effect is the perceptual magnet:
discriminability is reduced close to the prototypes of a category and increased near its boundaries.
Here, starting from predefined abstract categories, we naturally derive the internal structure of
categories and the phenomenon of categorical perception, using an information theoretical framework
that involves both probabilities and pairwise similarities between items. Essentially, we suggest
that pairwise similarities between items are to be tuned to render some predefined categories as
well as possible. However, constraints on these pairwise similarities only produce an approximate
matching, which explains concurrently the notion of goodness and the warping of perception.
Overall, we demonstrate that similarity-based information theory may offer a global and unified
principled understanding of categorization and categorical perception simultaneously.

Keywords: goodness; categorical perception; perceptual magnet; information theory; perceived similarity

1. Introduction

Categorization is a cognitive process through which a large number of items (objects, events,
stimuli; sometimes referred to as instances or exemplars) are grouped into a few classes. It is a bottleneck
from an immensely complex world to relevant representations and actions [1] and thus it allows us to
react quickly and communicate efficiently. Categorizing amounts to compressing the perceived world
by putting the same label on many items, thereby preserving the relevant information and discarding
the irrelevant one. Importantly, such a binary perception has been shown to be suboptimal [2],
since categories to which the item may belong with weaker probabilities are discarded. From a
relationist viewpoint, categorization consists in considering as similar two items in a category and
as different two items in different categories. According to this view, Rosch [3] gives the following
definition “To categorize a stimulus means to consider it (...) not only equivalent to other stimuli in the
same category but also different from stimuli not in that category”.

In addition, categories also have an internal structure: each item has its own measure of how well
it represents its category, which is called goodness [4—6] (also referred to as membership or typicality).
The item with the largest goodness in a category is called the prototype of this category [5]. This internal
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structure plays an important role in the speed of classification [4], exemplar production [7], or two-item
discrimination [8]. The ontology of this graded internal structure is dependent on both the frequency of
instantiation of an item as a member of the category [7,9,10] and the pairwise similarity structure [6,8].
The prototype has in general a large frequency and it is similar to other items of the category [5].
For instance, although it is a frequently mentioned bird, a chicken is not judged as being very similar
to other birds and thus it has low goodness [11].

Interestingly, categorization is not only a bottom-up process as it bears effects on perception.
One of these effects is called categorical perception [12]: items within a category are harder to discriminate
than items in different categories, even if they are separated by the same physical distance (physical
distance here means distance in the relevant physical space: frequency, amplitude, wavelength... or any
metric space in which the items may be embedded). In other words, within-category discrimination
is reduced while between-category discrimination is enhanced. Discrimination performance is only
slightly better than category identification, though the within-category subtleties can be observed
through the reaction times [13]. This effect has been observed on similarity between faces [14,15],
colors [16,17], or speech sounds [12].

An additional effect is that prototypes of a category pull other items in the category toward
themselves, which is called the perceptual magnet effect [18]. Items at the center of a category are perceived
closer than at the border of a category. Iverson and Kuhl have shown the warping of the perceptual
space using multi-dimensional scaling [19,20]. This effect is known to be asymmetrical [8,18,19]: in a
two-stimuli discrimination task, if a prototype is presented before a non-prototype, the discrimination
results are poorer than when the non-prototype is presented first. For a thorough review of these
phenomena in natural and artificial categories, as well as an account of them through Bayesian
inference, alternative to our explanation, we refer the reader to Feldman et al. [21].

The interactions between category boundaries, category structures, categorical perception,
and perceptual magnet are still debated. It is so far unknown whether one of them is more fundamental
and entails the others as consequences. We take here a holistic approach and attempt to show that
they are all facets of categorization. All categories indeed have an internal structure [11], the notion of
goodness thus appears inseparable from categorization. In addition, categorical perception has been
observed commonly, although with some variability [22].

A large body of work already attempted at modeling categorical effects. Of particular interest
to us here is the context theory of classification [23,24] that takes into account the similarities
between items and proposes a measure comparing within-category similarities to between-category
similarities. Our work will naturally lead us to consider a very similar measure, which we will
interpret in information-theoretic terms. We will also consider the work by Bonnasse-Gahot and
Nadal [25] that is the closest to ours in terms of explanations of categorical phenomena. They give
an information-theoretic account of categorical perception and perceptual magnet as optimization of
neural coding of categories.

Here, we aim at explaining altogether the structure of categories and the categorical perception
phenomena by applying a recently introduced optimization principle for information processing.
We start with well-defined categories whose items appear with uniform or bell-shaped frequencies.
Following Tversky and Gati [8], we model human discrimination between two items with a notion
of perceived similarity that can take any values in the range [0,1]: two items with a similarity
of 1 are perceived as identical while two items with a similarity of 0 are perceived as different.
Therefore, this work makes use of frequencies and pairwise similarities as fundamental features of our
cognitive processes. We then use a new information-theoretic principle for optimizing the pairwise
similarity values.

As information theory is a suitable tool and a very efficient framework to understand information
processing in the brain [26—28] (and references therein), we account for categorical perception by
applying information theory to categorization. We use a recently introduced version of information
theory integrating pairwise similarities [29], whose formulation naturally merges reliability of
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information transmission and compression of the stimulus space. In this sense, the present work can
be compared to that of Bonnasse-Gahot and Nadal [25] who used information theory to find optimal
neural population codes to encode categories and account for some aspects of categorical perception.

In a general way, the process of learning categories can be described with two opposing strategies,
as stated by Pothos [30] in the case of Artificial Grammar Learning, “the similarity /rules/association
and the information premise”, arguing that a shortcoming of information theory to understand cognition
is its lack of tools for understanding representations. We hope to demonstrate the possibility to develop
such tools. In this paper, we provide a theory that naturally encompasses the two approaches, thereby
attempting to show that they may not be as much in opposition as they seem. We build on a recent
modification of information theory that involves quantities for representations, namely, pairwise
similarities between items considered.

Armed with this principle, we derive the internal structure of categories and categorical perception
simultaneously. Indeed, the formulation naturally involves, for each element, an average of its
similarities weighted by the probabilities of every other element within the category, which is readily
interpreted as how similar one object is to the others on average, and it is shown to match the notion
of goodness [5].

One could understand our method the following way: suppose a subject is trying to perfectly
categorize an ordered set of stimuli. By perfectly, we mean that all specificities of the stimuli beyond
the category are forgotten. This amounts exactly to maximizing the information while minimizing the
equivocation. Now let us in addition suppose that there are limits to the ability of a subject to achieve
this perfect categorization because of finite discrimination capacity. We choose to model the latter by
similarity functions. The framework of similarity-based information theory (SBIT) is a very natural
one to use here as it integrates similarities to information theory (IT).

2. Methods

2.1. Item Space and Categories

Items S = {s} are considered on a one-dimensional axis and grouped into a set of categories
C = {c}. These categories represent the pre-existing ideal categorization that the similarity measures
have to emulate. These do not only depend on the observer: as in the case of colors, they can be very
influenced by culture [31] (we come back to this issue in the discussion). As categorical perception
effects are ubiquitous and appear in many modalities, we make no specific assumptions about the
distribution of items inside a category. For example, it appears highly reasonable to consider light
wavelengths to be uniformly distributed [32]. On the contrary, it is known that, in a given language,
speech sounds are well defined but are modulated by noise or idiosyncrasies. This results in an
ensemble of bell-shaped categories. Thus, for the sake of completeness, we will consider two extreme
cases: one with contiguous uniformly distributed categories and another with bell-shaped categories.
We also consider the case of bimodal categories. These three cases represent extreme cases in between
which other one-dimensional cases will exist. In all cases, we will refer to their width (or, equivalently,
the number of items) as W. We thus believe we exhibit exhaustively the phenomena of interest on all
potential distributions of categories. The extension to higher-dimensional cases is straightforward and
leads to qualitatively similar behaviors.

2.2. Similarity Functions

We define a similarity function ¢;(s’), between the item s’ and the reference item s, that takes
values in the interval [0,1] and describes how similar the item s’ is to reference item s. We use a
biologically reasonable constraint on the similarity function: at each point, it has to be a non-strictly
decreasing function of the physical distance (e.g., Heaviside, bell-shaped, Gaussian, triangular). This is
a very light constraint and seems, to the best knowledge of the authors, the only sensible behavior a
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similarity function can adopt. Unless we twist words and concepts heavily, two very different objects
cannot be construed as more similar than two less different objects.

We choose a triangular pairwise similarity function given by ¢s(s') = 1 — |ff?:)/ | when

|s —s’| < o(s) and 0 otherwise. The width function ¢ (s) takes a different value at each point in the item
space and is the only free parameter to be tuned. The variation of the similarity width is akin (although
not necessarily fully equivalent) to the attention-specific warping of the stimulus space in the context
theory of classification or to the variation of the widths of the neural tuning curves in Bonnasse-Gahot
and Nadal [25]. Note the potential asymmetry here—if 0'(s) # o(s’), then ¢s(s’) # ¢ (s). The choice
of a triangular function over another type of bell-shaped function is motivated by the empirical fact
that the results are not qualitatively affected by the choice of similarity function, as long as it is not
singular in any way (a condition akin to the one in [25] about the smoothness of the tuning curves),
and by the ease of the mathematical treatment of the triangular function, which allow us to directly
compare simulations and calculations.

Now that we are equipped with such similarity functions, we need to define an optimization
principle. To do so, we make use of the similarity-based mutual information between the set of
categories and the items with their pairwise similarities.

2.3. Similarity-Based Information Theory

Here, we recall the main concepts of similarity-based information theory (SBIT), a well-established
theory with a versatile, albeit recent, history.

SBIT can be seen as an extension of IT, which is a framework to quantify statistical dependencies
between variables, mainly through the definition of the entropy of a distribution, that quantifies its
uncertainty. While IT takes into account only the probabilities of events or items, it discards entirely all
other features of the dataset, in particular to what extent two items are similar or not. SBIT is precisely
an attempt to extend IT by incorporating similarities in the very definition of entropy.

A similarity-based entropy was first introduced as a measure of biodiversity. In this field, the
original concept was Rao’s quadratic entropy that incorporates the distance between two species [33].
Ricotta and Szeidl [34] proposed a family of similarity-based Tsallis entropy, while Leinster and
Cobbold [35] introduced a family of similarity-based Renyi entropy. Both Tsallis and Renyi entropies
entail Rao’s quadratic entropy as a special case. The similarity-based Renyi entropy reduces to a
similarity-based Shannon entropy for particular values of its free parameter. The rationale for these
concepts is that entropies only deal with probabilities but do not take into account potential similarities
between items. Therefore, in the field of biodiversity, a population of canopy butterflies or a mixed
population of canopy and understorey butterflies with the same probability distribution would have
the same Shannon entropy, but not the same similarity-based entropy. Accounting for the similarities
between species sheds a new light on the meaning of biodiversity.

Among all these entropies, the advantage of Shannon entropy is that there exists an unequivocal
definition of conditional entropy [36,37], thereby allowing the mutual information between two
variables to be defined. This mutual information is readily interpreted as a reduction in uncertainty
about a variable when the other is known. This similarity-based mutual information was introduced
and applied to neural coding [29], and we use it here. We wish to emphasize how the theory used here
is grounded in other fields of study and applied without ad hoc extensions to the topic of cognition.

Our hypothesis is that information processing has to focus on thoroughly discriminating some
pairs of items, thereby guaranteeing information transmission, but, simulteaneously, it also has to
overlook differences between other pairs, i.e., compress the stimulus set, which is assessed by the
conditional entropy. This is what is referred to as categorization. This of course builds heavily on
previous work and is not a new way of looking at categorization. Neither is the use of information
theory to do so (see for example [25,38]). However, we address it in a new manner, using an extension
of information theory that allows us to account for a set of phenomena that, to our knowledge,
was never explained by a single model.
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We first define (following Brasselet et al. [29]) the specific similarity-based entropy k(s) (also
known as surprise) :

h(s) = —logg(s), @

where ¢(s) = Yo p(s')¢s(s’), which was defined similarly by Ricotta and Szeidl [34], Leinster and
Cobbold [35]. Note here that this quantity g(s) is a sum of probabilities weighted by similarities with s
and is therefore always comprised between 0 and 1. It can therefore be thought of as “the probability
of item s or another item s’ similar to it”. A high value of h(s) means that it is surprising to observe
the item s or another item s’ similar to it. On the contrary, a small value tells us it is not surprising to
observe it. This may happen when:

the probability of s is itself large,
another item s’ with large probability is very similar to s,
many low-probability items have large similarity with s.

In classical IT, only the first case exists.

Note that the corresponding entropy can be obtained by averaging the specific entropies over all
items, H(S) = Y, p(s)h(s).

Mathematically, the behavior of the similarity-based entropy is well-understood [29,35]. In the
extreme case where the similarities are 0 everywhere, except for s = s/, we recover the probability
of s and thus the original definition of Shannon surprise and Shannon entropy. Similarity-based
information theory thus departs from Shannon theory that considers all items s to be different with no
gradation. In such cases, the arguments of the logarithm cannot be taken as probabilities, since they
do not sum to 1. However, the behavior of h(s) is smooth as a function of the similarity matrix as it
departs from the identity matrix, and eventually reaches ii(s) = 0 when all the similarities are equal
to 1, akin to the classical Shannon case where all items are indistinguishable (in the case of binning
continuous variables for example). The similarity-based entropy thus takes values in the same range
as Shannon entropy and has a natural interpretation. More properties are given in the references
previously mentioned in this paragraph and we follow them in calling this quantity “entropy” as it
meets all the criteria established by [39]. Researchers in ecology defined it to account for potential
genetic similarities between species, while, in neuroscience, it was purposefully defined to account for
similarities between percepts or representations.

Once we made the first step towards extending entropy with similarities, the definition of all the
other quantities naturally follows. We can then define the specific conditional entropy % (s|C) [40]:

h(s|C) = —Zp s)log g(slc), %)

where g(s|c) = Y p(s’|c)¢s(s'). This quantity can be thought of as “knowing the value of variable c,
the probability of item s or another item s’ similar to it”. This specific conditional entropy can be
thought as the uncertainty of items or items similar to them within a category c.

Note that, again, the corresponding conditional entropy can be obtained by averaging the
specific entropies over all items H(S|C) = Y p(s)h(s|C). The conditional entropy is also known
as equivocation because it measures how items are confused or, in other words, how the mapping from
s to c is equivocal.

As usual, the specific similarity-based mutual information i(s; C) is defined as the difference
between the specific entropy and conditional entropy i(s; C) = h(s) — h(s|C) and reads:

EP ) log ;( |§) 3)

This information increases with the argument of the logarithm, which is positive when an item is
more probable within the category or more similar to other items within the category (g(s|c)) than it is
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probable overall or similar to other items items overall (g(s)). Therefore, for a given item with fixed
probability, the information is large when the item is similar to items within the category but not with
items outside. As usual, we recover the information by summing the specific information over the
items: I(S;C) = Y, p(s)i(s; C).

Importantly, all of these quantities reduce to Shannon specific entropies and specific mutual
information in the case where the similarity function ¢;(s’) is equal to 0 except for identity s = s'.

2.4. Optimization Principle

An important feature of the previously defined entropy h(S), conditional entropy h(s|C) and
mutual information i(s; C) is that they all depend on the similarity function ¢;(s’). Large values
of similarities, i.e., items are very much alike, will lead to low values of h(s), h(s|C) and i(s;C).
Conversely, low values of the similarities, i.e., all items appear as different, will increase the values
of h(s), h(s|C) and i(s;C). In our case, following Rosch’s suggestion, we want to guarantee high
similarities between objects from the same categories and low similarities between objects from
different categories. High similarities inside categories amount to minimizing the conditional entropy
while low similarities between categories amount to maximizing information between categories
and items.

As is usually done in models of categorization, we implement the trade-off between maximizing
information and minimizing conditional entropy by introducing an objective function involving a free
trade-off parameter a:

h(s|C)
hO ’
(In the specific case of Brasselet et al. [29], « was chosen to be infinity). Note that this trade-off
parameter is akin to the one we find in rate distortion theory (RDT) or in the information bottleneck
(IB). The addition of our model is the integration of similarities. Just like in RDT, the objective is to
minimize a cost function subject to an upper bound on the information, just like in IB, the objective is

q(s;C) =i(s;C) —a 4)

to maximize the information between two sets while minimizing that between one of these sets and
an encoder, in SBIT, the objective is to maximize the information while minimizing the equivocation.
To go further, we can compare this objective function with the one used by Sims et al. [38]:

pr@i@) E[f(y —x)+ P(Cx #Cy)], I(x,y) < C. (5)

Maximizing the information between the item and its category is akin to not mistaking an item
for another one. Minimizing the equivocation is akin to bounding the information.

We believe that a trade-off parameter is a necessary feature of any model of categorical perception.
Indeed, there is a need for a compromise between compression (categorization) and information
conveyance that may depend on the subject or the task at hand. This can only be captured by a quantity
akin to a trade-off parameter.

A technical note about the quantity kg is in order here. In the present paper, we discuss the discrete
case, but we aim at providing a framework that accomodates both discrete and continuous cases.
Unlike information, conditional entropy is not independent from discretization. Therefore, we have
to regularize it by a measure that depends commensurately on the discretization. This also allows
the specific values of a to be independent from discretization. For a given problem, however, only
the ratio between « and hy matters, so « can be redefined in units of /. In the sequel, we choose
ho = log(W). Note that we are only concerned with positive values of « since we are looking at
information maximization and conditional entropy minimization.

We apply this method to a categorization protocol and we use both a mathematical and
computational approach. The problem is in general solvable analytically and we provide a solution in
the case of uniform categories and triangular similarities in Appendix A. In the main body of the paper,
we treat the problem computationally. As the maximization of the objective function g(s; C) can be
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done independently at each point of the item space, we optimize the similarity measure by making an
exhaustive search in the width space o (s) and by selecting the optimal value for the objective function.

3. Results

3.1. Non-Overlapping Uniform Categories

We first consider items S = {s} characterized by a single parameter that is distributed uniformly
over a single axis. Items S are grouped into N categories C = {c} of width W (see Methods). For the
sake of ease of explanation and interpretation, all the categories have the same size, though it is not a
necessary condition. We optimize the objective function that maximizes information and minimizes
the conditional entropy (see Methods). At each point, we compute the value of the similarity-based
entropy, conditional entropy, information as well as objective function for each value of the similarity
width o(s). We select the value of o(s) that maximizes the objective function. The particular results
shown here are for n = 10 categories of width W = 100, for a total of 1000 items.

We provide the behavior of the different entropies at the center and at the boundary of categories
as we explore the possible values of the similarity width. As the width of the similarity function
increases, both the information and the conditional entropy decrease, although they do so at different
paces. At the center of a category (Figure 1A,B), on the one hand, the conditional entropy starts at
log(W), it undergoes a sharp drop as the width increases from 0 to W/2 and then decreases more
slowly. On the other hand, for values of the width smaller than W /2, the information remains at its
maximum of log(N) as all similarities between items from different categories remain zero. It only
starts decreasing for values larger than W /2. Thus, the objective function always finds its maximum at
a value larger than W /2. As the trade-off parameter « increases, the optimal width also does.

However, on the border of a category (Figure 1C,D), the behavior is radically different.
The conditional entropy starts at log(W) and undergoes a drop as well as the width increases but
less sharp than at the center as the similarity is increased with fewer items of the same category at a
given similarity width. The information starts also at log(N) when the width is very small as there is
no positive similarity between items of different category. However, as soon as the width increases,
similarities between items of different categories increase and the information consequently drops and
plateaus to log(N/2). This value comes from the fact that the similarity function essentially mixes two
categories. Then, when the similarity width overpasses W, confusion arises with even more categories
and the information decreases steadily even more. Thus, for low values of &, the optimal width is zero.
As a increases, there is a sudden transition of the optimal width from 0 to W that then steadily keeps
on increasing. More details and computations are given in Appendix A. We give only a summary of
the final results here. We find that the optimal value of the width ¢ at the center of a category, i.e.,

at (m+1/2)W, is:
«

Oopt = ?(1 + W)- (6)

This value is always larger than (or equal to) W /2. The intuitive reason for this is that, up to W/2,
it only increases similarity with items within the category, and thus does not reduce information while
decreasing equivocation. In addition, note that, to a good approximation, o)t is proportional to W,
meaning that the similarity function scales with the category. Note that this value also grows linearly
with «, for W fixed. This is because the more we focus on minimizing the equivocation, the larger the
width has to be.
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Figure 1. The mutual information SBMI, conditional entropy SBCE and objective function at the center
(A,B) and border (C,D) of a category of width W depending on the similarity width with triangular
similarity measures. Since information and entropies are always positive, larger values of « always
lead to lower objective functions. The right panels (B,D) are magnifications of the rectangles depicted
in the left panels (A,C). Arrows indicate the maxima of the objective functions. We observe that the
maximum of the objective function at the center is always larger than W/2 and increases slowly with
trade-off parameter «, while the maximum at the border is very small for small values of « and then
undergoes an abrupt increase. These results are obtained for categories of width W.

We also find that the similarity width at the boundary of a category (i.e., the item closest to a
boundary) is:

Topt = 1, if o < ayy, (7)
Oopt = (W—=1)(1+ @), otherwise. (8)

When « is small, i.e., when little focus is on minimizing the equivocation, the optimal width is 1.
Indeed, any departure from this would create confusion between the element s of category c and a
neighboring category ¢’. When « is large, the optimal width is always larger than W — 1. This is due to
the possible reduction in equivocation yielded by extending the similarity function to encompass all
the elements in category ¢ and, collaterally, those of a neighbouring category ¢’.

Before turning to more complete computational simulations, we see already that the perceptual
magnet effect will happen only for low values of &, when the optimal width at the center is larger than
that at the boundary of a category.

We then assess the value of the similarity width across the stimulus space for a low value of
the trade-off parameter, i.e., « = 0.5 (Figure 2A). We recall that a low value of « means that the first
objective is to maximize information and then, as a secondary objective, to minimize the conditional
entropy. We observe that, in agreement with the previous results, the similarity measure width is much
larger at the center of categories than at their boundaries. Examples of the similarity functions at
selected places in the stimulus space are given in Figure 2B.

We also evaluate the functions g(s|c) (see Equation (2)) for all members across the stimulus space
for &« = 0.5 (Figure 2C). They exhibit a graded behavior: central members have high values while
border members have low ones. This is due to the fact that central elements have large similarity
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widths and thus they are considered similar to other elements of the category. In the particular
case of one-dimensional uniform categories, the g(s|c) and the similarity width have the exact same
behavior, but this will not be the case for other distributions, as we will see in following. The term

g(slc) = Ly p(s|c)ps(s’) is readily interpreted as a measure of the goodness of the member s in
category c.
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Figure 2. Results for categories of width W and trade-off parameter « = 0.5. (A) similarity width for
all members of a category and (B) similarity functions of selected members. The further away from the
the center of the category, the smaller the similarity width and the narrower the similarity function;
(C) goodness of all members of a category. Members at the center have larger goodnesses. In the case of
uniform categories, they mimick the similarity widths; (D) similarities between two equidistant pairs
of members either at the center or a the border of a category. We see that a pair of items (a and b) near
the center has larger similarities than a pair (c and d) closer to the border.

3.2. Preliminary Discussion
These results collectively match cognitive effects presented earlier:

- Categorical perception: two items at a given distance are perceived as more similar if they are
within a category than if they are from two different categories. Indeed, if two items a and b
from the same category are presented simultaneously, their similarities are 0.75 and 0.8, while
two items c and d, which are at the same physical distance, have lower similarities 0.4 and 0.65
(Figure 2D).

- Perceptual magnet: the similarity measure is wider at the center of category, so items around it
are perceived as more similar to each other than two other items at other locations within the
category. Finally, we observe the asymmetry effect: starting from the prototype, an object on the
border appears more similar than the other way around, or ¢s,(s1) > ¢s, (s0)-

However, the perceptual magnet effect depends on the value of the trade-off parameter «.
Fora < 0.79 (see Appendix A), the perceptual magnet effect appears, but, for large values, the similarity
measure peaks in-between categories, as shown in Figure 1. When the value of « is low, the objective
is mainly to maximize information. Therefore, anything that reduces information is prohibited.
More precisely, having a non-nil similarity between two items of two different categories reduces
information. Thus, the maximal width of a similarity is the one that keeps the similarity low between
items from two different categories. However, central items of a category are more remote to other
categories than off-central items. Their similarity measure can therefore safely be wider.

As a increases, minimizing conditional entropy becomes more and more important, forcing the
similarity measures to be wider. At & = 0.79, there is a jump in the optimal width at the border
of a category: it goes from xopr = 1 to xopt > W (see Appendix A). At this point, the similarity
width becomes larger at the border than at the center and the perceptual magnet effect disappears.
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These opposite behaviors at low « and large « were found in all simulations no matter the shapes of
category distribution. Because our main interest is in the ability of the model to produce a categorical
perception effect, in the subsequent parts, we always choose a value of « below the critical value that
sees a sudden jump in the similarity width at the boundaries of categories.

3.3. Gaussian Categories

We performed the same analysis on a set of items distributed on a one-dimensional space.
These items are organized in Gaussian categories separated by a distance W = 100 and variance v:

p(sles) ~ N(W(i+ 3),v) ©)

Again, we consider a triangular kernel whose width has to be optimized according to the
similarity-based objective function. We carried the analysis with 10 values of a ranging from 5 x 101
to 5 x 107! equally spaced logarithmically.

The results are qualitatively similar to those obtained with flat categories. We observe that the
similarity width (Figure 3, middle) is larger at the center of categories than at the border, although in
this case, the width does not reach the minimum value as opposed to the flat category case. As for
g(s|c), we also observe a qualitatively similar behavior with items at the center having larger values
than items on the border (Figure 3, bottom). The shape of the goodness curve g(s|c) differs from the
one of the similarity function since it also involves the Gaussian shape of categories. In particular,

we observe that it drops faster when moving away from the prototype as the effects of the probabilities
and distances multiply.
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\(n+‘1)W
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Figure 3. Results for Gaussian categories of variance v = 5 separated by a distance W = 100 and
trade-off parameter a ranging from 5 x 10719 to 5 x 10~!. (top) probability mass function of the
categories; (middle) similarity width for all members of a category. As in the uniform category case,
the similarity is wider at the center than at the border, although the exact shape is more complicated;
(bottom) goodness of all members of a category. The goodness results here from an interplay between
frequencies and similarities, but it displays the expected behavior of larger goodnesses at the center.
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3.4. Displacement Measure

In order to quantify the warping of the perceptual space, in the spirit of Feldman et al. [21], we use
a measure of the displacement of each item within its category. We define the displacement of item
sp as the average of the positions of the other items s; within the category weighted by the similarity
between sy and s;. It reads:

D(SO) = Z‘PSi(SO)Si- (10)

This is indeed a measure of where the average similar item is in the stimulus space. Therefore,
this measure provides a good estimate of the position of the item in the perceptual space. For any
value of the trade-off parameter «, we find qualitatively similar results, see Figure 4: the more the
items are far from the center of a category, the more they are displaced towards its center. Items near
the center are only slightly displaced.

The larger effect for Gaussian categories may account for the stronger perceptual magnet in
discrete categories such as consonants compared to continuous, such as vowels.

A 100 - B 1o ;
——085
80 L 80 ——o0.
c 4 c
S S S
gso geo —
€ 1<
040 0 40
[y [
Q. Q
o o
20 ®20
0 20 40 60 80 100 O0p 20 40 60 80 100
stimulus location stimulus location

Figure 4. Measure of displacement of items within a category for different values of the trade-off
parameter «. (A) uniform categories; (B) Gaussian categories. We observe that the more central element,
the prototype, is not displaced while other items are all more displaced towards the center of the
category, as they are far from the prototype. This result holds for any value of the trade-off parameter.

3.5. Bimodal Categories

To assess the effect of potential bimodality of distributions, the same analysis was made on
bimodal categories. The items in each category are now distributed as the sum of two Gaussians:

p(s|ci) NJ\/(W(i—O—%)—J,V)—O—N(W(i—i-%)—i-é,v). (11)

We kept the spacing of W = 100 between categories from the previous cases and chose a variance
of v = 5 for the Gaussians to have clear bimodality. To study these cases, we chose a value of
a = 5 x 10~ for which the perceptual magnet effect is very clear. We display results for § from 0 to 30
(point at which the two peaks are further apart than they are to other categories) in increments of 5:
namely, the category shapes, the similarity width and the goodnesses associated. See Figure 5.

We find that, overall, the similarity width keeps the same shape as in the monomodal Gaussian
case, although its absolute value decreases. For a marked bimodal case, this is due to the the absence
of a central mass in the distribution, compared to the bell-shaped case. In such a case, points close
to one peak of the category do not decrease equivocation much by increasing their similarity width.
The similarity width would have to be very large, but then the proximity of the other category prevents
them from decreasing equivocation without decreasing information.

Note that, at some point, the similarity width becomes small and thus the goodness is mostly
determined by the frequency. In a strong bimodal case, it naturally makes the goodness bimodal.
We are not aware of an empirical case where this is observed. This leads us to venture that such
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unnatural cases where categories are bimodal with their modes further apart than they are from other

categories may be unmanageable. However, it gives a prediction for artificial category learning in a
laboratory setting.

pmf

similarity width

0.5

goodness

(n+1)W
stimulus parameter

Figure 5. Results for bimodal categories made of two Gaussians of variance v = 5 separated by a
distance J ranging from 0 to 30. We used « = 0.0005. (top) probability mass functions of the categories
in the 7 cases; (middle) similarity width for all members of a category. As in the uniform and Gaussian
category cases, the similarity is wider at the center than at the border; (bottom) goodness of all members
of a category. The goodness has a more complicated behavior than in previous cases—from bell-shaped
in the 6 = 0 case (i.e., Gaussian monomodal) to multimodal for large J.

4. Discussion

First, the argument g(s|c) that appears in the logarithm of the conditional entropy behaves
naturally like the goodness of any given item s in the category c. The exemplar at the center of a
category has the largest g(s|c) and then qualifies as a prototype. Note that, in the uniform category case,
the high goodness is only due to the internal similarity structure and not to frequencies. This matches
the notion of prototype as having more attributes in common with other members of the category and
less with members of other categories [5]. A posteriori, it appears natural to define the goodness of an
exemplar as the average of its similarity with other exemplars: a good prototype should have features
in common with most other items.

Second, among the theoretical advances brought by the present work, we note that the argument
of the logarithm in the information formula (see Methods) is actually the function that appears in the
context theory of classification [23,24] without the probabilities. We here give it an information-theoretic
interpretation in terms of marginal and conditional similarity-based entropies. Indeed, in the
context-theory of classification, a given item r is classified as belonging to a category c¢; based

on the ratio between its similarity to other items in the category c; and its similarity with items
gy (1)
in all categories p(c1|r) = % This is similar to the term obtained in the logarithm of the
j i Pri
similarity-based information theory, though the latter includes probabilities as well. It thus adds to the
context-theory of classification by bringing together in a single formula the contributions of frequency
and similarity [6], and by being grounded in the framework of information theory. The advantage
of our formulation is that it includes both probabilities and similarity, so the resulting terms can be

interpreted as goodnesses.
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Third, among the other theoretical advances of this work is the ability to tune the similarity
functions with an information-theoretic principle. It could be obvious to some readers that we can
model perception with similarity functions. However, we then need an optimization principle that
would have a clear interpretation and would not be ad hoc. This is exactly how we proceeded here,
by taking without modification an existing theory and applying it directly to the issue of categorization.

Fourth, we show a warping of perceptual space. Similarity measures are wide at the center of
categories and narrow their boundaries, akin to the poor within-category and high between-categories
discriminability, known as the perceptual magnet effect. We can thus interpret the entropy as the
expectation of the goodness surprise. The prototype is the least surprising member of a category.
An important feature of our model is that, for a given trade-off «, if categories become larger, then the
similarity functions scale likewise. Our model is therefore scale-invariant.

Fifth, as in the experiments mentioned in the introduction, there is an asymmetry between
distinguishing two items depending on their order of presentation. When the prototype is presented
first, the similarity measure used is wide and the discrimination of a following non-prototype becomes
hard. However, if the non-prototype is presented first, the similarity measure is narrow and the
discrimination of the prototype is easier. When a first item appears, it sets the comparison level. If it is
close to the border of the category, it is much more stringent than when it is in the center.

It has been postulated that the magnitude of the categorical effects depends on the protocol used
in the experiments [22]. Here, we suggest that the culprit of these variations may be the trade-off
parameter «, which sets the relative importance of discrimination and categorization.

A large body of studies suggests that, in order to account for classification, discrimination,
and categorization capacities of human brains, we need to consider them information-processing
systems that rely on two essential features: probabilities and similarities. As stated by Quine [41]:
“There is nothing more basic to thought and language than our sense of similarity; our sorting
of things into kinds”, as also stressed by Tversky and Gati [8]. Only by considering these two
factors can we understand the way we perform at various tasks and our cognitive biases. This work
attempts at bringing together these three elements: information, probabilities and similarities, thereby
mapping Ref. [6]’s paper triptych: “Similarity, Frequency and Category Representation”. It fits in the
general attempt to phrase cognition into an information theoretical framework with the addition of a
similarity structure.

There have already been attempts to explain categorical perception effects. Lacerda [42] proposed
an explanation based on exemplar theory, which only accounts for between-category discrimination
though. Following insights from Huttenlocher et al. [43], Feldman et al. [21] proposed a Bayesian
model to explain the effect. However, according to the authors, the model only works in the case of
unimodal categories and it cannot explain the effect on uniform categories. Our account thus finds its
interest by fully explaining the perceptual magnet even in the case of uniform distributions as well as
the internal structure of categories in a single framework using both probabilities and similarities.

Note the resemblance with the information-bottleneck method [44]. This approach aims at finding
the codewords X that maximize the functional:

L=I(X;C)—al(X;$), (12)

which is interpreted as maximizing the information of X about the category C, but trying to compress
the stimulations S. The formulation bears a strong kinship with our method, but, as it is expressed only
in Shannon information theoretic terms, it does not take into account the similarities between items.
It would thus remain an unconstrained compression and would entail the optimal solution X = C
(for low values of ), which could not account for the category structure nor categorical perception.
It is now established that the information bottleneck and RDT are related [38,45]. The trade-off
parameters in these two theories are linked to our «. In the field of categorization, this trade-off
parameter is present in almost all models, or, more precisely, understanding categorization necessarily
requires two opposing phenomena: a faithful encoding of the stimulus and a limiting/grouping
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phenomenon. For example, in Sims et al. [38], it naturally stems from the application of RDT. Although
the link is not completely transparent: (a) minimizing Sims’ cost function is akin to maximizing
the similarity-base information, in the sense that it attempts at avoiding confusion or error between
two different items; (b) the channel capacity constraint is akin to maximizing the similarity-based
equivocation, as it allows elbow room for categories.

One of the strongest points of the work presented here is that our solution is abstract, as we
work with similarities between items, without mentioning the type of neural subtrates that could
actually implement it. However, the nature of the neurophysiological substrates of the similarity
remains an important question to address. Bonnasse-Gahot and Nadal [25] approached the problem
with Shannon information theory and, although they focused on partially overlapping categories,
our results conceptually matches theirs. In particular, they reached the conclusion that a neural
population code optimized for categorization should display a higher resolution of the sensory input
near the boundary of categories. This could be done by having more neurons with tuning curves
centered near the boundary and/or to have neurons with narrower tuning curves near the boundary.
Their actual implementation of a neural code matches our more abstract solution since, more neurons
with narrow tuning curves will naturally yield larger neural distances between otherwise similar
stimuli. It is interesting to observe that they take the neural code as a fundamental object. An exact
quantification of the difference (or lack thereof) between the predictions of the models would require
a mapping between population neural activity and item similarities, using, for example, common
spike-train or firing rate distances [46].

As for the decision, similarity values can be seen as a level of evidence per unit of time in a drift
model of decision-making [47]. This could explain why it takes longer to react in some cases [9,13,48].
This would bring this work closer to the drifting models of decision-making.

Limitations

One of the main limitations of our work is that we do not explain the origin and birth of categories.
We just assumed that categorization is a needed feature of sensory information processing. We take
categories for granted and then we try to maximize an objective information theoretical function.
Other studies have already attempted to explain the sizes of categories. Komarova et al. [49] proposed
an evolutionary mechanism to explain the birth of categories from discrimination. They used a
parameter ks;,,, that is very close to our definition of similarity width and that is eventually generalized
as a similarity matrix comparable to our family of similarity functions. Regier et al. [32] also attempted
to explain categories as an optimal partitioning of a complex irregular perceptual space. It is so far
uncertain whether our framework could also bring light on the birth of categories, but it is compatible
with the former approaches. We hope in the near future to extend our framework to include the birth
of categories. However, it will necessarily involve a measure of the allocation of brain resources to the
discrimination of items and thus another trade-off. We believe that the simplicity (one objective function
with one trade-off paramater) of the current framework can make it stand alone, notwithstanding
these potential extensions.

Another limitation of our work is that it does not include hierarchy of categories, i.e., some
items may be part of a subordinate category itself inside a superordinate category (a typical example
being “a rabbit is a mammal is an animal”). Corter and Gluck [50] already used information theory
to compute what hierarchical level of categorization is optimal to describe an item. Their goal being
different from ours, their framework does not include similarities and does not attempt to explain
categorical perception. This problem could be dealt with by adding a similarity structure on the set
of categories, a feature that can be naturally integrated in the similarity-based information-theoretic
framework. However, we are not aware of any experimental studies showing categorical perception or
perceptual magnet effects on sub- and super-ordinate categories.
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5. Conclusions

In this work, we account for both the internal structure of categories and its effects on perception
by using a single information-theoretic framework. This framework integrates the notion of pairwise
similarity between items into information measures. It provides an optimization principle that, at the
same time, maximizes information transmission and compression of the stimulus space. Applying
this framework to pre-existing categories to be learned, we derive the notion of goodness of items
belonging to a category, categorical perception and the perceptual magnet effect.

The main point of this work is to set forth a single hypothesis about human discrimination in
terms of perceived similarity as well as frequencies. There is no assumption on the shape of categories,
which can be either bell-shaped or uniform. Nonetheless, we are able to derive the internal structure
of categories through a naturally occurring quantity matching goodness, and the main effects of
categorical perception with their potential asymmetry, thereby expliciting an ontological link between
category structure and categorical perception. In other words, we show that both the goodness and
warped perception are consequences of the interaction between pairwise similarities and frequencies,
thereby expliciting a previously unknown link between the structure of categories and the perceptual
effects of categorization. We show that the discrimination level can be accounted through a parameter
« that implements a trade-off between discriminating and confusing pairs of stimulations. Empirical
categorical perception is accounted for at low values of this parameter, i.e., when discrimination
remains the main objective.
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Appendix A

Here, we will give an intuition for the behavior of the similarity width in the case of uniform
categories with a triangular kernel (that we use instead of a Gaussian kernel for ease of computation).
Let’s look in particular at the optimal similarity width at the center and at the boundary of a category.

Appendix A.1. Center of Categories

The computations go as follows in the case of N uniform categories of width W and a triangular
kernel of width x. Note that p(s|c) = Np(s):

8(s) = p(s)x. (A1)
If x < W/2 (in blue in Figure A1):
g(sle) = p(slo)x, (A2)
so we can compute the objective function:
o
q(s;c) o< —logp(s)x + (HW)logP(SIC)x, (A3)

which, upon inspection, is an ever-increasing function of x. Therefore, the optimal value of x must be
larger than or equal to %
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If x > W/2 (in red in Figure A1):

W2

$0510) = plsle)(W - 7), (A%)

so we can compute the objective function if x > W/2:
(s;c) &< —1lo (s)x+(1+L)lo (s|c)(W—m2) (A5)

N &b logW &b 4x 7
Deriving this function and equating it to 0 yields:
W «

Xopt = T 2+ log W ) (A6)

and we find perfect agreement with simulations.

As long as the kernel is positive only within the category, the information remains unaltered,
only the conditional entropy is reduced compared to the Kronecker kernel. By increasing the width
of the kernel, the conditional entropy is further reduced, but the information is reduced even more.
There is thus a trade-off appearing.

If the trade-off parameter « is nil, then the objective is merely to maximize information. In that
case, any value of the width smaller than the width of a category is suitable. As soon as « increases
and thus minimizing conditional entropy starts to matter, then larger values of the width are optimal.

0 stimulus parameter W

AN

Figure A1. Similarity functions.

Appendix A.2. Boundary of Categories

The argument of the logarithm in the entropy is:

g(s) = p(s)x, (A7)

and in the conditional entropy if x < W (in blue in Figure A2):

x

). A
+3) (48)

Note that the 3 comes from the fact that the item s considered is fully in category c.
We can compute the objective function:

o 1 x
; —1 1+ —)1 ——— A
q(s;€) o —Loglp(s)x] + (1 + o) oglp(sle) (5 + 5)] (49)
The minimum of this function is at x = IOgaW, so that, in the 0 < x < W part, there are two local

maximaatx =land x = W.
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If x > A (in red in Figure A2):

w 1
glsle) = pGslyW(1 — -+ 57) (A10)
so we can compute the objective function:
(s;c) o< —log[p(s)x] + (1 + L) log[p(s|c)W(1 — w + i)] (A11)
N 8P logW 8P 2x  2x’

Deriving this function and equating it to 0 yields:

24 L) (W -1
—_— 1°gW2)( ) (A12)

Note that the value of the objective function at x, is always larger than that at x = W. Thus, it
only remains to know when the local maximum at x = 1 is larger than that at x = x,.

Atx=1: N
1= g(sle) & ~log p(s) + (1 + 1) log p(so) (A13)
At x = xppt:
92 = q(s|c) & —log[p(s)xopi] (A14)
o 1-W
+(1+ W) log[p(s|c)W (1 + Do )]- (A15)
The difference is:
o 144 1
2—gl=-1 1+ ——)logW(1— Al6
924 og Xopt (14 gy ) loslW (L = 5 e (A16)
This cancels when: |
0g Xopt
a = log W( — —1). (A17)
log[W(1+ 52
We solved the last equation numerically and found for W = 100 a value of a;;, = 0.796.
In the end, the optimal value of x depending on « is:
Xopt = 1, if o < ay, (A18)
24 5w ) (W-1
Xopt = %, otherwise. (A19)

With this, we obtain the values of the optimal x for all values of « and we observe an exact
matching with the numerical results from the core of the article. We see that the optimal value of x
scales with W — 1 (and not with W, which creates small departures from scale-independence at very
low Ws).

stimulus parameter

Figure A2. Similarity functions.
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