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Abstract: In two recent papers we introduced a generalization of Boltzmann’s assumption of
molecular chaos based on a criterion of maximum entropy, which allowed setting up a bilocal version
of Boltzmann’s kinetic equation. The present paper aims to investigate how the essentially non-local
character of turbulent flows can be addressed through this bilocal kinetic description, instead of
the more standard approach through the local Euler/Navier–Stokes equation. Balance equations
appropriate to this kinetic scheme are derived and closed so as to provide bilocal hydrodynamical
equations at the non-viscous order. These equations essentially consist of two copies of the usual local
equations, but coupled through a bilocal pressure tensor. Interestingly, our formalism automatically
produces a closed transport equation for this coupling term.
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1. Introduction

The study of turbulent flows has to face two main difficulties, namely non-linearity, which arises
from the advective term in the Euler/Navier–Stokes transport equation; and non-locality, which stems
from the fact that the theory of complex flows relies to a large extent [1,2] on the correlation function
Qij = 〈u′i(x)u′j(y)〉—that is the average product of the fluctuating component of the velocities of fluid
elements at two distant points in space. As such, Qij is a fundamentally bilocal object.

These two issues are logically disjoint, and the present paper does not bring any new insight
regarding the former, focusing instead exclusively on non-locality. The problem raised by bilocality
is that turbulence is usually considered from the standpoint of the Navier–Stokes equation (or Euler
equation in the non-viscous case), which in turn is derived from the local considerations of kinetic
theory (see for instance [3–6] for a few milestones in this direction). Thus, it appears somewhat
paradoxical to expect strictly local considerations to lead to a complete picture of a fundamentally
bilocal phenomenon.

A different approach would be to start from kinetic theory considered from a bilocal standpoint
and then on top of that build a hydrodynamics model that incorporates bilocal features from scratch.
The viability of this more sensible approach crucially depends on the possibility of deriving a coherent
bilocal kinetic theory of gases, which, technically speaking, amounts to obtaining a closed kinetic
equation for the distribution function f2 that describes the distribution of pairs of particles [7,8].

2. Two-Particle Kinetics

2.1. Generalized Molecular Chaos

Among the existing schemes for setting up a coherent equation for f2, the authors and
co-workers recently proposed an approach that relies on a maximum-entropy-based generalization
of Boltzmann’s assumption of molecular chaos [9,10]. The key observation is that the Stosszahlansatz,
namely the substitution f2(ξ1, ξ2)→ f1(ξ1) f1(ξ2) (introducing for convenience the aggregated variable
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ξi = (qi, pi)) before a collision, can be interpreted either as an assertion regarding the physical state
of pre-colliding particles (regarding the range of validity of the Stosszahlansatz, see for instance [11,12]),
or as a heuristic assumption which substitutes the unknown pre-collisional distribution f2 for its least
biased approximation, since the factorized distribution is precisely the distribution that maximizes
entropy while being consistent with imposed marginal distributions [13] (the fact that maximum
entropy distributions do not require a subjective interpretation and can be assigned an objective
meaning is discussed at length in [14]).

The added value of this re-interpretation of molecular chaos is that it lends itself nicely to
generalization, and in [9] it was shown how to derive a kinetic equation for the two-particle distribution.
This makes it necessary to close the second-order BBGKY equation, whose collision term involves
the three-particle distribution f3. The procedure thus requires the substitution of the pre-collisional
three-particle distribution with its maximum entropy approximation which is compatible with the f2

appearing in the streaming term. The general result to keep in mind here [13] is that the maximum
entropy approximation we can make on the three-particle repartition function under constraints on
the bivariate marginals can be expressed as a product of bivariate functions, so that we should make

f3(ξ1, ξ2, ξ3)→ G1(ξ1, ξ2)G2(ξ1, ξ3)G3(ξ2, ξ3). (1)

Though elegant, this result is of limited practical scope unless one can obtain extra knowledge about
the functions G1,2,3. Fortunately, classical particle repartition functions have the peculiarity of being
symmetric under exchange of particles, which implies that G1 = G2 = G3. Hence, before collision,
we are led to the ansatz

f3(ξ1, ξ2, ξ3)→ G(ξ1, ξ2)G(ξ1, ξ3)G(ξ2, ξ3) (2)

for some function G which is implicitly related to f2 through

f2(ξ1, ξ2) =
∫

dξ3G(ξ1, ξ2)G(ξ1, ξ3)G(ξ2, ξ3). (3)

Note that compared to other closure schemes to be found in the literature, this scheme has the two-fold
advantage of being constructive, and of yielding a standalone kinetic equation for f2 and not a coupled
system of equations for f1 and f2 (or possibly another function encapsulating the dependence between
particles, cf. [15]).

2.2. Two-Particle Kinetic Equation

Once we have this ansatz at hand, the steps that usually lead to the one-particle Boltzmann
equation can be replicated almost exactly in the case of the two-particle distribution. Throughout
this work, we shall retain the usual assumptions of kinetic theory [7,8,16], leading us to neglect
triple collisions. The streaming term for the two-particle distribution characterizing particles ‘1’ and ‘2’
will thus be altered by (1) binary collisions between ‘1’ and another particle with ‘2’ being a spectator,
and (2) binary collisions between ‘2’ and another particle with ‘1’ being a spectator. Particles interact
through either a hard-sphere contact interaction or a short-range, repulsive central force field [17,18].

A binary interaction is defined as occurring when two particles meet in a ball B of radius R.
Defining ternary interactions is more subtle, since inasmuch as the interaction potential is the
same regardless of the order of the interaction, it seems artificial to introduce a specific cutoff.
We shall therefore define the range of triple collisions as the lenticular overlap of balls B(1)

R and B(2)
R

characterizing the domain of interaction with ‘1’ and ‘2’, respectively. Neglecting triple collisions thus
amounts to assuming that |q1 − q2| > 2R. Note that it is particularly important to stick tightly
to the assumptions made in one-particle theory in order to guarantee that any new prediction
arising in the present bilocal description can be ascribed to the statistical description considered,
and not to the introduction of new physical assumptions (even though the framework presented here
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might eventually find its greatest relevance in systems where correlation is known to be important
(e.g., granular gases [19]), in which case the assumptions made here should be relaxed and generalized).

This line of reasoning allows us to write a self-standing equation for the function f2 describing
the joint distribution of particles ‘1’ and ‘2’, which was found to be [9](

∂

∂t
+

p1

m
· ∇x +

p2

m
· ∇y

)
f2(x, p1; y, p2; t)

=
∫

dp3dω
|p3 − p1|

m
(Gx,y

p′1,p′2
Gx,x

p′1,p′3
Gy,x

p′2,p′3
− Gx,y

p1,p2 Gx,x
p1,p3

Gy,x
p2,p3)

+
∫

dp4dω
|p4 − p2|

m
(Gx,y

p′1,p′2
Gx,y

p′1,p′4
Gy,y

p′2,p′4
− Gx,y

p1,p2 Gx,y
p1,p4 Gy,y

p2,p4),

(4)

with p1,2,3,4 and p′1,2,3,4 denoting the momenta before and after the collision, respectively. For notational
convenience, we have put q1 = q3 = x and q2 = q4 = y, as well as the shortcut Gx,y

p1,p2 = G(x, p1; y, p2; t).
The first term on the r.h.s. corresponds to the contribution of the collisions possibly undergone at

position x by particle ‘1’ with some particle ‘3’, while the second term accounts for the contribution
of the collisions possibly undergone at position y by particle ‘2’ with some particle ‘4’. It must be
emphasized that the same usual assumptions on density that allow neglecting triple collisions also
imply that a binary collision occurs either at x or y, but not simultaneously at both places—this will
turn out to be important when discussing the appropriate collisional invariants.

2.3. Collisional Invariants

Despite its un-glamorous aspect, the structure of Equation (4) is similar to the structure of the
one-particle Boltzmann equation, except that the function G appearing in the collision integral, which
comes directly from the maximum entropy formulation of the generalized Stosszahlansatz, is not f2 itself
but an implicit function of f2. Our point in [10] was that although f2 does not appear explicitly in the
collision integral, this does not preclude the kind of manipulations usually performed on the Boltzmann
equation, and we managed to derive appropriate collisional invariants and the bilocal equilibrium
they give rise to. (Nevertheless, it seems that the standard derivation of the H-theorem for f1 cannot be
generalized in a straightforward way to f2 in our formalism, even though there is no reason to believe
that the two-particle entropy H2 = −

∫
f2 ln f2 does not increase over time.) The salient point in our

analysis was that the formulation of local collisions in bilocal terms makes it necessary to consider a
collisional invariant other than mass, momentum and kinetic energy; in particular, it happened that
defining a bilocal invariant χ through the relation

χ(p′1, p′2) + χ(p′3, p′4) = χ(p1, p2) + χ(p3, p4) (5)

makes it necessary to retain χ1 = 1, χ2 = (pi
1 + pi

2), χ3 = (p2
1 + p2

2), but also, more interestingly,

χ4 = pi
1 pj

2. (6)

in [10] we considered only the invariant χ4 = p1 · p2, but (6) is more general. This is due to the fact
that, as mentioned above, the collision occurs at either x or y. In the former case, definition (5) with
Equation (6) becomes

(p′ i1 + p′ i3)pj
2 = (pi

1 + pi
3)pj

2 (7)

while in the latter it becomes
(p′ j2 + p′ j4)pi

1 = (pj
2 + pj

4)pi
1 (8)

which are both trivially verified.
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Armed with these four invariants, it is a simple matter to derive a bilocal equilibrium distribution
describing the probability that two particles a distance r apart are found to have velocities v1 and v2.
Thus we find that

eq f (r)2 (v1, v2)

= ν(θ1, θ2, Ψ(r)) exp(α(θ1, Ψ(r))(v1 − u1)
2 + α(θ2, Ψ(r))(v2 − u2)

2 + (v1 − u1)
TΨ(r)(v2 − u2)),

(9)

which, as might have been expected, consists of a product of Maxwellian distributions multiplied
by a correlating factor. The coefficients are such that

∫
dv1dv2(v1 − u1)

2 f2 = θ1 and
∫

dv1dv2(vi
1 −

ui
1)(v

j
2 − uj

2) f2 =
√

θ1θ2 ϕ
(r)
ij (in plain words θ1 and θ2 denote the temperature at position x and y

respectively, ϕ
(r)
ij denotes the correlation at distance r of component i of v1 − u1 and component j of

v2 − u2), and ν denotes a normalization factor.

3. Balance Equations

Our aim here is to work out the balance equations associated to our bilocal invariants. The very
same kind of manipulations as used on the one-particle Boltzmann equation provide us with the
generic expression ∫

dv1dv1χ(v1, v2)

(
∂

∂t
+ v1 · ∇x + v2 · ∇y

)
f2 = 0. (10)

Defining

〈A〉 = Ω−1
∫

dv1dv2 A f2 (11)

with the bilocal density Ω =
∫

dv1dv2 f2 allows rewriting Equation (10) as

0 = ∂t〈Ωχ〉+∇x · 〈Ωχv1〉 − 〈Ωv1 · ∇xχ〉+∇y · 〈Ωχv2〉 − 〈Ωv2 · ∇yχ〉. (12)

Considering now in turn the four collisional invariants introduced above, we obtain for χ = 1 that

∂tΩ +∇x · 〈Ωv1〉+∇y · 〈Ωv2〉 = 0. (13)

This is a bilocal continuity equation for the bilocal density Ω(x, y), which is the exact counterpart of
the standard local continuity equation.

Then, for χ = (vi
1 + vi

2), we have for the conservation of momentum

∂t〈Ω(vi
1 + vi

2)〉+∇x · 〈Ω(vi
1 + vi

2)v1〉+∇y · 〈Ω(vi
1 + vi

2)v2〉 = 0. (14)

Using the continuity equation given by Equation (13) above, this can be rewritten as

0 = Ω(∂t + u1 · ∇x)ui
1 + Ω(∂t + u2 · ∇y)ui

2

+∇x · 〈Ω(vi
1 − ui

1)(v1 − u1)〉+∇x · 〈Ω(vi
2 − ui

2)(v1 − u1)〉
+∇y · 〈Ω(vi

1 − ui
1)(v2 − u2)〉+∇y · 〈Ω(vi

2 − ui
2)(v2 − u2)〉.

(15)

We therefore obtain two copies of the pre-Euler/Navier–Stokes conservation equation for the velocity
field (each acting at a different point in space), but which are coupled through a kind of bilocal pressure
tensor 〈(vi

1 − ui
1)(v

j
2 − uj

2)〉.
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Next, for χ = (v1 − u1)
2 + (v2 − u2)

2 we obtain in a similar way, remembering that by definition
〈(v1 − u1)

2 + (v2 − u2)
2〉 = θ1 + θ2:

0 = Ω(∂t + u1 · ∇x)θ1 + Ω(∂t + u2 · ∇y)θ2

+∇x · 〈Ω(v1 − u1)
2(v1 − u1)〉+∇x · 〈Ω(v2 − v2)

2(v1 − u1)〉
+∇y · 〈Ω(v1 − u1)

2(v2 − u2)〉+∇y · 〈Ω(v2 − v2)
2(v2 − u2)〉

− 2Ω〈(v1 − u1) · (v1 − u1)〉∇x · u1 − 2Ω〈(v2 − u2) · (v2 − u2)〉∇y · u2.

(16)

Here, again, we obtain two copies of the local heat transport equation that are coupled through a
bilocal heat flux.

We finally come to χ = (vi
1 − ui

1)(v
j
2 − uj

2), for which we eventually obtain

0 = Ω(∂t + u1 · ∇x + u2 · ∇y)〈(vi
1 − ui

1)(v
j
2 − uj

2)〉

+∇x · 〈Ω(vi
1 − ui

1)(v
j
2 − uj

2)(v1 − u1)〉+∇y · 〈Ω(vi
1 − ui

1)(v
j
2 − uj

2)(v2 − u2)〉

+ Ω〈(v1 − u1)(v
j
2 − uj

2)〉 · ∇xui
1 + Ω〈(v2 − u2)(vi

1 − ui
1)〉 · ∇yuj

2,

(17)

which provides a transport equation for the bilocal pressure tensor.

4. Non-Viscous Hydrodynamics

Our goal now is to close the balance equations, given by expressions (13), (15)–(17), by evaluating
the averages over a local equilibrium solution given by Equation (9), with θ1 → θ1(x), θ2 → θ2(y),
u1 → u1(x), u2 → u2(y) and Ψ→ Ψ(x, y), so as to deduce the bilocal non-viscous hydrodynamical
equations. (It might be argued that considering turbulent flows in the non-viscous case is somewhat
vain, since viscosity plays a crucial role in the dissipation of small-scale vortices. However, the
fundamental difficulty that makes the study of turbulence particularly challenging is present in the
non-viscous case as well, so that from the conceptual standpoint of the present paper, considering
non-viscous flows is enough for our purpose.) We have (defining at the same time the local pressure
tensors P1(x) and P2(y) and their bilocal counterpart Φ(x, y)) :

Ω〈(vi
1 − ui

1)(v
j
1 − uj

1)〉 = δijP1 = δij
θ1

3
(18)

Ω〈(vi
1 − ui

1)(v
j
2 − uj

2)〉 =
√

θ1θ2 ϕij = Φij (19)

Ω〈(v1 − u1)
2(v1 − u1)〉 = 0 (20)

Ω〈(v2 − v2)
2(v1 − u1)〉 = 0 (21)

Ω〈(v1 − u1) · (v1 − u1)〉 = 3P1 = θ1 (22)

Ω〈(vi
1 − ui

1)(v
j
2 − uj

2)(v1 − u1)〉 = 0. (23)

Hence, our conservation equations become at zeroth order, first the bilocal continuity equation
(now written in components)

∂Ω
∂t

+
∂(Ωuk

1)

∂xk +
∂(Ωuk

2)

∂yk = 0, (24)

then the bilocal Euler equation

0 = Ω
(

∂

∂t
+ uk

1
∂

∂xk

)
ui

1 + Ω
(

∂

∂t
+ uk

2
∂

∂yk

)
ui

2 +
∂

∂xi P1 +
∂

∂xk Φki +
∂

∂yk Φik +
∂

∂yi P2, (25)
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the bilocal heat equation

0 = Ω
(

∂

∂t
+ uk

1
∂

∂xk

)
θ1 + Ω

(
∂

∂t
+ uk

2
∂

∂yk

)
θ2 −

2
3

(
θ1

∂uk
1

∂xk + θ2
∂uk

2
∂yk

)
, (26)

and the transport equation for the bilocal pressure tensor

0 = Ω
(

∂

∂t
+ uk

1
∂

∂xk + uk
2

∂

∂yk

)
Φij + Φkj ∂ui

1
∂xk + Φik ∂uj

2
∂yk . (27)

Finally, one might wish to obtain a transport equation for the product ui
1(x)u

j
2(y). This can be

done by using Equation (25) twice to obtain

0 = Ω
(

∂

∂t
+ uk

1
∂

∂xk + uk
2

∂

∂yk

)
(ui

1uj
2) + Ωui

1

(
∂

∂t
+ uk

1
∂

∂xk

)
uj

1 + Ωuj
2

(
∂

∂t
+ uk

2
∂

∂yk

)
ui

2

+ uj
2

∂P1

∂xi + ui
1

∂P1

∂xj + ui
1

∂P2

∂yj + uj
2

∂P2

∂xi + ui
1

∂Φkj

∂xk + uj
2

∂Φki

∂xk + ui
1

∂Φjk

∂yk + uj
2

∂Φik

∂yk .
(28)

5. Conclusions

It follows from our analysis that Equation (28), supplemented by expressions (25) and (27),
provides a dynamical equation for the product of fluid velocities at different points in space,
addressing the point raised in the introduction regarding the non-local character of complex flows.
It must be emphasized that this result is deduced purely from the considerations of kinetic theory, and
without resorting to any further hypotheses.

However, we considered here the full velocity field and not its fluctuating part only. Coming
back to the second point regarding the non-linearity of the resulting equations, if we decompose each
quantity involved as the sum of its Reynolds average plus a fluctuating component, we shall face
in our bilocal Euler equation, given by Equation (25), the same problem as in the local case, with
the emergence of extra stresses that are the bilocal counterparts of Reynolds stresses. Nevertheless,
Equation (28) provides a dynamical equation for these stresses, so that the closure problem should not
degenerate into a hierarchical closure problem.

It is worth reminding our assumption that the points have to be separated by a distance at least
equal to the typical length characteristic of the interaction. One should therefore refrain from the
temptation of taking the limit such that the points become confounded, which in the present setting
would be ill-supported mathematically. That being said, this typical length is likely to be much smaller
than the distances of interest in a hydrodynamical setting. It should also be recalled that the equations
of hydrodynamics are notoriously robust against the breaking down of the assumptions made in
first-principles derivations, so that the range of validity of the theory presented here might well turn
out to be wider than expected. This will eventually be a matter for experimental confirmation or
invalidation. Anyway, the theory presented here is conceived less as a fully developed scheme, and
more as an invitation to explore bilocal kinetics further. We cannot but hope that we have partly
reached this goal.
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