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Abstract: Considering consumers’ attitudes to risks for probabilistic products and probabilistic
selling, this paper develops a dynamic Stackelberg game model of the supply chain considering
the asymmetric dual-channel structure. Based on entropy theory and dynamic theory, we analyze
and simulate the influences of decision variables and parameters on the stability and entropy of
asymmetric dual-channel supply chain systems using bifurcation, entropy diagram, the parameter
plot basin, attractor, etc. The results show that decision variables and parameters have great impacts
on the stability of asymmetric dual-channel supply chains; the supply chain system will enter chaos
through flip bifurcation or Neimark–Sacker bifurcation with the increase of the system entropy,
and thus the system is more complex and falls into a chaotic state, with its entropy increased.
The stability of the system can become robust with the increase of the probability that product a
becomes a probabilistic product, and it weakens with the increase of the risk preference of customers
for probabilistic products and the relative bargaining power of the retailer. A manufacturer using the
direct selling channel may obtain greater profit than one using traditional selling channels. Using the
method of parameter adjustment and feedback control, the entropy of the supply chain system will
decline, and the supply chain system will fall into a stable state. Therefore, in the actual market of
probabilistic selling, the manufacturers and retailers should pay attention to the parameters and
adjustment speed of prices and ensure the stability of the game process and the orderliness of the
dual-channel supply chain.

Keywords: probabilistic selling; entropy complexity; game theory; N-S bifurcation

1. Introduction

The rapid development of e-commerce has created a more convenient and efficient shopping
environment, shortened the sales distance between manufacturers and consumers, and enriched the
sales model. In 2008, Fay and Xie put forward the concepts of probabilistic products and probabilistic
selling (PS), which have attracted great attention in recent years [1]. The probabilistic product is
not a specific product, but a virtual product created by a seller through a series of product sales.
Probabilistic selling can expand the scope of the market and reduce the uncertainty of customer
demand [2,3]. Fay and Xie [4] considered the heterogeneity of customer demand, which could be
separated by means of a variety of purchase options or sales plans, and developed a formal model to
explore the differences via two different mechanisms. Using opaque selling mechanisms, Anderson
and Xie [5] developed an analytic model to analyze product pricing and the evolution of market
segmentation. Xiao and Chen [6] considered an online retailer who sells two similar products (A and
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B) and probabilistic products (A or B), and modeled the problem using continuous time, discrete state,
and finite horizon dynamic programming considering the choice behavior of potential customers.
Fay et al. [7] considered how probabilistic selling impacts the type and number of products that
a retailer should carry and found that adopting PS could alter the optimal number of products.
Dan et al. [8] compared markdown selling with probabilistic selling and found that probabilistic
selling could improve margin management and inventory utilization by reducing the magnitude
of discounts and the amount of excess inventory. Wang et al. [9] studied the impacts of return
policy on the effectiveness of the probabilistic selling model. Yang et al. [10] developed a dynamic
evolution game model using the Hotelling model and analyzed the strategies of duopoly retailers
with probabilistic selling or traditional selling. Zhang et al. [11] constructed a new newsboy-type
inventory model and analyzed the effect of probabilistic selling on inventory decisions and the
expected profit through demand reshaping and demand substitution. Li and Ma [12] developed
a dynamic non-cooperative price Stackelberg game model based on incomplete information of the
market, and the results showed that the increase in customers’ risk aversion can increase the stability
domain of the system; the opposite is true with an increase in price discount. Zhang et al. [13] used the
inventory substitution strategy and probabilistic selling strategy to solve demand uncertainty, and the
results showed that the probabilistic selling strategy is more profitable when the product similarity
is relatively low and the number of price-sensitive customers is high. Syam et al. [14] demonstrated
the situations in which a firm can benefit or lose-out from higher sales uncertainty compared with
findings from the standard principal-agent models. Giri et al. [15] developed a centralised model and
decentralised model with uncertain demand and found that buyback contracts failed to coordinate
such a supply chain.

The above literature studied and complemented the extant research on probabilistic selling or
opaque selling in different contexts. However, they did not study probabilistic selling or opaque selling
in a dual-channel supply chain environment.

Literature on the price decisions of dual-channel supply chains, as well as decision makers’
behavior, have been studied by many scholars. Chen et al. [16] developed a Stackelberg game
model of dual-channel supply chains considering the channels’ environmental sustainability and
showed that the influence of the level of channel environmental sustainability on pricing decisions
are different in the centralized and decentralized models. Considering the efficacy of different supply
chain structures and two types of channel pricing forms, Wang et al. [17] established four game
models of complementary products of a dual-channel supply chain and investigated its pricing and
service decisions. Aimed at the inventory competition of perishable products, Li et al. [18] examined
the pricing strategy of a dual-channel green supply chain in both centralized and decentralized
cases and proposed a contract to coordinate the decentralized dual-channel green supply chain.
Chen [19] developed a dual-channel supply chain model and evaluated the impact of price schemes
and cooperative advertising mechanisms on dual-channel supply chain competition. Considering the
regulation of mandatory carbon emission capacity, Xu et al. [20] developed the coordination contract
of a dual-channel supply chain in which market demand was affected by the selling prices in both
online and offline channels. Li et al. [21] developed and discussed a Stackelberg game model of a
supply chain considering customer returns and pricing strategies. Zhou et al. [22] studied the influence
of supply disruption risk on sales prices under the direct retailer channel and traditional retailer
channel. When the dual channel supply chain uses differential and non-differential pricing scenarios,
respectively, Zhou et al. [23] investigated how free riding affected the pricing or service strategies and
profits of the manufacturer and traditional retailer. Zhang and Wang [24] investigated the influence of
service value on the pricing strategies of a dual-channel supply chain and analyzed the evolution of
the system under a long-term price forecasting mechanism.

These works studied the price decisions as well as decision makers’ behavior in dual-channel
supply chain environments and analyzed the optimal solutions of dual-channel supply chain models
in different conditions. However, they did not consider the effects of customers’ risk attitude on the
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systems’ pricing decisions. In this paper, we will study the effects of probabilistic product pricing on
decision making and system stability, considering customers’ risk attitudes for probabilistic products.

Many scholars have studied the economic system and society system and found that there
are both chaotic and hyper chaotic behaviors [25–27]. The entropy of systems can characterize the
instability degree of the system; many scholars have studied the entropy characteristics of supply chain
management and the economy using the entropy theory and non-linear theory. Czyż and Hauke [28]
proposed that entropy was a significant tool for the analysis of regional analysis. Dai et al. [29]
analyzed the influence of parameters on the stability of a continuous dual-channel closed-loop supply
chain model using entropy theory and nonlinear dynamic theory considering delayed decisions
and government intervention. Lou et al. [30] analyzed the entropy complexity of a dual-channel
supply chain which consisted of one manufacturer and two retailers; the manufacturer took sales
as a decision-making variable in order to gain a larger market share in the competition game.
Lukáš and Hofman [31] used the classical Shannon entropy approach to discuss the operational
complexity of company supplier–customer relations. Zhou et al. [32] investigated the properties of
six kinds of entropy based on risk measures and discovered that none of the risk measures satisfied
the system’s properties. Based on the 1987 and 2008 financial crises, Gençay and Gradojevic [33]
provided a comparative analysis of stock market dynamics and successfuly predicted that aggregate
market expectations use risk management measures based on entropy. Considering that large
consumers needed to decide their energy procurement strategy, Gao et al. [34] developed an electric
energy procurement decision-making model and analyzed the entropy characteristic of the model.
Zou et al. [35] proposed new effective wavelet entropy to analyze crude oil price dynamics. In this
paper, considering that consumers have heterogeneity and risk aversion for probabilistic products,
our primary aim is to develop a non-cooperative dynamic price Stackelberg game model considering
probabilistic selling under an asymmetric dual-channel structure. Using entropy theory and dynamic
theory, we analyze the complexity entropy of the asymmetric dual-channel supply chain and the effects
of variables and parameters on the stability of the system through numerical simulation. The main
innovations of this paper are as follows:

(1) This paper enriches the research of the asymmetric dual-channel probabilistic selling supply
chain system and provides a new perspective for dual-channel research and a reference for
decision-making in probabilistic selling enterprises, because policymakers are eager to formulate
pricing strategies for probabilistic selling to solve the practical problems of enterprises;

(2) This paper considers the risk aversion of consumers for probabilistic products which further
enriches the research on the behavior supply chain;

(3) This paper analyzes the entropy complexity and characteristics of the asymmetric dual-channel
supply chain and shows that decision variables and parameters have great influence on the
stability of the dual-channel supply chain, and that the supply chain system will enter chaos
through flip bifurcation or Neimark–Sacker bifurcation with an increase of the system entropy,
and thus the system is more complex and falls into a chaotic state with its entropy increased;

(4) The entropy analysis is applied to the pricing of probabilistic products, and the influence
of parameter variations on the entropy change of an asymmetric dual channel supply chain
is obtained.

The remainder of this paper is organized as follows: the problem description and model
construction are given in Section 2. Section 3 focuses on the stability analysis of the Nash equilibrium
point. The complexity entropy and dynamic characteristics of the dynamic probabilistic selling game
model are analyzed with parameter changes in Section 4. The method of parameter adjustment and
feedback control is applied to cause the probabilistic selling supply chain to go back to the stable state
in Section 5. Finally, the conclusions of this paper are given in Section 6.
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2. Model Construction

2.1. Model Description and Hypothesis

In this paper, we consider an asymmetric dual-channel supply chain which includes two
manufacturers (A and B) and a retailer as shown in Figure 1. The two manufacturers provide two
substitute products (a and b) and agree to create probabilistic products and sell them to customers
through the retailer; manufacturer A sells his traditional products to customers through the retailer,
while manufacturer B builds a direct channel to sell his traditional products.
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The following assumptions are made to simplify our model in this paper:

(1) The two manufacturers are the leaders and the retailer is a follower, which implies that the retailer
makes decisions based on the two manufacturers’ decisions;

(2) Facing the heterogeneous consumers, manufacturer A authorizes the retailer to sell the traditional
product and probabilistic product and manufacturer B retains its traditional products in its direct
channel and sells the probabilistic product through the retailer;

(3) In order to simplify the model, and without losing its generality, we assume the operating cost and
selling cost of the retailer are normalized to zero. The production costs for the two manufacturers
are normalized to zero;

(4) The demand function of heterogeneous consumers follows Hotelling distribution: one consumer
can only buy one product out of the traditional product and probabilistic product; the consumer
heterogeneity is expressed by an ideal point x which lies in [0, 1];

(5) The manufacturer A is located at 0 and manufacturer B is located at 1.

The main symbols used in this paper and its meanings are shown in the Table 1.

Table 1. The main symbols and its meanings.

v The value of a customer obtained from purchasing a traditional product
c The distance cost when a customer buys a product
pa The price of traditional product a
pb The price of traditional product b
pp The price of probabilistic product
x The heterogeneity of each consumer
xa The marginal consumer who obtains the same utility from purchasing traditional product a and the probabilistic product
xb The marginal consumer who obtains the same utility from purchasing traditional product b and the probabilistic product
β Consumer’s risk aversion level for purchasing probabilistic product
ϕ The probability of traditional product a becoming the probabilistic product
wa The wholesale price that the manufacturer A offers to a retailer for the traditional product
wb The wholesale price that the manufacturer B offer to a retailer for the traditional product
wp

a The wholesale price that the manufacturer A offer to a retailer for the probabilistic product
wp

b The wholesale price that the manufacturer B offer to a retailer for the probabilistic product
ρ The relative bargaining power of a retailer
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2.2. Model Construction

The goal of the customer is to maximize the utility of the purchasing product, and the utility of the
customer from purchasing traditional product (a or b) is v− cx− pa or v− c(1− x)− pb, whereas the
utility of the customer from purchasing the probabilistic product is ϕ(v− cx) + (1− ϕ)[v− c(1− x)]− pp.
Considering that customers have risk aversion behavior when purchasing probabilistic products (β),
xa and xb are determined by the following equations:

v− cxa − pa = β
[
ϕ(v− cxa) + (1− ϕ)(v− c + cxa)− pp

]
v− c(1− xb)− pb = β

[
ϕ(v− cxb) + (1− ϕ)(v− c + cxb)− pp

] (1)

The demand functions of the two manufacturers can be obtained as follows:

xa =
v+cβ−vβ−cβϕ−pa+βpp

c+cβ−2cβϕ

xb =
c−v−cβ+vβ+cβϕ+pb−βpp

c−cβ+2cβϕ

(2)

From Equation (2), we can see that xa and xb are related to the selling price of the traditional
product and probabilistic product, the risk aversion level of consumers and the probability of product
a being the probabilistic product.

Note that the two manufacturers are the leaders, and the retailer is a follower, which is
a Stackelberg game, and the game equilibrium is called a Stackelberg equilibrium. The two
manufacturers (A and B) simultaneously make a decision on wa, wb and pb according to the market
information, then the retailer determines pa for the traditional product a and pp for the probabilistic
product according to the decision-making of the two manufacturers. According to pa, pb and pp,
the customers decide which products to buy based on the principle of utility maximization. Therefore,
the profits of the two manufacturers and the retailer are obtained.

πA = waxa + ϕρwa(xb − xa)

πB = pb(1− xb) + ρwb(1− ϕ)(xb − xa)

πR = xa(pa − wa) + ϕ
(

pp − ρwa
)
(xb − xa) + (1− ϕ)

(
pp − ρwb

)
(xb − xa)

(3)

Supposing wa, wb and pb are known, substituting xa and xb into Formula (3), making a first-order
partial derivative of πR for pa and pp, we can obtain the marginal profits of the retailer as follows:

∂πR
∂pa

=
v+cβ−vβ−cβϕ−2pa+(1+β)pp+(1−ρϕ)wa+(ρϕ−ρ)wb

c+cβ−2cβϕ

∂πR
∂pp

= −c+2v+cβ−2vβ+(1+β)[1+β(2ϕ−1)]pa+(2βϕ−β−1)pb
c[β2(2ϕ−1)2−1]

+
4βpp+(β−β2+2β2 ϕ−2βρϕ)wa+2βρ(ϕ−1)wb

c[β2(2ϕ−1)2−1]

(4)

By solving the equation ∂πR
∂pa

= 0, ∂πR
∂pp

= 0, we can obtain the retailer’s best reply functions (p∗a
and p∗p see in Appendix A):

Substituting p∗a and p∗p into Formula (3), making a first-order partial derivative of πA for wa,

πB for wb and pb, we can obtain the marginal profits of the two manufacturers ( ∂πA
∂wa

, ∂πB
∂wb

, ∂πB
∂pb

see
Appendix A).

The optimal response functions (the Nash equilibrium point) of two manufacturers can be
obtained in accordance with ∂πA

∂wa
= 0, ∂πB

∂wb
= 0, ∂πB

∂pb
= 0. The expressions of the optimal response

function of two manufacturers are very complicated; the relationship between variables and parameters
cannot be seen from the expression functions. Next, we will construct a dynamic game model to study
the evolution characteristics of the Nash equilibrium point.
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The price decisions of the two manufacturers are not completely rational because they cannot
get all the necessary information in the market, so the two manufacturers have limited rational
behavior when making decisions. In this paper, we develop a dynamic Stackelberg price game
model considering probabilistic selling and focus on the entropy complexity analysis and dynamic
characteristics of the asymmetrical dual-channel supply chain. We assume the two manufacturers use
bounded rational expectations and adopt the myopic adjustment mechanism. With an asymmetric
dual-channel structure and a different channel power, the three-dimensional dynamic price game
model considering probabilistic selling is as follows:

wa(t + 1) = wa(t) + n1wa(t)
∂πA(t)
∂wa(t)

wb(t + 1) = wb(t) + n2wb(t)
∂πB(t)
∂wb(t)

pb(t + 1) = pb(t) + n3 pb(t)
∂πB(t)
∂pb(t)

(5)

where n1, n2 and n3 are the price adjustment speed parameters of the two manufacturers according
to their marginal profits, which reflect the manufacturer’s learning behavior and active managerial
behavior. When the marginal profit in period t is greater than zero, the manufacturers will increase the
prices in period t + 1; on the contrary, the manufacturers will decrease the prices in period t + 1.

3. The Stability of System (5)

In this section, we will analyze the stability of system (5). Because of the complexity of the model,
the Nash equilibrium solution of the model is very complex, and we cannot see the interaction between
variables and parameters. Here, we assign values to parameters according to the current situation
and characteristics of the supply chain enterprises, and a data survey of enterprises and customers in
Taobao—v = 15, c = 6, ϕ = 0.45, ρ = 0.95, β = 0.8—and study the stability of the model through
numerical simulation.

When wa(t + 1) = wa(t), wb(t + 1) = wb(t) and pb(t + 1) = pb(t), we can get eight equilibrium
solutions for system (5):

E1(wa, wb, pb) = (0, 0, 0);
E2(wa, wb, pb) = (0, 0, 3.94);
E3(wa, wb, pb) = (0, 4.23, 0);
E4(wa, wb, pb) = (3.302, 0, 0);
E5(wa, wb, pb) = (0, 7.822, 8.913);
E6(wa, wb, pb) = (5.71, 0, 6.295);
E7(wa, wb, pb) = (3.132, 2.27, 0);
E8(wa, wb, pb) = (9.895, 14.96, 14.32).

We can see that E1, E2, E3, E4, E5, E6, E7 are the boundary equilibrium points because they are
partly or entirely zero; the decision variables obviously are not allowed to be zero in economics for
decision makers, so E1 ∼ E7 are unstable and E8 is the only Nash equilibrium point. It is meaningless
to study the unstable equilibrium solution, so we only analyze the Nash equilibrium point.

The Jacobian matrix of system (5) at the Nash equilibrium point is

J =

∣∣∣∣∣∣∣
1− 1.39n1 0.09n1 0.49n1

0.09n2 1− 0.96n2 1.23n2

0.54n3 1.29n3 1− 2.85n3

∣∣∣∣∣∣∣ (6)

The characteristic equation of system (5) at the Nash equilibrium point is

−λ3 + Aλ2 + Bλ + C = 0 (7)
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where

A = −3− 1.385n1 − 0.958n2 − 2.851n3

B = −3 + 2.77n1 + 1.916n2 − 1.318n1n2 + 5.702n3 − 3.689n1n3 − 1.143n2n3

C = 1− 1.385n1 − 0.958n2 + 1.318n1n2 − 2.851n3 + 3.689n1n3 + 1.143n2n3 − 1.19n1n2n3

In order to guarantee that the Nash equilibrium point is locally stable, A, B and C must satisfy
the following conditions: 

1 + A + B + C > 0
−1 + A− B + C < 0
1− C2 > 0(
1− C2)2 − (B− AC)2 > 0

(8)

By solving condition (8), the stability domain of system (5) can be obtained. Due to these
limitations being so complex, solving the inequality of Equation (8) is very complicated. If the Nash
equilibrium point satisfies the inequality of Equation (8), we may ensure that system (5) is locally
stable. In the next section, we will prove the entropy complexity and the dynamic characteristics of
system (5) through numerical simulation.

4. The Complex Dynamics of System (5)

In this section, we will explore the entropy complexity and dynamic behavior of system (5)
through the basin of attraction, a bifurcation diagram, the entropy of the system, the largest Lyapunov
exponents (LLE), et al.

4.1. The Stable Region of System (5) for Parameter Changes

In this section, we will use a 2D parameter bifurcation diagram (parameter plot basin), which is a
more powerful tool for the numerical analysis of a dynamic system than that of the 1D bifurcation
diagram, to analyze the effects of parameter changes on system stability [36].

Figure 2 presents the parameter plot basin with respect to the parameter (n1, n2) and parameter
(n1, n3) with ϕ = 0.45, ρ = 0.95, β = 0.8, in which we use different colors to describe different states
of system (5); for example, stable states are red, period 2 is blue, 4 is green, 8 is pink, and chaos and
divergence are grey (divergence means that one of the decision makers will withdraw from the market).
In the red region, system (5) will stabilize in the Nash equilibrium point after multiple iteration cycles.
Once the adjustment parameter goes out of the red region, system (5) will become unstable and enters
a chaotic state through period-doubling bifurcation or N-S bifurcation.

Entropy 2018, 20, x 7 of 19 

 

1 + 𝐴 + 𝐵 + 𝐶 > 0−1 + 𝐴 − 𝐵 + 𝐶 < 01 − 𝐶 > 0(1 − 𝐶 ) − (𝐵 − 𝐴𝐶) > 0 (8) 

By solving condition (8), the stability domain of system (5) can be obtained. Due to these 
limitations being so complex, solving the inequality of Equation (8) is very complicated. If the Nash 
equilibrium point satisfies the inequality of Equation (8), we may ensure that system (5) is locally 
stable. In the next section, we will prove the entropy complexity and the dynamic characteristics of 
system (5) through numerical simulation.  

4. The Complex Dynamics of System (5) 

In this section, we will explore the entropy complexity and dynamic behavior of system (5) 
through the basin of attraction, a bifurcation diagram, the entropy of the system, the largest 
Lyapunov exponents (LLE), et al.  

4.1. The Stable Region of System (5) for Parameter Changes 

In this section, we will use a 2D parameter bifurcation diagram (parameter plot basin), which 
is a more powerful tool for the numerical analysis of a dynamic system than that of the 1D 
bifurcation diagram, to analyze the effects of parameter changes on system stability [36].  

Figure 2 presents the parameter plot basin with respect to the parameter (𝑛 , 𝑛 ) and parameter 
(𝑛 , 𝑛 ) with 𝜑 = 0.45, 𝜌 = 0.95, 𝛽 = 0.8, in which we use different colors to describe different states 
of system (5); for example, stable states are red, period 2 is blue, 4 is green, 8 is pink, and chaos and 
divergence are grey (divergence means that one of the decision makers will withdraw from the 
market). In the red region, system (5) will stabilize in the Nash equilibrium point after multiple 
iteration cycles. Once the adjustment parameter goes out of the red region, system (5) will become 
unstable and enters a chaotic state through period-doubling bifurcation or N-S bifurcation. 

  
(a) The parameter plot basin of (𝑛 , 𝑛 ) (b) The parameter plot basin of (𝑛 , 𝑛 ) 

Figure 2. The parameter plot basin of the system (5) with respect to (𝑛 , 𝑛 ) and (𝑛 , 𝑛 ). 

Figure 3 presents the parameter plot basins of system (5) with different parameter values. 
Comparing Figure 3 to Figure 2, we can see that the stable regions (red region) become smaller with 
the increase of 𝛽  and 𝜌  and larger with the increase of 𝜑 . That is to say, the greater the 
consumers’ risk aversion level for purchasing probabilistic products and the relative bargaining 
power of the retailer are, the smaller the stable region of system (5) is; the greater the probability 
that product 𝑎 will become a probabilistic product is, the larger the stable region of system (5) is. 
An increase in the stable region means more competition in system (5). 

Under this unbalanced sales channel, the stability of the system can be robust with an increase 
of the probability of product 𝑎 becoming a probabilistic product, and it weakens with the increase 

Figure 2. The parameter plot basin of the system (5) with respect to (n1, n2) and (n1, n3).



Entropy 2018, 20, 543 8 of 19

Figure 3 presents the parameter plot basins of system (5) with different parameter values.
Comparing Figure 3 to Figure 2, we can see that the stable regions (red region) become smaller
with the increase of β and ρ and larger with the increase of ϕ. That is to say, the greater the consumers’
risk aversion level for purchasing probabilistic products and the relative bargaining power of the
retailer are, the smaller the stable region of system (5) is; the greater the probability that product a will
become a probabilistic product is, the larger the stable region of system (5) is. An increase in the stable
region means more competition in system (5).

Under this unbalanced sales channel, the stability of the system can be robust with an increase of
the probability of product a becoming a probabilistic product, and it weakens with the increase of the
consumers’ risk aversion level for purchasing probabilistic products and the relative bargaining power
of the retailer, which is different from the literature [12].
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region, losing the Nash equilibrium point and going into a chaotic state from the stable state when 
the parameters move out of the red region. With an increase of 𝑛 , 𝑛 , the stable regions of system 
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Figure 3. The parameter plot basin of the system (5).

Figures 4 and 5 present the parameter plot basins with respect to parameter (ϕ, ρ) and parameter
(ϕ, β) when n1 = 1, n2 = 1 and n1 = 2, n2 = 1.5, respectively. We can see that when the two
manufacturers keep a certain price adjustment speed, system (5) can stay in the Nash equilibrium
point when the parameter group (ϕ, ρ) and parameter group (ϕ, β) are all in the red region, losing the
Nash equilibrium point and going into a chaotic state from the stable state when the parameters move
out of the red region. With an increase of n1, n2, the stable regions of system (5) with parameter group
(ϕ, β) almost vanish, and there is only a small region in which system (5) displays two-period motion.
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In summary, the stability of the asymmetric dual-channel probabilistic selling supply chain is
affected by the parameter values and the price adjustment speeds. When the parameter value is
beyond the stable region, chaotic and periodic behaviors will appear. There are price fluctuations in
the chaotic state which may result in unstable profits and lagging sales. Thus, the two manufacturers
should take appropriate parameter values and price adjustment speeds to make sure that system (5) is
in a stable state.

4.2. The Entropy Complexity Analysis of System (5) with the Price Adjustment Speed (n1)

In this section, we also set the parameters values as v = 15, c = 6, ϕ = 0.45, ρ = 0.95, β = 0.8.
The dynamic behaviors and entropy of system (5) are described with variations of n1. Figure 6 shows
the wholesale price, entropy diagram and the LLE of system (5) as n1 changes. We can see that system (5)
is stable when n1 < 2.35, and the bifurcation and chaos in system (5) occur through period-doubling
bifurcation when n1 increases. For the asymmetric sale channel in this paper, the wholesale price
of manufacturer B using direct selling is larger than that of manufacturer A using indirect selling.
Manufacturer B gives a lower retail price pb than the wholesale price wb to get more channel power,
which conforms to the operation of the real market.
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We know that entropy can measure the chaotic degree of the system; the system entropy is small
when the system is in a stable state, and the system entropy is large when the system is in a chaotic
state. On the other hand, the system entropy shows the probability of the occurrence of some particular
information; when the entropy of the system is high, we need more information to make the system
clear. The equation of entropy used in this paper is as follows:

S(p1, p2, · · · , pn) = −
n

∑
i=1

pi log2 pi (9)

There will inevitably be many uncertain factors in the complex and changeable market. In this
paper, entropy theory is applied to the study of the complexity of supply chains. Through the
simulation analysis, we can clearly see the effect of parameter changes on the entropy of the system
of the dual-channel supply chain, and then we can quantify the stability of the supply chain system
using entropy, which lays the foundation for further effectively controlling the complexity of the whole
supply chain.

From Figure 6b, when n1 is less than 2.36, the wholesale prices and retail prices are certain values,
and system (5) is stable and the entropy of system (5) is equal to 0. With n1 increasing, the wholesale
prices and retail prices have multiple values, which show that system (5) is in a periodic motion state
and the entropy of system (5) increases. When n1 > 3.15, system (5) is in a chaotic state and the entropy
of system (5) is high. Thus, we can make a conclusion that irrational changes of the price adjustment
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parameter will lead to a larger entropy of the system, and the two manufacturers must get more market
information to rationally make price adjustments and keep the system in a stable state.

Figure 6c is LLE diagram, which can reflect the state of system (5). When LLE is negative,
system (5) remains stable with lower entropy. When the majority of the LLE are positive, the dynamic
system (5) falls into chaos with higher entropy. In other words, the larger the positive Lyapunov
exponent is, the more chaotic the system is and the greater the entropy is. We can see from
Figure 6 that the price evolution diagram corresponds to the entropy diagram and maximal Lyapunov
exponent diagram.

The attractors of system (5) are shown in Figure 7. For 2.35 < n1 ≤ 3.1, system (5) is in a period
bifurcation state and its attractors are shown in Figure 7a,b; when 3.1 < n1 ≤ 3.5, system (5) is in
the chaotic states and its attractors are shown in Figure 7c,d. Figure 8 shows the power spectrum of
system (5) when n1 = 3.3, n2 = 1.5, n3 = 0.2, which is another chaotic feature of system (5).
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Figure 2a shows that the evolution process of system (5) is similar when n1 and n2 change, so we
will not study the evolution of system (5) when n2 is changing.

4.3. The Entropy and Neimark–Sacker Bifurcation of System (5) with n3 Changing

Considering the asymmetry of the dual-channel supply chain structure in this paper, the effect of
price adjustment speed (n3) on the stability characteristics of system (5) is analyzed in this section.

Figure 9 shows the dynamic characteristics of system (5) with respect to n3 ∈ (0, 0.55) and
n1 = 1.5, n2 = 1.5 when other parameters are fixed as above. We can see that when n3 is small,
the Nash equilibrium point is locally stable, the entropy of system (5) is low and the LLE is negative;
when n3 increases, system (5) shows a two-period bifurcation and then goes into chaotic state eventually
via Neimark–Sacker bifurcation; the entropy of system (5) increases when system (5) is more unstable.
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Figure 9. The evolution characteristics of system (5) with n3 ∈ (0, 0.55).

The chaos attractors of system (5) are simulated with different values of n3 when other parameters
are fixed and are shown in Figure 10. We can see that system (5) presents complex behaviors when
n3 increases.
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Figure 10. Chaos attractors of system (5) with n1 = 1.5, n2 = 1.5.

Above all, we can see that the price adjustment speed (ni, i = 1, 2, 3) has a great effect on the
dynamics of system (5). When the price adjustment speeds are in a stable state, system (5) is stable and
is in a low entropy state. When one of the price adjustment speeds increases out of the stable region,
system (5) gradually goes into a chaotic state through flip bifurcation and Neimark–Sacker bifurcation
and is in a high entropy state, which represents the complex dynamic behaviors.

4.4. The Dynamic Characteristics of System (5) with ϕ and ρ Changing

In this section, the dynamic characteristics of system (5) are analyzed with changes of ϕ and ρ

when system (5) is in a stable state and chaotic state.
System (5) is in a stable state when n1 = 1.5, n2 = 1.5, n3 = 0.2, with other parameters fixed as

above. Figure 11 shows the price bifurcation diagrams and entropy of system (5) with changes of ϕ.
When 0.4 ≤ ϕ ≤ 0.433, system (5) is in a two-period; when 0.433 ≤ ϕ ≤ 0.94, system (5) is in a stable
state; when 0.94 ≤ ϕ ≤ 1, system (5) is in a chaotic state. We can see from Figure 11b that the entropy
of system (5) will increase when system (5) is in an unstable state.
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Figure 12 shows that the price bifurcation diagrams and entropy of system (5) with changes of ρ

when n1 = 1.5, n2 = 1.5, n3 = 0.2. When 0.6 ≤ ρ ≤ 0.88, system (5) is in a stable state, and the entropy
of system (5) is close to zero; when 0.85 ≤ ρ ≤ 0.946, system (5) is in a chaotic state and has larger



Entropy 2018, 20, 543 14 of 19

entropy; when 0.946 < ρ ≤ 1, the system (5) is in a two-period state and the entropy of system (5) is
almost equal to 1.Entropy 2018, 20, x 14 of 19 
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4.5. The Effect of Parameter Changes on Profit 

Figure 14 is the profit bifurcation diagram of system (5). We can see that when the price 
adjustment speed increases, the profits of the two manufacturers become unstable and go into 
chaos through period-doubling bifurcation; the profit of manufacturer 𝐵 is greater than that of 
manufacturer 𝐴, which means that the manufacturer using a direct channel can gain greater profits. 
Figure 15 is the evolutionary process of the average profits of system (5); we can see that the 
average profits of manufacturer 𝐵 decrease and the average profits of manufacturer 𝐴 remain 
unchanged in the unstable state.  

Figure 12. Bifurcation diagram and entropy of system (5) with ρ changing.

When n1 = 3, n2 = 1.5, n3 = 0.2, the system (5) is in a chaotic state. Figure 13 gives the price
bifurcation diagram and entropy of system (5) with ρ changing when n1 = 3, n2 = 1.5, n3 = 0.2.
We can see that system (5) can return to a period moving state from chaotic state, and the entropy of
system (5) gradually reduces with an increase of ρ.

Entropy 2018, 20, x 14 of 19 

 

 

(a) Bifurcation diagram (b) Entropy diagram 

Figure 12. Bifurcation diagram and entropy of system (5) with 𝜌 changing. 

When 𝑛 = 3, 𝑛 = 1.5, 𝑛 = 0.2, the system (5) is in a chaotic state. Figure 13 gives the price 
bifurcation diagram and entropy of system (5) with 𝜌 changing when 𝑛 = 3, 𝑛 = 1.5, 𝑛 = 0.2. 
We can see that system (5) can return to a period moving state from chaotic state, and the entropy 
of system (5) gradually reduces with an increase of 𝜌. 

 

(a) Bifurcation diagram (b) Entropy diagram 

Figure 13. Bifurcation diagram and entropy of system (5) with 𝜌 changing. 

4.5. The Effect of Parameter Changes on Profit 

Figure 14 is the profit bifurcation diagram of system (5). We can see that when the price 
adjustment speed increases, the profits of the two manufacturers become unstable and go into 
chaos through period-doubling bifurcation; the profit of manufacturer 𝐵 is greater than that of 
manufacturer 𝐴, which means that the manufacturer using a direct channel can gain greater profits. 
Figure 15 is the evolutionary process of the average profits of system (5); we can see that the 
average profits of manufacturer 𝐵 decrease and the average profits of manufacturer 𝐴 remain 
unchanged in the unstable state.  

Figure 13. Bifurcation diagram and entropy of system (5) with ρ changing.

4.5. The Effect of Parameter Changes on Profit

Figure 14 is the profit bifurcation diagram of system (5). We can see that when the price adjustment
speed increases, the profits of the two manufacturers become unstable and go into chaos through
period-doubling bifurcation; the profit of manufacturer B is greater than that of manufacturer A,
which means that the manufacturer using a direct channel can gain greater profits. Figure 15 is
the evolutionary process of the average profits of system (5); we can see that the average profits
of manufacturer B decrease and the average profits of manufacturer A remain unchanged in the
unstable state.
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5. Chaos Control 
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5. Chaos Control

All the participants want to achieve their own business objectives easily and adjust their price
decisions frequently to adapt to the changes of market competition. Once the price adjustment speed
losses are controlled, the market will obe ut of order and fall into chaos finally; chaos is harmful to the
stability of the supply chain system. Therefore, some measures should be taken to delay or eliminate
the occurrences of bifurcation and chaos.

As far as we are concerned, the parameter adjustment and feedback control method is widely
applied to control the chaos of the supply chain. Xu and Ma [37] and Ma and Xie [38] had used this
method to control the chaos in the insurance market and the suppy chain system. The controlled
system of system (5) can be written as

wa(t + 1) = (1− v)[wa(t) + n1wa(t)
∂πA(t)
∂wa(t)

] + vwa(t)

wb(t + 1) = (1− v)
[
wb(t) + n2wb(t)

∂πB(t)
∂wb(t)

]
+ vwb(t)

pb(t + 1) = (1− v)
[

pb(t) + n3 pb(t)
∂πB(t)
∂pb(t)

]
+ vpb(t)

(10)
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where v represents the chaos control parameter. Selecting an appropriate value for v is essential to
delay bifurcation, which can make the supply chain system return to a stable state.

Figure 16 is the bifurcation diagrams and entropy diagram of the controlled system (9) with
changes of v when n1 = 3, n2 = 1.5, n3 = 0.2. The controlled system (9) is in a stable state and has
low entropy when 0.3 ≤ v ≤ 0.86; the entropy of the control system (9) increases with an increase of
system instability. Thus, we see that the controlled system (9) can return to a stable state from a chaos
state with appropriate control parameter values.

Entropy 2018, 20, x 16 of 19 

 

where 𝑣 represents the chaos control parameter. Selecting an appropriate value for 𝑣 is essential to 
delay bifurcation, which can make the supply chain system return to a stable state. 

Figure 16 is the bifurcation diagrams and entropy diagram of the controlled system (9) with 
changes of 𝑣 when 𝑛 = 3, 𝑛 = 1.5, 𝑛 = 0.2. The controlled system (9) is in a stable state and has 
low entropy when 0.3 ≤ 𝑣 ≤ 0.86; the entropy of the control system (9) increases with an increase 
of system instability. Thus, we see that the controlled system (9) can return to a stable state from a 
chaos state with appropriate control parameter values. 

 
(a) Bifurcation diagram (b) Entropy diagram 

Figure 16. Bifurcation diagram and entropy diagram of system (9) with changes of 𝑣 when 𝑛 =3, 𝑛 = 1.5, 𝑛 = 0.2. 

6. Conclusions 

In this paper, a dynamic Stackelberg price game model of an asymmetric dual-channel 
probabilistic selling supply chain is developed considering consumers’ risk aversion behavior for 
probabilistic products. The two manufacturers providing two substitute products all agree to create 
a probabilistic product and sell this to customers through the retailer; one manufacturer sells his 
traditional products to customers by the retailer, and another manufacturer builds a direct channel 
to sell his traditional products. We analyze the effects of parameter changes on the entropy and 
complex characteristics of the game model. The results show that decision variables and parameters 
should be kept in a certain range; otherwise, the system will enter chaos through flip bifurcation or 
Neimark–Sacker bifurcation. The system complexity is higher with the increase of entropy. The 
stability of the system can be robust with an increase of the probability of product 𝑎 becoming a 
probabilistic product and will weaken with the increase of customers’ risk aversion level and the 
relative bargaining power of the retailer. A manufacturer using a direct selling structure may obtain 
greater profit than one using traditional selling channels. The method of parameter adjustment and 
feedback control is used to make the chaotic system return to a stable state. The research results of 
this paper have very important theoretical and practical values for the probabilistic selling supply 
chain system. 

Author Contributions: Y.H. built the probabilistic selling game model and provided economic interpretation 
of the conclusions; Q.L. performed mathematical derivation and carried out numerical simulation; All authors 
have read and approved the final manuscript. 

Funding: This research was supported by Henan Province Soft Science Research Plan Project (No. 
182400410054). 

Acknowledgments: The authors thank the reviewers for their careful reading and providing some pertinent 
suggestions. 

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 16. Bifurcation diagram and entropy diagram of system (9) with changes of v when
n1 = 3, n2 = 1.5, n3 = 0.2.

6. Conclusions

In this paper, a dynamic Stackelberg price game model of an asymmetric dual-channel
probabilistic selling supply chain is developed considering consumers’ risk aversion behavior for
probabilistic products. The two manufacturers providing two substitute products all agree to create
a probabilistic product and sell this to customers through the retailer; one manufacturer sells his
traditional products to customers by the retailer, and another manufacturer builds a direct channel
to sell his traditional products. We analyze the effects of parameter changes on the entropy and
complex characteristics of the game model. The results show that decision variables and parameters
should be kept in a certain range; otherwise, the system will enter chaos through flip bifurcation or
Neimark–Sacker bifurcation. The system complexity is higher with the increase of entropy. The stability
of the system can be robust with an increase of the probability of product a becoming a probabilistic
product and will weaken with the increase of customers’ risk aversion level and the relative bargaining
power of the retailer. A manufacturer using a direct selling structure may obtain greater profit than
one using traditional selling channels. The method of parameter adjustment and feedback control is
used to make the chaotic system return to a stable state. The research results of this paper have very
important theoretical and practical values for the probabilistic selling supply chain system.
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Appendix A

1. The retailer’s best reply functions are as follows:

p∗a = −c+2v−4vβ−3cβ2+2cβ2+4cβ2 ϕ+(1+β)[−1+β(2ϕ−1)]pb
1+β(2ϕ−7)+β2(4ϕ−1)+β3(2ϕ−1)

+
β[−3−2βϕ(ρ−1)+2ρϕ+β2(2ϕ−1)]wa

1+β(2ϕ−7)+β2(4ϕ−1)+β3(2ϕ−1) +
(2βϕ−2β2ρ−2βρϕ+2β2ρϕ)wb

1+β(2ϕ−7)+β2(4ϕ−1)+β3(2ϕ−1)

p∗p = −2c+3v+cβ−3vβ+vβ2+cβ3−vβ3+cβϕ−2vβϕ−2cβ2 ϕ−3cβ3 ϕ+2vβ3 ϕ+2cβ2 ϕ2+2cβ3 ϕ2

1+β(2ϕ−7)+β2(4ϕ−1)+β3(2ϕ−1)

+
[β(4ϕ−2)−2]pb+[−1+ρϕ+β2(−1+2ϕ)(1+ρϕ)+2β(1−ϕ−2ρϕ+ρϕ2)]wa

1+β(2ϕ−7)+β2(4ϕ−1)+β3(2ϕ−1)

+
(ρ−4βρ−β2ρ−ρϕ+6βρϕ+3β2ρϕ−2βρϕ2−2β2ρϕ2)wb

1+β(2ϕ−7)+β2(4ϕ−1)+β3(2ϕ−1)

2. The marginal profits of the two manufacturers are as follows:

∂πA
∂wa

= A1+A2 pb−A3wa+A4wb
c[1+β(2ϕ−1)][1+β(2ϕ−7)+β3(2ϕ−1)+β2(4ϕ−1)]

∂πB
∂wb

= A5+A6 pb+A7wa+(8βρ−8βρϕ)wb
c[1+β(2ϕ−1)][1+β(2ϕ−7)+β3(2ϕ−1)+β2(4ϕ−1)]

∂πB
∂pb

= A8−A9 pb+A10wa+A11wb
c[1+β(2ϕ−1)][1+β(2ϕ−7)+β3(2ϕ−1)+β2(4ϕ−1)]

where

A1 = c− v− 3cβ + vβ + cβ2 + vβ2 + cβ3 − vβ3 + 3cβϕ− 2vβϕ− 4cβ2 ϕ− 3cβ3 ϕ + 2vβ3 ϕ− 3cβρϕ +

4vβρϕ + 4cβ2ρϕ− 4vβ2ρϕ− cβ3ρϕ + 2cβ2 ϕ2 + 2cβ3 ϕ2 − 2cβ2ρϕ2 + 2cβ3ρϕ2

A2 =
[
1 + β3ρϕ(−1 + 2ϕ) + β(−2 + 2ϕ− 3ρϕ) + β2(1− 2ϕ + 2ρϕ2)]

A3 = 4β
{
−1 + ρϕ + β2ρϕ(−1 + 2ϕ) + β

[
1− 2ϕ− 2(−1 + ρ)ρϕ2]}

A4 = −βρ + β3ρ + βρϕ− 2β2ρϕ− 3β3ρϕ + 4β2ρ2 ϕ + 2β2ρϕ2 + 2β3ρϕ2 − 4β2ρ2 ϕ2

A5 = βρ(ϕ− 1)
(
−3c + 4v + 4cβ− 4vβ− cβ2 − 2cβϕ + 2cβ2 ϕ

)
A6 = 2βρ(ϕ− 1)(1 + β)[−1 + β(−1 + 2ϕ)]

A7 = βρ(ϕ− 1)
(
−1 + β2 − 2βϕ− 2β2 ϕ + 4βρϕ

)
A8 = v − 2cβ − 5vβ + cβ2 + 3vβ2 + vβ3 + cβ4 + cβϕ + 2vβϕ − 6cβ2 ϕ − 3cβ3 ϕ − 2vβ3 ϕ − 4cβ4 ϕ +

2cβ2 ϕ2 + 6cβ3 ϕ2 + 4cβ4 ϕ2

A9 = 2
[
1 + β2 + β(−5 + 2ϕ) + β3(−1 + 2ϕ)

]
A10 = β

[
−1 + ρϕ + β2(−1 + 2ϕ)(1 + ρϕ) + 2β

(
1− ϕ− 2ρϕ + ρϕ2)]

A11 = −2βρ− 4β2ρ− 2β3ρ + 2βρϕ + 8β2ρϕ + 6β3ρϕ− 4β2ρϕ2 − 4β3ρϕ2

References

1. Fay, S.; Xie, J.H. Probabilistic goods: A creative way of selling productsand services. Market. Sci. 2008, 27,
674–690. [CrossRef]

2. Cai, G.S.; Chen, Y.J.; Wu, C.C.; Hsiao, L. Probabilistic Selling, Channel Structure, and Supplier Competition.
Decis. Sci. 2013, 44, 267–296. [CrossRef]

3. Cheng, Y.L. Vertical product differentiation under demand uncertainty. Econ. Model. 2014, 36, 51–57.
[CrossRef]

4. Fay, S.; Xie, J.H. The Economics of Buyer Uncertainty: Advance Selling vs. Probabilistic Selling. Market. Sci.
2010, 29, 1040–1057. [CrossRef]

http://dx.doi.org/10.1287/mksc.1070.0318
http://dx.doi.org/10.1111/deci.12009
http://dx.doi.org/10.1016/j.econmod.2013.09.019
http://dx.doi.org/10.1287/mksc.1100.0576


Entropy 2018, 20, 543 18 of 19

5. Anderson, C.K.; Xie, X.Q. Pricing and market segmentation using opaque selling mechanisms. Eur. J.
Oper. Res. 2014, 233, 263–272. [CrossRef]

6. Xiao, Y.; Chen, J. Evaluating the potential effects from probabilistic selling of similar products. Nav. Res. Logist.
2015, 61, 604–620. [CrossRef]

7. Fay, S.; Xie, J.; Feng, C. The Effect of Probabilistic Selling on the Optimal Product Mix. J. Retail. 2015, 91,
451–467. [CrossRef]

8. Dan, H.R.; Fay, S.A.; Xie, J. Probabilistic selling vs. markdown selling: Price discrimination and management
of demand uncertainty in retailing. Int. J. Res. Market. 2014, 31, 147–155.

9. Wang, C.; Chen, S.; Ou, S.M. An Analysis on Probabilistic Selling with Customer Returns. In Proceedings of
the 2017 International Conference on Green Informatics, Fuzhou, China, 15–17 August 2017; pp. 134–140.

10. Yang, G.; Liu, X.; Qin, J. Probabilistic selling strategy study based on dynamic evolution game theory.
Syst. Eng.-Theory Pract. 2017, 37, 2231–2243.

11. Zhang, Y.; Huang, A.Q.; Cheng, T.C.E. Simulating the Demand Reshaping and Substitution Effects of
Probabilistic Selling. Int. J. Simul. Model. 2016, 15, 699–710. [CrossRef]

12. Li, Q.; Ma, J. Research on price Stackelberg game model with probabilistic selling based on complex system
theory. Commun. Nonlinear Sci. Numer. Simul. 2016, 30, 387–400. [CrossRef]

13. Zhang, Y.; Hua, G.; Wang, S.; Zhang, J.; Fernandez, V. Managing demand uncertainty: Probabilistic selling
versus inventory substitution. Int. J. Prod. Econ. 2018, 196, 56–67. [CrossRef]

14. Syam, N.; Hess, J.D.; Yang, Y. Can Sales Uncertainty Increase Firm Profits? J. Market. Res. 2016, 53, 199–206.
[CrossRef]

15. Giri, B.C.; Bardhan, S.; Maiti, T. Coordinating a three-layer supply chain with uncertain demand and random
yield. Int. J. Prod. Res. 2016, 54, 2499–2518. [CrossRef]

16. Chen, S.; Wang, X.; Wu, Y.; Zhou, F. Pricing Policies of a Dual-Channel Supply Chain Considering Channel
Environmental Sustainability. Sustainability 2017, 9, 382. [CrossRef]

17. Wang, L.; Song, H.; Wang, Y. Pricing and service decisions of complementary products in a dual-channel
supply chain. Comput. Ind. Eng. 2017, 105, 223–233. [CrossRef]

18. Li, B.; Zhu, M.; Jiang, Y.; Li, Z. Pricing policies of a competitive dual-channel green supply chain. J. Clean. Prod.
2016, 112, 2029–2042. [CrossRef]

19. Chen, T.H. Effects of the pricing and cooperative advertising policies in a two-echelon dual-channel supply
chain. Comput. Ind. Eng. 2015, 87, 250–259. [CrossRef]

20. Xu, J.; Qi, Q.; Bai, Q. Coordinating a dual-channel supply chain with price discount contracts under carbon
emission capacity regulation. Appl. Math. Model. 2018, 56, 449–468. [CrossRef]

21. Li, W.; Chen, J.; Liang, G.; Chen, B. Money-back guarantee and personalized pricing in a Stackelberg
manufacturer’s dual-channel supply chain. Int. J. Prod. Econ. 2018, 197, 84–98. [CrossRef]

22. Zhou, Y.; Feng, J.; Wei, J.; Sun, X. Pricing Decisions of a Dual-Channel Supply Chain considering Supply
Disruption Risk. Discret. Dyn. Nat. Soc. 2018, 2018, 6841519. [CrossRef]

23. Zhou, Y.W.; Guo, J.; Zhou, W. Pricing/service strategies for a dual-channel supply chain with free riding and
service-cost sharing. Int. J. Prod. Econ. 2018, 196, 198–210. [CrossRef]

24. Zhang, F.; Wang, C. Dynamic pricing strategy and coordination in a dual-channel supply chain considering
service value. Appl. Math. Model. 2018, 54, 722–742. [CrossRef]

25. Yang, X.; Peng, M.; Hu, J.; Jiang, X. Bubbling phenomenon in a discrete economic model for the interaction
of demand and supply. Chaos Solitons Fractals 2009, 42, 1428–1438. [CrossRef]

26. Chiarella, C.; Dieci, R.; He, X.Z.; Li, K. An evolutionary CAPM under heterogeneous beliefs. Ann. Financ.
2013, 9, 185–215. [CrossRef]

27. Ma, J.; Pu, X. The research on Cournot–Bertrand duopoly model with heterogeneous goods and its complex
characteristics. Nonlinear Dyn. 2013, 72, 895–903. [CrossRef]
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