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Abstract: Games with unawareness model strategic situations in which players’ perceptions about
the game are limited. They take into account the fact that the players may be unaware of some of the
strategies available to them or their opponents as well as the players may have a restricted view about
the number of players participating in the game. The aim of the paper is to introduce this notion into
theory of quantum games. We focus on games in strategic form and Eisert–Wilkens–Lewenstein type
quantum games. It is shown that limiting a player’s perception in the game enriches the structure of
the quantum game substantially and allows the players to obtain results that are unattainable when
the game is played in a quantum way by means of previously used methods.
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1. Introduction

Game theory, launched in 1928 by John von Neumann in a paper [1] and developed in 1944
by John von Neumann and Oskar Morgenstern in a book [2] is one of the youngest branches of
mathematics. The aim of this theory is mathematical modeling of behavior of rational participants
of conflict situations who aim at maximizing their own gain and take into account all possible ways
of behaving of remaining participants. Within this young theory, new ideas that improve already
used models of conflict situations are still proposed. One of the latest trends is to study games with
unawareness, i.e., games that describe situations in which players behave according to his own view
of the game, and consider how all the remaining players view the game. This way of describing of
a conflict situation goes beyond the most frequently used paradigm, according to which it is assumed
that all participants in a game have full knowledge of the situation.

The other, and even younger, field developed on the border of game theory and quantum
information theory is quantum game theory. This is an interdisciplinary area of research within which
considered games are supposed to be played with the aid of objects that behave according to the laws
of quantum mechanics, and in which non-classical features of these objects are relevant to the way of
playing and results of a game.

Seventeen years of research on quantum game theory that began with Reference [3] has been
conducted within two main streams. On the one hand, the schemes of playing quantum games were
defined with the aid of notions and methods of quantum information (quantum noise, quantum
random walking, superquantum operations, etc.). On the other hand, quantum game theory is formed
on the basis of classical game theory, i.e., within quantum game theory are studied such problems as
refinements of Nash equilibria (e.g., evolutionarily stable strategies [4–7] or correlated equilibria [8–10]),
games in extensive form [3,11,12], repeated games [13,14] as well as elements of cooperative games
theory [15,16]. Our work may be placed within this stream. It aims to introduce to the theory of
quantum games the idea of games with unawareness.

The basic object studied in game theory and quantum game theory is a game in strategic form.
Actually, this is a very simplified model of reality, since it assumes that each of the players knows the
exact form of the game, in particular that every player knows the sets of strategies of all remaining
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players. Moreover, every player is aware that the remaining players know the exact form of the game.
Further, every Player i knows that the remaining players know that the Player i knows the exact
form of the game, etc. In other words, it is assumed that the knowledge of the game is common
knowledge among the players. This is quite a strong assumption with respect to modeling real-world
situations, since it is rather hard to assume that, in a real decision problem, every player has complete
knowledge about all possible actions of the remaining players, or he has complete knowledge of how
the remaining players value their strategies, i.e., that he knows their payoffs functions completely.
Finally, it cannot be sure that he knows precisely how many players take part in a decision problem.
In reality, various players may have different perceptions of a game. Moreover, they may have different
perceptions of how other players view the game. As a result, a game originally described as a single
strategic-form game, when modeled in a real world may require more precise description and should
be replaced by a family of games in which each game corresponds to perception of a particular player.

In our opinion, quantum games with unawareness are natural generalization of up to now
developed theory of quantum games. In this paper, we extend a quantum game to a model that
specifies how each player views the game (whether it is classical or quantum), how she views the other
players view the game, and so on. With this setup, we examine the rational results of the game under
the notion of extended Nash equilibrium—the solution concept defined for games with unawareness.

2. Preliminaries on Games with Unawareness

This section is based on [17]. We review relevant material for the notion of strategic-form
games with unawareness. The reader who is not familiar with this topic is encouraged to follow the
definitions together with the introductory example below. The paper [18] provides the reader with
similar preliminaries on games with unawareness

2.1. Introductory Example

Suppose two players play the following bimatrix game:

G∅ =


b1 b2 b3

a1 (2, 2) (1, 1) (2, 2)
a2 (3, 3) (1, 2) (1, 4)
a3 (4, 1) (2, 2) (0, 0)

. (1)

Let us consider the case that Players 1 and 2 are not aware of the third strategy of their opponent.
That is, Player 1 views the game in the form

G1 =


b1 b2

a1 (2, 2) (1, 1)
a2 (3, 3) (1, 2)
a3 (4, 1) (2, 2)

, (2)

whereas Player 2 perceives that the game is of the form

G2 =

( b1 b2 b3

a1 (2, 2) (1, 1) (2, 2)
a2 (3, 3) (1, 2) (1, 4)

)
. (3)

Further, suppose that each player finds that their third strategy is hidden from the opponent.
In other words, each player finds that the other player is considering the following game:
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G12 = G21 =

( b1 b2

a1 (2, 2) (1, 1)
a2 (3, 3) (1, 2)

)
. (4)

Moreover, the higher order views (for example, the view v = 121 that Player 1 finds that
Player 2 finds that Player 1 is considering) are associated with Equation (4), i.e., Gv = G12 = G21 for
v ∈ {121, 212, 1212, 2121, . . . }.

The problem presented above is an example of a strategic-form game with unawareness that
can be formally described by a family of games {Gv}v∈N∪{∅} where N = {1, 2, 12, 21, 121, 212, . . . }.
The set N ∪ {∅} (with typical element v) consists of the relevant views. The view v = ∅ corresponds
to the modeler’s game—the actual game played by the players. In our example, this is the game in
Equation (1).

A basic solution concept is a Nash equilibrium (see Definition 2). One can check that the game in
Equation (1) has the unique equilibrium payoff profile (2, 2) generated, for example, by the strategy
profile (a3, b2). Although both players are aware of their own strategies, they are not aware of the
whole game in Equation (1), and, apart from that, they perceive the game seen by the other player in
different ways. Thus, it is not evident that the game ends with outcome (2, 2). Since Player 1 finds
that Player 2 perceives the game in Equation (4), she may deduce that Player 2 plays according to
the unique Nash equilibrium (a2, b1) of Equation (4). Therefore, Player 1’s best reply to b1 is a3 as she
perceives Equation (2).

In the same manner, Player 2 deduces that Player 1 plays the equilibrium strategy a2 in
Equation (4). Since Player 2 views the game in Equation (3), his best reply to a2 is b3. As a result,
the strategy profile (a3, b3) with the worst possible payoffs for the players is predicted to be a reasonable
outcome in the game {Gv}v∈N∪{∅} described by Equations (1)–(4).

The game result (a3, b3) can be directly determined by the extended Nash equilibrium [17]—a
counterpart of the notion of Nash equilibrium in games with unawareness. The formal definition is
presented in Section 2.3. Here, we simply provide the result of applying the extended Nash equilibrium
to Equations (1)–(4). The unique equilibrium is a family of strategy profiles {(σ)v}v∈N∪{∅} defined
as follows:

σv =


(a3, b3) if v = ∅,

(a3, b1) if v = 1,

(a2, b3) if v = 2,

(a2, b1) otherwise.

(5)

The profiles in Equation (5) coincide with the reasoning we already used to determine the outcome
(a3, b3). The result of the game corresponds to the modeler’s view v = ∅. The result (a3, b1) seen
from Player 1’s point of view corresponds to the view v = 1. Player 2 predicts the outcome (a2, b3)

corresponding to the view v = 2.

2.2. Strategic-Form Games with Unawareness

Let G = (N, (Si)i∈N , (ui)i∈N) be a strategic form game. This is the game considered by the modeler.
Each player may not be aware of the full description of G. Hence, Gv = (Nv, ((Si)v)i∈Nv , ((ui)v)i∈Nv)

denotes Player v’s view of the game for v ∈ N. That is, the Player v views the set of players, the sets of
players’ strategies, and the payoff functions as Nv, (Si)v and (ui)v, respectively. In general, each player
also considers how each of the other players views the game. Formally, with a finite sequence of
players v = (i1, . . . , in), there is associated a game Gv = (Nv, ((Si)v)i∈Nv , ((ui)v)i∈Nv). This is the
game that Player i1 considers that Player i2 considers that . . . Player in is considering. A sequence
v is called a view. The empty sequence v = ∅ is assumed to be the modeler’s view, i.e., G∅ = G.
We denote an action profile ∏i∈Nv si in Gv, where si ∈ (Si)v by (s)v. The concatenation of two views
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v̄ = (i1, . . . , in) followed by ṽ = (j1, . . . , jn) is defined to be v = v̄ˆṽ = (i1, . . . , in, j1, . . . , jn). The set of
all potential views is V =

⋃∞
n=0 N(n) where N(n) = ∏n

j=1 N and N(0) = ∅.

Definition 1. A collection {Gv}v∈V where V ⊂ V is a collection of finite sequences of players is called
a strategic-form game with unawareness and the collection of views V is called its set of relevant views if the
following properties are satisfied:

1. For every v ∈ V ,

vˆv ∈ V if and only if v ∈ Nv. (6)

2. For every vˆṽ ∈ V ,

v ∈ V , ∅ 6= Nvˆṽ ⊂ Nv, ∅ 6= (Si)vˆṽ ⊂ (Si)v for all i ∈ Nvˆṽ. (7)

3. If vˆvˆv̄ ∈ V , then

vˆvˆvˆv̄ ∈ V and Gvˆvˆv̄ = Gvˆvˆvˆv̄. (8)

4. For every strategy profile (s)vˆṽ = {sj}j∈Nvˆṽ , there exists a completion to a strategy profile
(s)v = {sj, sk}j∈Nvˆṽ ,k∈Nv\Nvˆṽ

such that

(ui)vˆṽ((s)vˆṽ) = (ui)v((s)v). (9)

The first condition says what views are, in fact, relevant. If, for example, the set of players N1

perceived by Player 1 does not contain, say, Player 3, i.e., 3 /∈ N1, the view 1ˆ3 what Player 1 thinks
that Player 3 is considering is not relevant to strategic position of Player 1. Therefore, 1ˆ3 ∈ V .

The second condition, in particular, states that if, Player 1 finds that Player 2 is considering a player
or a strategy as a part of the game, he himself considers those elements in the game he perceives.

The third condition requires that if a player finds a game G1, he also finds that he has that
perception, i.e., G1ˆ1 = G1. More generally, if Player 1 finds that Player 2 finds that Player 1 is
considering a given game, then Player 1 is aware that Player 2 knows that he finds that Player 1 is
considering that game.

Games Gv corresponding to some views and the modeler’s game G∅ may differ with respect to the
number of players. Since the payoffs are the result of strategies chosen by all the players, the payoffs
in a restricted game Gv (with possibly a smaller number of players) may not be uniquely determined.
The fourth condition says that the payoffs in a restricted game are the payoffs in the game with more
players by adding some strategy profile of these players. In other words, a restricted game does not
contain new payoffs.

2.3. Extended Nash Equilibrium

A basic solution concept for predicting players’ behavior is a Nash equilibrium [19].

Definition 2. A strategy profile s∗ = (s1, s2, . . . , sn) is a Nash equilibrium if for each Player i ∈ {1, . . . , n}
and each strategy si of Player i

ui(s∗) ≥ ui(si, s∗−i), (10)

where s∗−i := (sj)j 6=i.
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To define the Nash-type equilibrium for a strategic-form game with unawareness, it is needed to
redefine the notion of strategy profile.

Definition 3. Let {Gv}v∈V be a strategic-form game with unawareness. An extended strategy profile (ESP) in
this game is a collection of (pure or mixed) strategy profiles {(σ)v}v∈V , where (σ)v is a strategy profile in the
game Gv such that for every vˆvˆv̄ ∈ V holds

(σv)v = (σv)vˆv as well as (σ)vˆvˆv̄ = (σ)vˆvˆvˆv̄. (11)

To illustrate Equation (11), let us take the game G12—the game that Player 1 thinks that Player 2 is
considering. If Player 1 assumes that Player 2 plays strategy (σ2)12 in the game G12, she must assume
the same strategy in the game G1 that she considers, i.e., (σ2)1 = (σ2)12. In our introductory example,
Player 1 finds that Player 2 is considering strategy (σ2)12 = b1. Thus, Player 1 considers that strategy
in her game G1 while preparing a best reply to that strategy. The next step is to extend rationalizability
from strategic-form games to the games with unawareness.

Definition 4. An ESP {(σ)v}v∈V in a game with unawareness is called extended rationalizable if for every
vˆv ∈ V strategy (σv)v is a best reply to (σ−v)vˆv in the game Gvˆv.

Consider a strategic-form game with unawareness {Gv}v∈V . For every relevant view v ∈ V ,
the relevant views as seen from v are defined to be Vv = {ṽ ∈ V : vˆṽ ∈ V}. Then, the game with
unawareness as seen from v is defined by {Gvˆṽ}ṽ∈Vv .

We are now in a position to define the Nash equilibrium in the strategic-form games
with unawareness.

Definition 5. An ESP {(σ)v}v∈V in a game with unawareness is called an extended Nash equilibrium (ENE)
if it is rationalizable and for all v, v̄ ∈ V such that {Gvˆṽ}ṽ∈Vv = {Gv̄ˆṽ}ṽ∈V v̄ we have (σ)v = (σ)v̄.

The first part of the definition (rationalizability) is similar to the standard Nash equilibrium,
where it is required that each strategy in the equilibrium is a best reply to the other strategies of that
profile. According to Definition 4, Player 2’s strategy (σ2)1 in the game of Player 1 has to be a best
reply to Player 1’s strategy (σ1)12 in the game G12. On the other hand, in contrast to the concept of
Nash equilibrium, (σ1)12 does not have to a best reply to (σ2)1 but to strategy (σ2)121.

We saw in Section 2.1 that for v ∈ {1212, 2121, . . . } we have Gv = ΓC. It follows that
{G1212ˆv}v∈V = {G2121ˆv}v∈V = {ΓC}. The second part of ENE implies that (σ)21 = (σ)121.
The following proposition [17] shows that the notion of extended Nash equilibrium coincides with
the standard one for strategic-form games when all views share the same perception of the game. It is
therefore useful for determining ENE.

Proposition 1. Let G be a strategic-form game and {Gv}v∈V a strategic-form game with unawareness such
that, for some v ∈ V , we have Gvˆv̄ = G for every v̄ such that vˆv̄ ∈ V . Let σ be a strategy profile in G. Then,

1. σ is rationalizable for G if and only if (σ)v = σ is part of an extended rationalizable profile in {Gv}v∈V .
2. σ is a Nash equilibrium for G if and only if (σ)v = σ is part of on an ENE for {Gv}v∈V and this ENE

also satisfies (σ)v = (σ)vˆv̄.

Remark 1. We see from Equations (8) and (11) that, for every vˆvˆv̄ ∈ V , a normal-form game Gvˆvˆv̄ and a
strategy profile (σ)vˆvˆv̄ determine the games and profiles in the form Gvˆvˆ...ˆvˆv̄ and (σ)vˆvˆ...ˆvˆv̄, respectively,
for example, G121 determines G122...21. Hence, in general, a game with unawareness {Gv}v∈V and an extended
strategy profile {(σ)v}v∈V are defined by {Gv}v∈N∪{∅} and {(σ)v}v∈N∪{∅}, where

N = {v ∈ V | v = (i1, . . . , in) with ik 6= ik+1 for all k}. (12)
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Then, we get {Gv}v∈V from {Gv}v∈N∪{∅} by setting Gṽ = Gv for v = (i1, . . . , in) ∈ N and
ṽ = (i1, . . . , ik, ik, ik+1, . . . , in) ∈ V . For this reason, we often restrict ourselves to N ∪ {∅} throughout
the paper.

2.4. The Role of the Notion of Games with Unawareness in Quantum Game Theory

The notion of games with unawareness is designed to model game theory problems in which
players’ perceptions of the game are restricted. It was shown in [17] that the novel structure extends
the existing forms of games. Although it is possible to represent games with unawareness with the use
of games with incomplete information (by using probability equal to 0 to the situations that a player
is not aware of), the extended Nash equilibrium does not map to any known solution concept of
incomplete information games. In particular, the set of extended Nash equilibria forms a strict subset
of the Bayesian Nash equilibria.

Once we know that games with unawareness is a new game form, it is natural to study that
type of games in the quantum domain. Having given a quantum game scheme that maps a classical
game G to the quantum one Q(G), and having given a family of games {Gv}, a family of quantum
games Q(Gv) can be constructed in a natural way. Then, we can study if, and to what extent, quantum
strategies compensate restricted perception of players.

Besides {Q(Gv)}, the notion of game with unawareness allows one to expand the theory of
quantum games by defining a family {Q(G)v}, where each quantum game Q(G)v corresponds to
a specific perception of players about the quantum game Q(G). In this case players may have restricted
perception of how a quantum game is defined. A good example of that quantum game theory problem
is the quantum PQ Penny Flip game [3]: one of the players is aware of having all the quantum
strategies, the other player perceives two unitary strategies identified with the classical Penny Flip
game. We provide a detail exposition of that problem in [18].

Another example of applying the notion of games with unawareness concerns the case when
playing a quantum game is not common knowledge among the players. The quantum game is to be
played with the aid of objects that behave according to the laws of quantum mechanics, in particular,
the players may share an entangled two-qubit state on which they apply unitary strategies.

Under this scenario (see Figure 1), Players 1 and 2 can be far apart, and a third party, say a modeler,
is to prepare the game. After the modeler prepares the quantum game based on its classical counterpart,
she sends the message to Players 1 and 2 so that they know they are to play the quantum game rather
than the classical one. When the players receive the message, each Player i perceives the game as being
quantum, i.e., Gi = ΓQ for i = 1, 2. However, this fact is not common knowledge among Players 1
and 2. Recall that a fact is common knowledge among the players of a game if for any finite sequence
of players i1, i2, . . . , ik Player i1 knows that Player i2 knows . . . that Player ik knows the fact. In our
case, each of the players cannot be certain that the other player finds the quantum game (receives the
message from the modeler) until he or she receives a confirmation from that player. According to the
scheme in Figure 1, Players 1 and 2 send a message to each other about their own current state of
knowledge. In this way, Player 1 receiving the message from Player 2 finds that Player 2 is considering
the quantum game, i.e., G12 = ΓQ. Similarly, Player 2 after receiving the message finds that Player 1 is
also considering the quantum game, i.e., G21 = ΓQ. The players continue to send messages to each
other informing about their own knowledge. After receiving the message, Player 1 learns that Player 2
finds that Player 1 is considering the quantum game. As a result, Player 1 perceives the game G121

as ΓQ. In the same manner we can see that the game G212 that Player 2 finds that Player 1 finds that
Player 2 is considering is ΓQ.

Two rounds of sending messages are still insufficient to say that ΓQ is common knowledge
among the players. At the time the game starts, the games Gv corresponding to higher order views
v ∈ {1212, 2121, 12121, 21212, . . . } are still unknown for the players, and either the classical game ΓC
or the quantum game ΓQ may be associated with G1212 and G2121. As a result, the players face a game
with unawareness described by a family of games {Gv}v∈N0∪{∅} consisting of two types of games:
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ΓQ and ΓC. An example of the game being in line with the scheme in Figure 1 is a family of games
{Gv}v∈N0∪{∅}, where

Gv =

{
ΓQ if v ∈ {∅, 1, 2, 12, 21, 121, 212},
ΓC otherwise.

(13)

We show below that whether a quantum game ΓQ is common knowledge considerably affects the
result of game.

Figure 1. A possible scenario before a quantum game is played.

3. Eisert–Wilkens–Lewenstein Scheme

We begin by recalling the Eisert–Wilkens–Lewenstein (EWL) scheme [20] in a general setting [21].

3.1. Construction

Let us consider a strategic-form game G = (N, (Si)i∈N , (ui)i∈N) with N = {1, . . . , n} and a
two-element strategy set Si = {si

0, si
1} for each Player i ∈ N. The generalized Eisert–Wilkens–

Lewenstein approach to game G is a triple

Q(G) = (N, (Di)i∈N , (u∗i )i∈N), (14)

where one has the following:

• Di is a set of unitary operators, Di ⊂ SU(2). The commonly used parameterization for U ∈ SU(2)
is given by
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U(θ, α, β) =

(
eiα cos θ

2 ieiβ sin θ
2

ie−iβ sin θ
2 e−iα cos θ

2

)
, θ ∈ [0, π], α, β ∈ [0, 2π). (15)

Each set Di is assumed to include {U(θ, 0, 0) | θ ∈ [0, π]}. Elements Ui ∈ Di play the role of
strategies of Player i. Each Player i, by choosing Ui ∈ Di, determines the final state |Ψ〉 according
to the following formula:

|Ψ〉 = J†

(
n⊗

i=1

Ui(θi, αi, βi)

)
J|0〉⊗n, where J =

1√
2
(1⊗n + iσ⊗n

x ). (16)

• u∗i is Player i’s payoff function. It is defined as the average value of the observable Mi,

Mi = ∑
j1,...,jn∈{0,1}

ai
j1,...,jn |j1, . . . , jn〉〈j1, . . . , jn|. (17)

The numbers ai
j1,...,jn are Player i’s payoffs in G such that ai

j1,...,jn = ui(s1
j1

, . . . , sn
jn). The function u∗i

may be written as

u∗i

(
n⊗

i=1

Ui(θi, αi, βi)

)
= tr(|Ψ〉〈Ψ|Mi). (18)

3.2. Quantum Counterparts of Classical Strategies

Throughout this paper, we study the EWL quantum game in which some of the players are
only aware of the classical strategies available to them and/or other players. We therefore need
to determine precisely what quantum operations replicate the strategies in the classical game G.
Based on Equations (15)–(17), a simple, yet tedious, calculation of Equation (18) reveals that the EWL
scheme is equivalent to the game played classically if the players’ unitary strategies are restricted to the
set {U(θ, 0, 0) | θ ∈ [0, π]} (see, for example, [22] for the general payoff function of Equation (18) in the
case n = 2). Then, for any mixed strategy profile in G, there exists a payoff equivalent unitary profile⊗n

i=1 Ui(θi, 0, 0) in Q(G) and vice versa. This equivalence of Player i’s mixed strategy (pi, 1− pi) and
a unitary matrix Ui(θi, 0, 0) can be expressed by the following equation:

θi = 2 arccos
√

p, p ∈ [0, 1]. (19)

A natural question that arises is whether the set {U(θ, 0, 0) | θ ∈ [0, π]} can model the classical
strategies when played against a strategy profile containing a full-parameter unitary strategy U(θ, α, β).
The problem is not trivial, as we do not have a payoff function to compare with the one determined
by a unitary strategy profile with at least one non-trivial strategy U(θ, α, β) in the EWL scheme.
Therefore, to answer this question we need to appeal to properties of the payoff functions in G and
Q(G). In most games, that we study in the classical game theory, we assume that the preference
relations of the players are represented by a linear utility function ui, or more precisely, they satisfy the
von Neumann–Morgenstern axioms (see, for example, [23]). This implies, among other things, that
Player i’s payoff in G resulting from playing a mixed strategy τi = (pi, 1− pi) (a probability distribution
over {si

0, si
1}) against τ−i is the probability-weighted average of ui((si

0, τ−i)) and ui((si
1, τ−i)) according

to (pi, 1− pi),

ui((p, 1− p), τ−i) = pui((si
0, τ−i)) + (1− p)ui((si

1, τ−i)). (20)

Now, we can use Equation (20) as a criterion for checking whether the set {U(θ, 0, 0) | θ ∈ [0, π]}
models the set of mixed strategies {(p, 1 − p), p ∈ [0, 1]}. We see from Equation (19) that
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Ui(2 arccos
√

pi, 0, 0) is supposed to be equivalent to the mixed strategy (p, 1 − p) and, therefore,
in particular, Ui(0, 0, 0) = 1 and Ui(π, 0, 0) = iσx are associated with the pure strategies si

0 = (1, 0)
and si

0 = (0, 1), respectively. Consider the EWL scheme in Equations (15)–(18) with n = 2 and the
strategy sets D1 = {U1(θ1, 0, 0) | θ1 ∈ [0, π]} and D2 = SU(2). We first determine Player 1’s payoff
corresponding to strategy profile U1(2 arccos

√
p, 0, 0)⊗U2(π/2, 0, π/2). According to Equation (16),

the final state |Ψ〉 is given by

|Ψ〉 = J†(U1(2 arccos
√

p, 0, 0)⊗U2(π/2, 0, π/2))J|00〉

=
(√

p +
√

1− p
)
|00〉 − i

(√
p−

√
1− p

)
|10〉. (21)

Hence,

u∗1(U1(2 arccos
√

p, 0, 0)⊗U2(π/2, 0, π/2))

=
(

1/2 +
√

p
√

1− p
)

a1
00 +

(
1/2−√p

√
1− p

)
a1

10. (22)

From Equation (22) for p = 1 and p = 0, Player 1’s payoff resulting from playing 1 and iσx against
U2(π/2, 0, π/2)) is a1

00/2 + a1
10/2. We thus get

u1(U1(2 arccos
√

p, 0, 0)⊗U2(π/2, 0, π/2))

6= pu1(1⊗U2(π/2, 0, π/2)) + (1− p)u1(iσx ⊗U2(π/2, 0, π/2)). (23)

In other words, Player 1’s payoff function with the set {U1(2 arccos
√

p, 0, 0)} playing the role of
the set of her mixed strategies (p, 1− p) is not linear compared with the classical case. In particular,
Player 1 by playing U1(π/2, 0, 0) (that is supposed to be equivalent to mixed strategy (1/2, 1/2))
against Player 2’s strategy may not obtain the payoff that is the average of payoffs corresponding
to her both pure strategies. A quick look at Equation (22) shows that the nonlinearity of the payoff
function u1 follows from the interference terms ±√p

√
1− p. These terms are not part of the payoff

function if the player’s classical mixed strategies (p, 1− p) are modeled by quantum operation

Cp(ρ) = p1ρ1+ (1− p)σ1ρσ1, (24)

where ρ stands for a 2× 2 density matrix. For this reason, we identify the classical mixed strategies in
the EWL scheme with (24) throughout the paper.

3.3. Nash Equilibria in Eisert–Wilkens–Lewenstein-Type Game

Nash equilibrium is the primary solution concept for games in strategic form. It has become the
most common tool in studying quantum games. In EWL-type games, a Nash equilibrium always exists.
Moreover, part of Nash equilibria is independent of the payoff functions of the game. For example,
in the EWL approach to a 2× 2 game, playing U ∈ SU(2) at random with respect to the Haar measure
on SU(2) is a Nash equilibrium strategy (see [21] for more details, and [24] for comprehensive analysis
of Nash equilibria in quantum 2× 2 games). The following proposition generalizes this statement to
a set of players of arbitrary finite size. It is used repeatedly hereafter.

Let ρ denote a 2× 2 density matrix. Define

I(ρ) = ρ, S(ρ) =
3

∑
i=0

σiρσ†
i /4, C(ρ) =

1

∑
i=0

σiρσ†
i /2, (25)

where, for convenience, σi, i = 1, 2, 3 stand for the Pauli matrices with σ0 = 1. Essential to the proof of
the proposition is the following lemma:

Lemma 1. Let |Ψ〉 = (|0〉⊗n + i|1〉⊗n) /
√

2, n ≥ 2 and Oj, j = 1, . . . , n− 1, where
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{
Oj ∈ {S , C} if j 6= n− 1,

Oj = S if j = n− 1.
(26)

Then, I ⊗ n−1⊗
j=1

Oj

 (|Ψ〉〈Ψ|) = 2−n1⊗n. (27)

Proof. It is obvious that σ1 (the Pauli matrix X) flips the state of a qubit of |Ψ〉 from |0〉 to |1〉. The matrix
σ2 (the Pauli matrix Y) flips both the state of a qubit (say, k-th one) and the phase of |Ψ〉. In other words,
it changes the state |Ψ〉 into(

|0〉⊗k−1|1〉|0〉⊗n−k − i|1〉⊗k−1|0〉|1〉⊗n−k
)

/
√

2 (28)

(up to the global phase factor). The Pauli matrix σ3, in turn, flips only the phase. It follows that

(
I⊗n−1 ⊗ S

)
(|Ψ〉〈Ψ|) = 2−2

3

∑
i=0

(
1⊗n−1 ⊗ σi

)
|Ψ〉〈Ψ|

(
1⊗n−1 ⊗ σ†

i

)
(29)

= 2−2
(
(|0〉〈0|)⊗n−1 + (|1〉〈1|)⊗n−1

)
⊗ 1. (30)

Since

O(|0〉〈0|) = O(|1〉〈1|) = 1
2
1 (31)

for O ∈ {S , C}, we obtain(
1⊗n−2 ⊗O ⊗ S

)
(|Ψ〉〈Ψ|) = 2−3

(
|0〉〈0|⊗n−2 + |1〉〈1|⊗n−2

)
⊗ 1⊗2. (32)

Repeating the above reasoning n− 3 times leads to our assertion.

Proposition 2. Let G = (N, (Si)i∈N , (ui)i∈N) be an n-person strategic-form game with |Si| = 2 for
i = 1, . . . , n, and let Q(G) = (N, (Di)i∈N , (u∗i )i∈N) be the corresponding EWL quantum game. Then,
a strategy vector (τ∗i )i∈N ∈ ∏n

i=1{S , C} in which at least two components τ∗j1 and τ∗j2 are equal to S is a Nash
equilibrium in Q(G).

Proof. Without loss of generality, we can assume that τ∗n = S and examine Player 1’s strategy τ∗1 .
By Lemma 1, the final state ρ f resulting from playing (1, τ∗2 , . . . , τ∗n ) is 2−n1⊗n. Hence,

ρ′f =
(

U1 ⊗ 1⊗n−1
)

ρ f

(
U†

1 ⊗ 1⊗n−1
)
= 2−n1⊗n, (33)

and ρ′f is the final state corresponding to strategy profile (U1, τ∗2 , . . . , τ∗n ). Since Player 1’s unitary
strategy U1 does not affect the final state ρ f and consequently the payoff tr(ρ f Mi), the strategy
τ∗1 ∈ {S , C} is a best reply to τ∗−1 = (τ∗2 , . . . , τ∗n ). In general, by playing against the strategy
combination τ∗−i which contains at least one S , Player i is indifferent between all of her strategies,
and hence (τ∗i )i∈N is a Nash equilibrium.

It is worth noting that S is one of the multiplicity of quantum strategies for which the proposition
holds, and is closely related to the notion of unitary 1-design. The following definition is taken
from [25].

Definition 6. Let X be a finite subset of U(d), the group of d× d unitary matrices, and let w : X → R be
a positive weight function (i.e., w > 0, ∑U∈X w(U) = 1). Then, (X, w) is called a (weighted) unitary t-design if
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∑
U∈X

w(U)U⊗t ⊗ (U†)⊗t =
∫

U(d)
U⊗t ⊗ (U†)⊗tdU, (34)

where dU is the Haar measure on U(d).

The next proposition [26] shows a relationship between unitary 1-designs and orthonormal bases
of Cd×d.

Proposition 3. For any X ⊂ U(d), X is a unitary orthonormal basis of Cd×d if and only if (X, 1/|X|) is
a minimum unitary 1-design.

Now, we can state a corollary of Proposition 2.

Corollary 1. Let (X, w) be a unitary 1-design. Proposition 2 holds if any strategy τ∗i = S is replaced with
a mixed strategy such that an operator U ∈ X is chosen with probability w(U).

Proof. Since {σi}3
i=0 is a orthonormal basis of C2×2, the pair ({σi}3

i=0, 1/4) is a unitary 1-design.
Hence, for a 2× 2 density matrix ρ we have

3

∑
i=0

σiρσ†
i /4 =

∫
U(2)

UρU†dU = ∑
U∈X

w(U)UρU†, (35)

where (X, w) is a unitary 1-design.

4. Quantum Games with Unawareness

In this section, we introduce the problem of unawareness in the EWL scheme. For convenience
of exposition, we assume that the players are fully aware of the number of players in the game.
Their perception, however, may be limited with respect to sets of strategies. Since proper subsets
of SU(2) are called into question in the EWL-type quantum game scheme [22,27], and the set
{U(θ, 0, 0) | θ ∈ [0, π]} goes beyond the set of strategies in the classical game (see Section 3.2),
we assume that the strategy set that each player perceives is either {1, iσx} or SU(2).

Clearly, the EWL-type quantum game Q(G) = (N, (Di)i∈N , (u∗i )i∈N) is a strategic-form game.
Thus, the concept of game with unawareness, as defined in Definition 1, applies to the quantum case.
In view of the restrictions above, we consider a collection {Q(G)v}v∈V of EWL-type games, where

1. the set of relevant views V is equal to the set of all potential views, i.e.,

V =
∞⋃

n=0
N(n), where N(n) =

n

∏
j=1

N, (36)

2. for all v ∈ V

(Di)v ∈ {{1, iσx},SU(2)}, (37)

and for vˆṽ ∈ V

if (Di)v = {1, iσx} then (Di)vˆṽ = (Di)v, (38)

3. for vˆvˆvˆṽ ∈ V ,

Gvˆvˆvˆṽ = Gvˆvˆṽ (39)
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4. for i ∈ N, v ∈ V and τ ∈ ⊗n
i=1(Di)v,

(u∗i )v(τ) = (u∗i )∅(τ). (40)

An extended Nash equilibrium is guaranteed to exist in a game with unawareness
(see Proposition 3 in [17]). An interesting question that arises here is whether an analogous fact
can be formulated in the quantum domain. With a little effort, we could show that {Q(G)v}v∈V may
fail to have an ENE under weaker assumptions of the sets (Di)v, for example, with (37) replaced by
{1, iσx} ⊂ (Di)v ⊂ SU(2). We can simply take {Q(G)v}v∈V in which for some view v = (i1, . . . , in),
the set (Din)v is not compact. Hence, it might be the case that a best reply (τin)v to (τ−in)vˆin does not
exists in game Q(G)vˆin = Q(G)v and neither does an ENE. Interestingly, the existence of an ENE is
guaranteed in {Q(G)v}v∈V defined by Equations (36)–(40).

Proposition 4. A quantum game {Q(G)v}v∈V with unawareness defined by Equations (36)–(40) has an ENE.

Proof. The first part of the proof is based on techniques originated in the work of [17]. Let {Q(G)v}v∈V
be the EWL-type game with unawareness. We define an auxiliary EWL game as follows:

Let i denote a player in Q(G)∅. The set of players in the auxiliary game is given by N
(defined by (12)) The set of strategies Dv for each Player v = (i1, . . . , in) ∈ N is given by

Dv = (Din)v ∈ {{1, iσx},SU(2)}. (41)

Define the payoff function Uv for each Player v ∈ N by

Uv(((aj)ṽ)ṽ∈N ) = (u∗in)∅(((aj)v)j∈N), (42)

where (u∗in)∅(((aj)v)j∈N) is the payoff to Player in in the EWL-type game Q(G)v that corresponds to
the strategy profile ((aj)v)j∈N . Note that the payoff function Uv depends only on a finite-dimensional
strategy vector even though the game (N , (Dv)v∈N , (Uv)v∈N ) has a countable number of players.
To clarify (42), in case N = {1, 2}, the payoff function U12 may be written as

U12((a1)1, (a2)2, (a2)12, (a1)21, (a1)121, (a2)212, . . . )

= (u∗2)∅((a1)12, (a2)12) = (u∗2)∅((a1)121, (a2)12) = U12((a1)121, (a2)12, ·),

where the second to last equality follows from the definition of extended strategy profile. In general,
the left-hand side of Equation (42) may be viewed as

Uv(((aj)ṽ)ṽ∈N ) = Uv((ain)v, ((aj)vˆj)j∈N,j 6=in). (43)

Let us assume that there are at least two views v1 and v2 from N for which Dv1 = Dv2 = SU(2).
By Proposition 2, the game (N , (Dv)v∈N , (Uv)v∈N ) has a Nash equilibrium ((a∗j )v)v∈N . The Nash
equilibrium determines the extended Nash equilibrium {((a∗j )v)j∈N)}v∈V in the game {Q(G)v}v∈V ,
where the components (a∗j )ṽ for ṽ = (i1, . . . , ik, ik, ik+1, . . . , in) ∈ V \ N are given by (a∗j )ṽ = (a∗j )v for
v = (i1, . . . , in) ∈ V . Indeed, by Equation (43), we have

(u∗in)∅(((a∗j )v)j∈N) = Uv((a∗j )ṽ)ṽ∈N

≥ Uv((ain)v, ((a∗j )vˆj)j∈N,j 6=in) = (u∗in)∅((ain)v, ((a∗j )v)j∈N,j 6=in) (44)

for each v = (i1, . . . , in) ∈ N and each ain ∈ (Din)v. Thus, (ain)v is a best reply to (a−in)v = (a−in)vˆin
in game Q(G)vˆin . By replacing v with vˆj for j 6= in in Equation (44), we obtain that (a∗j )v is a best
reply to (a∗−j)vˆj in game Q(G)vˆj. As a result, we have shown that {((a∗j )v)j∈N)}v∈V is rationalizable.



Entropy 2018, 20, 555 13 of 17

Moreover, if ṽ, v̄ ∈ V are the views such that {Q(G)vˆṽ}ṽ∈Vv = {Q(G)v̄ˆṽ}ṽ∈V v̄ we deduce from (42)
that Uṽˆj = Uv̄ˆj. Hence, the fact that (a∗j )ṽ is a best reply to (a∗−j)ṽˆj in game Q(G)ṽˆj is equivalent
to stating that (a∗j )v̄ is a best reply to (a∗−j)v̄ˆj in game Q(G)v̄ˆj. As a result, {((a∗j )v)j∈N)}v∈V is
an extended Nash equilibrium.

We now turn to the case in whichDv = SU(2) for at most one v ∈ N . IfDv = {1, iσx} for all v ∈ N
then {Q(G)v}v∈V is equivalent to the classical game with unawareness, and by Proposition 3 in [17],
a Nash equilibrium in the auxiliary game determines an extended Nash equilibrium {(τ∗)v}v∈V , where
each strategy in the profile (τ∗)v = (τ∗1 , . . . , τ∗n )v may be viewed as a probability distribution over
{1, σx}. The only point remaining concerns Dv = SU(2) for exactly one v ∈ N . From Equation (38),
it follows that v is the form v = i. Without restriction of generality we can assume that

(Di)1 =

{
SU(2) if i = 1,

{1, iσx} if i 6= 1
and (Di)v = {1, iσx} for v ∈ N \ {1}. (45)

Let U∗1 ∈ SU(2) be a best reply to (τ∗−1)1 in Q(G)1. Such a strategy exists since Player 1’s payoff
function u∗1(·, τ∗−1) : SU(2) → R is a continuous function on the compact set SU(2). We construct
an ENE in {Q(G)v}v∈V by replacing (τ∗1 )1, (τ∗1 )11, . . . , (τ∗1 )11...1... in {(τ∗)v}v∈V with U∗1 to obtain
{(σ∗)v}v∈V , where

(σ∗)v =


(τ∗)v if v ∈ V \ {∅, 1, 11, 111, . . . },
(U∗1 , (τ∗−1)1) if v ∈ {1, 11, 111, . . . },
(U∗1 , (τ∗2 )2, . . . , (τ∗n )n) if v = ∅.

(46)

Since U∗1 is a best reply to (τ∗−1)1 and {(τ∗)v}v∈V is rationalizable, {(σ∗)v}v∈V defined by
Equation (46) is also rationalizable. Note that {Q(G)1ˆṽ} 6= {Q(G)vˆṽ} for v ∈ V \ {∅, 1, 11, . . . }.
Thus, the second condition of Definition 5 has no effect on (σ1)1 = U∗1 . The family of profiles
{(σ∗)v}v∈V is therefore an ENE.

Our first example shows that unawareness can be beneficial to the players.

Example 1. Consider a generalized form of the Prisoner’s Dilemma given by bimatrix

A :

( C D
C (r, r) (s, t)
D (t, s) (p, p)

)
, t > r > p > s (47)

and its EWL counterpart Q(A) defined by Equations (15)–(18),

Q(A) = {{1, 2}, {SU(2),SU(2)}, {u∗1 , u∗2}}. (48)

Recall that A has the unique Nash equilibrium (D, D) that leads to the payoff outcome (p, p). What makes
the game in Equation (47) interesting is the fact that the players would get (r, r) if they both chose the strategy
C. However, the strategy profile (C, C) is not stable as each player can deviate and even obtain t. On the other
hand, playing Q(A) does not solve the dilemma as well. The game Q(A) has multiple Nash equilibria (see for
example [24]) but no one leads to (r, r) in general.

Given Q(A), we form a game with unawareness {Q(A)v}v∈N∪{∅}, where

Q(A)v = {{1, 2}, {(D1)v, (D2)v}, {u∗1 , u∗2}}, (49)

and for v ∈ N ∪ {∅} (see (12) for the definition of N )
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(Di)v =

{
SU(2) if v ∈ {∅, 1, 2},
{1, iσx} otherwise.

(50)

The players are both aware of all the unitary strategies available in the game. However, each player perceives
that the other player’s strategy set is {1, iσx}. In other words, each player thinks that the other player is
considering the classical game.

We now compute all the extended Nash equilibria of the game. We let {(τ∗1 , τ∗2 )v}v∈V stand for an ENE
(it exists by Proposition 4). For v ∈ {1, 2} and every vˆṽ ∈ N game Q(A)vˆṽ is equivalent to A. Since
strategies C and D in game A can be identified with 1 and iσx, respectively, and the strategy profile (D, D)

is a Nash equilibrium in A, it follows that (iσx, iσx) in a Nash equilibrium in Q(A)vˆṽ. By Proposition 1,
the strategy profile (iσx, iσx) is part of an ENE in {Q(A)v}v∈V , i.e.,

(τ∗1 , τ∗2 )v = (iσx, iσx) for every vˆṽ ∈ N . (51)

We are left with the task of determining (τ∗1 , τ∗2 )v for v ∈ {1, 2}. We conclude from Equations (11)
and (51) that

(τ∗2 )1 = (τ∗2 )12 = iσx = (τ∗1 )21 = (τ∗1 )2. (52)

Then, it follows from Definition 4 that (τ∗1 )1 = U1(θ
∗
1 , α∗1 , β∗i ) has to be a best reply to iσx in the game

Q(A)1. Since for U1 ∈ SU(2) we have

u∗1(U1(θ1, α1, βi), iσx) = r sin2 β1 sin2(θ1/2) + s cos2 α1 cos2(θ1/2)

+ t sin2 α1 cos2(θ1/2) + p cos2 β1 sin2(θ1/2), (53)

Player 1’s best reply U1(θ
∗
1 , α∗1 , β∗i ) to iσx is defined by

(θ∗1 , α∗1 , β∗i ) ∈ {0} × {π/2, 3π/2} × [0, 2π). (54)

In other words, U1(θ
∗
1 , α∗1 , β∗i ) = ±iσz. The same conclusion can be drawn for (τ∗1 , τ∗2 )2. As a result,

an ENE {(τ∗)v}v∈N∪{∅} in {Q(A)v}v∈N∪{∅} is of the form

(τ∗)v =


±iσz ⊗±iσz if v = ∅,

±iσz ⊗ iσx if v = 1,

iσx ⊗±iσz if v = 2,

iσx ⊗ iσx. otherwise

(55)

Interestingly, the ENE yields each player a payoff of r,

u∗1(2)(±iσz ⊗±iσz) = r > p. (56)

We can see that suitably limited players’ perceptions of the game can increase the equilibrium payoffs.
It is worth noting that each player is always willing to play quantum strategies. In the game

{Q(A)v}v∈N∪{∅} given by Equation (50). each player finds that his opponent is playing the classical game.
Thus, each player should assume that his opponent will play iσx–the unitary counterpart of the strategy D.
The outcome (iσx, iσx) generates the payoff of p for each player. If a player has access to the unitary strategies,
he will choose one given by Equation (54), i.e., ±iσz, and will obtain the maximal possible payoff

u∗1(±iσz, iσx) = u∗2(iσx,±iσz) = t > p. (57)
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The next example shows that in some games with unawareness every strategy profile is a result
of an ENE.

Example 2. Consider the EWL-type games Q(B)v = (N, ((Di)v)i∈N , (u∗i )i∈N) with |N| ≥ 3. For each view
v = (i1i2, . . . , im) ∈ N , where ik ∈ N, define (Di)v as follows:

(Di)i1 = SU(2), (Di)i1i2,...im =

{
SU(2) if i ∈ {i1, i2},
{1, iσx} otherwise.

(58)

Moreover, given v = (i1, . . . , im), ik 6= ik+1, we set (Di)ṽ = (Di)v for ṽ = (ii, . . . , ik, ik, ik+1, . . . , in).
We identify an ENE {(τ∗)v} that generates an arbitrary strategy profile in Q(B)∅. Consider first a

strategy profile (τ∗)i1i2 of {(τ∗)v} for i1 6= i2. Since Q(B)i1i2 = Q(B)i1i2ˆṽ for every ṽ, by Proposition 1,
(τ∗)i1i2 = τ∗, where τ∗ is a Nash equilibrium in Q(B)i1i2 . We know from Equation (58) that the strategy sets
of Player i1 and i2 in Q(B)i1i2 are SU(2), whereas the strategy sets of the other players are {1, iσx}. Applying
Proposition 2, we conclude that the strategy profile (τ∗) in which players i1 and i2 play the quantum operation
S and the other players play C is a Nash equilibrium in Q(B)i1i2 . By the above, for i ∈ N we obtain

(τ∗i )i1i2 =

{
S if i ∈ {i1, i2},
C otherwise.

(59)

Since two views i1i2, i1i2ˆv, v ∈ V share the same perception of the game, i.e.,
{Q(B)i1i2ˆṽ}ṽ = {Q(B)i1i2ˆvˆṽ}ṽ, we have (τ∗)i1i2ˆv = (τ∗)i1i2 according to Definition 5.

The task is now to find (τ∗)i1 . If i 6= i1 then

(τ∗i )i1 = (τ∗i )i1i = S , (60)

which follows from Equations (11) and (59). In the case i = i1, we determine strategy (τ∗i )i1 by using the fact
that (τ∗i )i1 is rationalizable, i.e., (τ∗i )i1 is a best reply to (τ∗−i)i1 in game Q(B)i1 (see Definition 4). We deduce
from Equation (60) that each strategy of (τ∗−i)i1 is S . Then, by Lemma 1, Player i is indifferent between all of
her strategies. We thus can set (τ∗i )i1 = Uj(θj, αj, β j). Since i = i1, Equation (11) implies that (τ∗i )i1 = (τ∗i )∅.
As a result, we obtain the following extended rationalizable strategy profile (τ∗)v for every v ∈ N ∪ {∅}:

(τ∗)v =


(U1(θ1, α1, β1), . . . , Un(θn, αn, βn)) if v = ∅,

(S1, . . . ,Si−1, Ui(θi, αi, βi),Si+1, . . . ,Sn) if v = i,

(C1, . . . , Ci1−1,Si1 , Ci1+1, . . . , Ci2−1,Si2 , Ci2+1, . . . Cn) if v = i1i2, . . . , ik.

(61)

The profiles (τ∗)v we have just constructed constitute an ENE that implies the strategy profile⊗n
i=1 Ui(θi, αi, βi) played in Q(B)∅.

5. Conclusions

The results of this paper have substantially developed quantum game theory and enabled us to
go beyond frequently investigated 2× 2 games. Recent difficulties, caused by sophisticated methods,
in finding rational vectors of strategies in quantum game may be reduced by introducing elements of
unawareness of players. This follows from the fact that, in numerous cases of such games, the rational
solution described by the notion of extended Nash equilibrium, as presented in the examples above,
consists of pure strategies. We have shown that an extended Nash equilibrium always exists in the
EWL-type quantum game. Moreover, limited perceptions of the players of how the other players view
the game have a significant impact on an ENE. In many cases, the equilibrium result does not depend
on the input classical game but merely on how the players’ unawareness is defined.
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Our work provides new tools that might be utilized in allied sciences. The obtained results will
enable one to study numerous economics problems formulated in terms of games with unawareness
with the use of mathematical methods of quantum information. At the same time, these problems
will enrich theory of quantum information through new examples that will show superiority of using
quantum methods over methods of classical information theory.
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