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Abstract: Heat transfer accompanying entropy generation for the evolving mini and microbubbles
in solution is discussed based on the explicit solutions for the hydrodynamic equations related
to the bubble motion. Even though the pressure difference between the gas inside the bubble
and liquid outside the bubble is a major driving force for bubble evolution, the heat transfer by
conduction at the bubble-liquid interface affects the delicate evolution of the bubble, especially for
sonoluminescing the gas bubble in sulfuric acid solution. On the other hand, our explicit solutions for
the continuity, Euler equation, and Newtonian gravitational equation reveal that supernovae evolve
by the gravitational force radiating heat in space during the expanding or collapsing phase. In this
article, how the entropy generation due to heat transfer affects the bubble motion delicately and
how heat transfer is generated by gravitational energy and evolving speed for the supernovae will
be discussed. The heat transfer experienced by the bubble and supernovae during their evolution
produces a positive entropy generation rate.
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1. Introduction

Heat transfer through a finite temperature difference, a typical irreversible process, accompanies
entropy generation, which produces the lost work in ordinary thermal systems in general [1] and
damped oscillation for bubbles particularly [2]. For a microbubble oscillating in liquid, its behavior
may be affected delicately by the entropy generation due to the heat transfer through the system
boundary. In fact, various nonlinear phenomena appear for sonoluminescing gas bubbles in sulfuric
acid solutions [3]. The conventional approach of polytropic approximation for the bubble behavior fails
to account for the nonlinear behavior due to entropy generation because PbdV is an exact differential
and its integral over a cycle of oscillation vanishes [4].

On the other hand, the amount of heat transfer that occurred during the evolution of the
Newtonian stars or supernovae may be calculated if one knows the evolution of the system.
Heat transfer for the stars is dependent on its gravitation energy and evolving speed [5], which is
realized by the absorption of neutrinos during the expansion and generation of neutrinos during the
collapsing phase [6]. So far, most of the work on the evolution of stars has employed the polytrope
assumption for the whole star [7], which indicates that the star undergoes adiabatic expansion
and contraction.

In this article, the entropy generation of evolving spherical objects such as mini or microbubbles
in solutions and supernovae by heat transfer will be discussed with the help of the explicit solutions
for the hydrodynamic equations such as mass, momentum and energy equations, and Newtonian
gravity equations. The spherical objects considered in this study are the objects that expand or collapse
homologously [5]. Homologous collapse or expansion, which has confirmed by the laser-induced
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bubble by controlling the laser energy input [8] means that every mass point inside the bubble or star
may be traced back to a single point, i.e., the center of bubble or star, and vice versa. The entropy
generation rate is always positive for the bubble whose evolution is affected by the heat transfer
at the bubble-liquid interface as well as for the supernovae in which the amount of heat transfer is
determined by the gravitational energy and evolving speed.

2. Bubble Evolution in Hot Liquid Medium

2.1. Evaporation of Liquid Droplet at Its Superheat Limit

One may heat a liquid droplet in an immiscible host liquid to a temperature far above its boiling
point without the occurrence of a phase transition. The maximum temperature limit at which the
liquid droplet evaporates explosively is called the superheat limit of liquid [9]. It has been observed
that, when the temperature of a liquid droplet in the immiscible medium reaches its superheat limit
at 1 atm, the droplet vaporizes explosively without the expansion of its volume and then the fully
evaporated droplet becomes a bubble by the subsequent expansion [10].

Consider a butane bubble formed from the fully evaporated droplet at its superheat limit of 105 ◦C
in ethylene glycol. The bubble of radius R(t) oscillates in hot ethylene glycol at ambient temperature T∞

and pressure P∞. When the bubble expands, the temperature of the vapor inside the bubble decreases
and while the bubble contracts the temperature of the vapor increases. The heat transfer occurs due to
such a temperature difference between the vapor inside the bubble (Tb) and the surrounding liquid
(T∞) through the thermal boundary layer.

The evaporated state which retains the volume of the saturated liquid state, having the effective
volume of a liquid molecule, Vm is characterized by its very high pressure, Pn [11]

Pn =
Zεm

3
/Vm (1)

where Z is the number of the nearest neighboring molecules, e.g., Z = 12 for FCC lattice structure.
The value of Pn is approximately 138 bar for butane at its superheat limit. In Equation (1), εm is the
energy required to separate a pair of molecules from the given liquid state to the critical state. This is
given approximately by [12]

εm = 4εo

[
1−

(
ρc

ρm

)2
][(

dw

dm

)6
−
(

dw

dm

)12
]

(2)

The number density of the liquid, N, provides the average distance between molecules dm in
Equation (2) and the effective molecular volume Vm in Equation (1). The relation is

π

6
d3

mN = VmN = 0.7405 (3)

where 0.7405 is the packing fraction of the FCC lattice structure. Since the internal pressure of the fully
evaporated droplet is very large, as confirmed by Equation (1), the droplet expands spontaneously.
At the initial stage of this process, the bubble expands linearly with time. However, its linear growing
fashion slows down near the point where the nonlinear growing starts.

At the starting point of nonlinear growing, the bubble wall velocity vanishes [10]. Thus, it may be
reasonable to choose this time as the starting point for the nonlinear bubble evolution. The pressure
wave signal from the bubble at this point is given by [13]

P′non =
Rnon

rd
[Pb(Rnon)− P∞] (4)
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One can calculate the pressure inside the bubble with the known value of the far-field pressure
signal, P’non, and the bubble radius Rnon at the starting point of the nonlinear bubble motion.
The physical properties such as pressure and temperature at this point may be used as the initial
conditions for studying the subsequent nonlinear bubble evolution. The temperature at the starting
point of nonlinear growing may be taken as the superheat limit of the liquid.

2.2. Thermal Boundary Layer Adjacent to the Bubble Wall

Assuming that the bubble is a spherical shape and that the instantaneous temperature profile at
the thermal boundary layer adjacent to the bubble wall is quadratic [14], then we have

T − T∞

Tbl − T∞
= (1− ξ)2 (5a)

ξ =
r− Rb

δ
(5b)

One can calculate the heat transfer rate if the boundary layer thickness, δ, is determined.
The second-order curve for the temperature profile given in Equation (5a) satisfies the following
boundary conditions that we might consider.

T(Rb, t) = Tbl T(Rb + δ, t) = T∞ (6)

and (
∂T
∂r

)
r=Rb+δ

= 0 (7)

A schematic of a bubble model is given in Figure 1, which shows a spherical gas or vapor bubble
in liquid at an ambient temperature T∞ and pressure P∞. Heat transfer is assumed to occur through the
thermal boundary layer of thickness δ(t). The driving force for the bubble evolution is either an initially
imposed high pressure inside the bubble or an external force applied to the bubble. Assume that the
spherical shape is maintained during bubble evolution.
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Figure 1. A model for a spherical bubble oscillating in a liquid.

2.3. Overall Energy Equation for a Bubble

If the bubble retains a thermal equilibrium for the gas inside the bubble, one may consider the
following overall energy conservation for the bubble [15].

dE
dt

+ Pb
dV
dt
−
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Equation (18) shows that the entropy generation due to the transfer at the bubble wall during the 
bubble evolution is always positive. The lost work, which is proportional to the entropy generation 
(Guoy-Stodolar theorem, [1]), induces thermal damping in the bubble motion. 

2.7. Evolution of a Bubble Formed from a Droplet at Its Superheat Limit in Hot Liquid Medium 

The calculated far-field pressure wave signals from the evolving butane bubble in ethylene 
glycol at the ambient pressure of 1 atm and at a liquid temperature of 378 K are shown in Figure 2a. 
The initial conditions for nonlinear bubble evolution are chosen to be Ro = 1.37 mm, Pb (Ro) = 6.67 bar 
and Tb = 378 K, the superheat limit of butane. The empty circles in this figure denote the 
experimental data by Shepherd and Sturtevant [10]. Figure 2b displays the instantaneous bubble 
radius during the evolution of a butane bubble. Full circles indicate some of the observed data [10]. 
The time rate change of the vapor temperature inside the bubble is shown in Figure 3a, which 
shows that the bubble evolution is neither isothermal nor adiabatic. The conventional method of 
polytropic assumption, which produces an isothermal bubble or an adiabatic bubble, cannot catch 
this bubble behavior. In Figure 3b, the entropy generation rate experienced by the butane bubble is 
shown. As expected, the entropy generation during the bubble oscillation is always positive. 
Thermal damping due to finite heat transfer [13] is barely seen in the bubble’s radius–time curve 
shown in Figure 2b. 

Bubble dynamics formulated in this section contain the thermal behavior for the vapor inside 
the bubble in oscillation for a particular case of ‘uniform temperature limit’, which is appropriate 
for the case in which the characteristic time of the bubble evolution (ms) is much longer than the 
relaxation time of the translational motion of the vapor molecules [16]. 

dt
= 0 (8)
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The first law of thermodynamics for the bubble, described in Equation (8), indicates that the sign
convention of “heat transfer to the system” is positive. The ‘bar’ notation used in the heat transfer
term indicates the physical quantity of the non-thermodynamic property. Assuming that the vapor
inside the bubble obeys the ideal gas law, the internal energy of the vapor inside the bubble can be
expressed as

E = mbCv,bTb =
PbV

γ− 1
(9)

This equation implies that the gas is calorically perfect at equilibrium [16] as is assumed or the
instantaneous temperature of the gas inside the bubble is spatially uniform, in which the equation of
state for an ideal gas, Pb = ρgRgTb is valid. The heat transfer conducted through the thermal boundary
layer can be obtained by applying the Fourier law at the bubble wall, or

.
Q = kl4πR2

b

(
∂T
∂r

)
r=Rb

= −
8πR2

b(Tb − T∞)

δ
(10)

Substituting Equations (9) and (10) into Equation (8), we have the time-dependent pressure inside the
bubble, given as

dPb
dt

= −3γPb
Rb

dRb
dt
− 6(γ− 1)kl(Tb − T∞)

δRb
(11)

The time dependent temperature of the vapor inside the bubble can be obtained from Equation (8) and
the ideal gas law.

dTb
dt

= −3(γ− 1)Tb
Rb

dRb
dt
− 6(γ− 1)klTb(Tb − T∞)

δRbPb
(12)

Equations (11) and (12) tell us that the adiabatic behavior is valid without the heat transfer term.

2.4. Bubble Wall Motion

The liquid may be considered incompressible because the wall velocity of the bubble formed
from the evaporated droplet is much smaller than the sound speed of the liquid. With this assumption,
one may obtain the well-known Rayleigh equation from the mass and momentum equations for
the liquid. The following Rayleigh equation provides the radial motion of a spherical bubble in an
unbounded liquid [17].

Rb
dUb
dt

+
3
2

U2
b =

1
ρ∞

(Pb − P∞) (13)

The effects of surface tension and viscosity on the momentum equation may be neglected because the
pressure terms due to the surface tension and viscosity in Equation (13) are negligible compared to the
internal pressure of the bubble, Pb, for the millimeter-sized bubble. The bubble wall velocity Ub is the
time derivative of the bubble radius:

dRb
dt

= Ub (14)

2.5. Energy Equation for the Liquid Adjacent to the Bubble Wall: The Thermal Boundary Layer

One may solve the following energy equation for the liquid adjacent to the bubble wall to obtain
the thermal boundary layer thickness.

dT
dt

+ ur
∂T
∂r

=
αl
r3

∂

∂r

(
r2 ∂T

∂r

)
(15)

where αl = kl/(ρ∞Cl) is the thermal diffusivity. The radial velocity of liquid due to the bubble motion
can be obtained from mass conservation for an incompressible liquid. That is
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ur =

(
Rb
r

)2
Ub (16)

Integrating Equation (15) from r = Rb to r = Rb + δ yields [13][
1 + δ

Rb
+ 3

10

(
δ

Rb

)2
]

dδ
dt = 6αl

δ −
[

2δ
Rb

+ 1
2

(
δ

Rb

)2
]

dRb
dt − δ

[
1 + δ

2Rb
+ 1

10

(
δ

Rb

)2
]

1
Tb−T∞

dTb
dt (17)

Equation (17) provides the time rate change of the thermal boundary layer thickness, from which
one can calculate the instantaneous heat transfer rate using Equation (10). One can solve
Equations (11)–(14) and (17) simultaneously to obtain the next time step value of Pb, Tb, Ub, Rb and δ

by the Runge-Kutta numerical method with appropriate initial conditions.

2.6. Entropy Generation during Bubble Evolution

For the evolving bubble formed from a fully evaporated liquid droplet at its superheat limit,
the heat transfer mechanism is clearly defined. Using the thermal boundary layer with constant
thickness at the bubble-liquid interface, the thermal damping due to heat exchange with the
surrounding liquid was first treated by Moody [2]. The damped bubble oscillation due to heat
transfer through the bubble wall simply displays an available power loss due to entropy production.
The entropy generation rate in such an oscillating bubble-liquid system is the combination of the rate
change of entropy for vapor inside the bubble due to bubble pulsation and the net entropy flow out of
the bubble as the result of the heat exchange [13]. That is,

.
Sgen =

DSb
Dt
− 1

T∞
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(
− 1

Tb
+

1
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Equation (18) shows that the entropy generation due to the transfer at the bubble wall during the
bubble evolution is always positive. The lost work, which is proportional to the entropy generation
(Guoy-Stodolar theorem, [1]), induces thermal damping in the bubble motion.

2.7. Evolution of a Bubble Formed from a Droplet at Its Superheat Limit in Hot Liquid Medium

The calculated far-field pressure wave signals from the evolving butane bubble in ethylene glycol
at the ambient pressure of 1 atm and at a liquid temperature of 378 K are shown in Figure 2a. The initial
conditions for nonlinear bubble evolution are chosen to be Ro = 1.37 mm, Pb (Ro) = 6.67 bar and
Tb = 378 K, the superheat limit of butane. The empty circles in this figure denote the experimental
data by Shepherd and Sturtevant [10]. Figure 2b displays the instantaneous bubble radius during
the evolution of a butane bubble. Full circles indicate some of the observed data [10]. The time rate
change of the vapor temperature inside the bubble is shown in Figure 3a, which shows that the bubble
evolution is neither isothermal nor adiabatic. The conventional method of polytropic assumption,
which produces an isothermal bubble or an adiabatic bubble, cannot catch this bubble behavior.
In Figure 3b, the entropy generation rate experienced by the butane bubble is shown. As expected,
the entropy generation during the bubble oscillation is always positive. Thermal damping due to finite
heat transfer [13] is barely seen in the bubble’s radius–time curve shown in Figure 2b.

Bubble dynamics formulated in this section contain the thermal behavior for the vapor inside the
bubble in oscillation for a particular case of ‘uniform temperature limit’, which is appropriate for the
case in which the characteristic time of the bubble evolution (ms) is much longer than the relaxation
time of the translational motion of the vapor molecules [16].
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Figure 2. (a) The far-field pressure signal from the oscillating butane bubble in ethylene glycol; (b) 
The radius–time curve for a bubble evolved from a butane droplet at its superheat limit in ethylene 
glycol. 
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entropy generation rate for the butane bubble shown in Figure 2. 
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3. Microbubble Behavior under an Ultrasonic Field

3.1. Mass, Momentum and Energy Conservations for Gas inside the Bubble

A microbubble trapped under an ultrasonic field oscillates, synchronizing with the applied
ultrasound whose frequency is around 25 kHz [18]. With appropriate conditions such as a suitable
bubble radius and the driving amplitude of the ultrasound, the microbubble emits a light at the
collapse, which is called “sonoluminescence”. The characteristic time of the microbubble evolution
under ultrasound is a microsecond so that the temperature distribution inside the bubble may not
be uniform near the bubble collapse. One may solve the Navier-Stokes equations for the gas inside
the bubble and the liquid adjacent to the bubble wall to understand the microbubble behavior under
ultrasound. The mass and momentum equations for the gas inside the bubble with spherical symmetry
are given as

∂ρg

∂t
+

1
r2

∂

∂r

(
ρgugr2

)
= 0, (19)

∂

∂t
(
ρgug

)
+

1
r2

∂

∂r

(
ρgu2

gr2
)
+

∂Pb
∂r

= 0, (20)
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A set of analytical solutions for the above conservation equations [19] is given as

ρg = ρo + ρr (21)

ug =

.
Rb
Rb

r, (22)

Pb = Pbo −
1
2

(
ρo +

1
2

ρr

) ..
Rb
Rb

r2, (23)

where ρo(Ro)3 = constant and ρr = ar2/(Rb)5. The constant a is related to the gas mass inside a
bubble by a/m = 5(1 − NBC)/(4π) with NBC = [Pbo(Rb)3/Tbo]/[P∞(Ro)3/T∞]. The subscript, o, denotes
the properties at the bubble center. The linear velocity profile describes the homologous motion
of a spherical object, which was verified experimentally by the laser-induced bubble in water [8].
The linear velocity profile obtained from the continuity equation, which makes the viscosity term
vanish in the momentum equation, implies that the bubble collapses or expands homologously [5].
The quadratic pressure profile given in Equation (23), was verified by comparisons with direct
numerical simulations [20].

Assuming that the internal energy for the gas inside a bubble is a function of gas temperature
only as de = Cv,bdTb, the energy equation for the gas inside the bubble may be written as

ρgCv,b
DTb
Dt

= −Pb
r2

d
dr

(
r2ug

)
− 1

r2
d
dr

(
r2qr

)
, (24a)

The viscous dissipation term in the internal energy equation also vanishes because the radial
component of the stress is null with the linear velocity profile. Since the solutions for the mass
and momentum equations, which are given in Equations (21)–(23), also satisfy the kinetic energy
equation; only the internal energy equation given in Equation (24a) needs to be solved. Using the
definition of enthalpy, the internal energy equation for the gas can be also written as

ρgCP,b
DTb
Dt

=
DPb
Dt
− 1

r2
∂

∂r

(
r2qr

)
. (24b)

Eliminating DTb/Dt from Equation (24a,b), one can obtain the following heat transport equation for
the gas inside bubble [19].

DPb
Dt

= −γPb
r2

∂

∂r

(
r2ug

)
− (γ− 1)

r2
∂

∂r

(
r2qr

)
. (25)

With uniform pressure approximation, which is legitimate when the bubble wall acceleration
is considerably less than 1012 m/s2 [21], Equation (25) can be written as follows with help of
Equations (21)–(23)

(γ− 1)
r2

d
dr

(
r2qo

)
= −

[
dPbo
dt

+ 3γPbo

.
Rb
Rb

]
(26)

A temperature profile can be obtained by solving Equation (26) with the Fourier law. That is [18],

Tb(r) =
B
A
·

−1 +

√
(1 +

A
B

Tbo)
2
− 2η

A
B
(Tbl − T∞)(

r
Rb

)
2
, (27)

where A and B are the coefficients in the temperature-dependent gas conductivity, having a form such
as kg = AT + B and η = (Rb/δ)(kl/B). For air A = 5.528 × 10−5 J/msK2 and B = 1.165 × 10−2 J/msK,
and for argon A = 2.65 × 10−5 J/msK2 and B = 1.347 × 10−3 J/msK were used [22]. The temperature
distribution given in Equation (27) is valid until the characteristic time of the bubble evolution is an
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order of the relaxation time for the vibrational motion of the molecules [16] and/or is much less than
the relaxation time of the translational motion of the molecules [23]. The temperature at the bubble
wall Tbl can be obtained from Equation (27). Such a uniform pressure approximation inside the bubble
can appropriately describe the sonoluminescing gas bubble in sulfuric acid solutions [24].

3.2. Bubble Wall Motion under an Ultrasonic Field

The bubble speed at the bubble collapse for a sonoluminescing gas bubble in water is over
600 m/s [25] so that one considers the compressible effect for the bubble motion. The mass and
momentum equation outside the bubble wall, accounting for the compressible effect of the liquid,
provides the well-known Keller-Miksis equation for the bubble wall motion [26], which is valid until
the bubble wall velocity is less than the sound speed of the liquid. That is

Rb

(
1− Ub

CB

)
dUb
dt

+
3
2

U2
b

(
1− Ub

3CB

)
=

1
ρ∞

(
1 +

Ub
CB

+
Rb
CB

d
dt

)[
PB − Ps

(
t +

Rb
CB

)
− P∞

]
(28)

The liquid pressure on the external side of the bubble wall PB is related to the gas or vapor pressure
inside the bubble wall Pb by

PB = Pb −
2σ

Rb
− 4µ

Ub
Rb

(29)

The pressure of the deriving sound field Ps may be represented by a sinusoidal function such as
Ps = −PAsinωt where ω = 2πfd and fd is the driving frequency.

The heat transfer occurs inside the bubble as well as at the thermal boundary layer adjacent to
the bubble wall for cases in which the gas or vapor temperature inside the bubble is not uniform.
The equations for the time rate change of the pressure, the temperature for the vapor inside the
bubble, and the time rate change of the thermal boundary layer equation for a perfect equilibrium
bubble, which are given in Equations (11), (12), and (17), respectively, should be replaced by the
following equations.

dPb
dt

= −3γPb
Rb

dRb
dt
− 6(γ− 1)kl(Tbl − T∞)

δRb
(30)

dTbo
dt

= −3(γ− 1)Tbo
Rb

dRb
dt
− 6(γ− 1)klTbo(Tbl − T∞)

δRbPb
(31)[

1 + δ
Rb

+ 3
10

(
δ

Rb

)2
]

dδ
dt = 6αl

δ −
[

2δ
Rb

+ 1
2

(
δ

Rb

)2
]

dRb
dt − δ

[
1 + δ

2Rb
+ 1

10

(
δ

Rb

)2
]

1
Tbl−T∞

dTbl
dt (32)

One can solve Equations (14), (28), and (30)–(32) simultaneously to obtain the next time step value of
Rb, Ub, Pb, To and δ, respectively. The instantaneous temperature distribution can be obtained from
Equation (27).

3.3. Sonoluminescing Bubble in Sulfuric Acid Solutions

The bubble behavior model discussed in Sections 3.1 and 3.2 adequately describes a
sonoluminescing bubble in sulfuric acid solutions, which reveals various nonlinear phenomena.
The calculated radius–time curve for an argon bubble with an equilibrium radius Ro of 13 µm driven
by the ultrasound with a frequency of 28.5 kHz and amplitude of 1.4 atm in an aqueous solution of
sulfuric acid is shown in Figure 4a, which shows close agreement between the calculation results and
observed ones. The thermodynamic properties for an 85% sulfuric acid solution are ρ = 1800 kg/m3,
Cs = 1470 m/s, µ = 0.025 Ns/m2, σ = 0.055 N/m, kl = 0.4 W/mK, and Cp,l = 1817 J/kgK. The sound
speed in an 85% sulfuric acid solution is comparable to the sound speed in water. In fact, the sound
speed is one of the decisive properties for the occurrence of the sonoluminescence [27].

The calculated bubble radius–time curve along with the observed data which were obtained
originally by Flannigan et al. [28] is plotted in Figure 4a using a free data digitizer (WinDIG 2.5).
The bubble emits a nanosecond flash every cycle at the collapse point [29]. The bubble with an
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equilibrium radius of 5–7 µm emits picosecond flash every cycle in water [30] as well as in sulfuric
acid solution [29]. The calculation result with the polytropic relation shows a smaller bouncing motion
in magnitude as shown in the inset of Figure 4a. Figure 4b shows the instantaneous bubble wall
velocity and the bubble wall acceleration around the collapse point for the bubble shown in Figure 4a.
The absolute value of the calculated minimum velocity at the collapse point is about 120 m/s, which is
close to the observed value of 100 m/s. On the other hand, the absolute value of the minimum
velocity obtained by using the polytropic relationship is about 460 m/s, which is much higher than the
observed value. Consequently, the calculation results by polytropic relation provide a considerably
smaller minimum bubble radius at the collapse point. As shown in Figure 4b, the calculated maximum
bubble wall acceleration in a sulfuric acid solution is about 1.2 × 1010 m/s2, which is much smaller
than the case of the sonoluminescing gas bubble in water, by two orders of magnitude.

Figure 5a shows the calculated time-dependent temperatures and pressures at the center of the
bubble shown in Figure 4a. The calculated peak temperature at the collapse point, which is about
9300 K, is close to the observed value of 10,000 K [28]. Additionally, the calculated peak pressure value
of 1020 atm is close to the observed value of 1090 atm. The estimated peak temperature and pressure
at the collapse point are approximately 25,000 K and 10,000 atm, respectively, for the sonoluminescing
air bubble in water [21]. The approximation of ‘uniform pressure’ turns out to be good for the
sonoluminescing bubble in sulfuric acid solution because the bubble wall acceleration at the collapse
point is much smaller than that of the sonoluminescing gas bubble in water. Figure 5b shows the
entropy generation rate, which shows a sharp peak at the first collapse and a subsequent smaller peak
during the rebounding motion. This figure indicates that heat transfer occurs notably around the first
collapse phase.
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the collapse point for an argon bubble of Ro = 13.0 µm at PA = 1.40 atm and fd = 28.5 kHz in a sulfuric
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Slight changes in the equilibrium radius of the bubble and driving amplitude and the frequency
of the applied ultrasound induce a drastic change for the bubble motion in a sulfuric acid solution.
The calculated radius–time curve along with the observed results for a xenon bubble with Ro = 15 mm,
driven by the ultrasonic field with a frequency 37.8 kHz and amplitude of 1.5 atm in an 85% sulfuric acid
solution is shown in Figure 6a. With air thermal conductivity (solid line), the calculated radius–time
curve which exactly mimics the alternating pattern of the observed result shows two states of bubble
motion, a light emission cycle after no light emission cycle. With xenon thermal conductivity (dashed
line), however, a slightly different pattern for the bubble motion was obtained. The time-dependent
temperature at the bubble center, as shown in Figure 6b, indicates also the two states of bubble motion.
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The Rayleigh–Plesset equation with polytropic relation, a conventional method used to predict the
sonoluminescence phenomena [31,32], cannot predict the two states of bubble motion as shown in the
inset in Figure 6a.
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These calculated results imply that the bubble behavior an consequently the sonoluminescence
phenomena depends crucially on the heat transfer experienced by the bubble as shown in Figure 7a.
At the sonoluminescing phase, the heat flow rate is 0.20 W at the collapse point. On the other hand,
the heat flow rate is approximately 0.14 W at the collapse point for the non-lighting phase. The entropy
generation rate is similar to the pattern of the heat flow rate as shown in Figure 7b. The alternating
pattern for the bubble motion may happen due to the entropy generation by the heat transfer through
the bubble wall [24], which produces lost work: less entropy generation in one cycle having a lower
maximum bubble radius and, consequent, a lower minimum bubble radius at the collapse provides
more expansion work for the bubble’s next cycle, while a larger amplitude motion experiencing more
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entropy generation provides less expansion work to the subsequent motion. The calculated minimum
bubble radius for the light-emitting cycles, 4.6 µm, is close to the observed value of 3.7 µm [3].
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Figure 7. (a) The heat flow rate and (b) the corresponding entropy generation rate for the xenon bubble
of Ro = 15.0 µm at PA = 1.50 atm and fd = 37.8 kHz in a sulfuric acid solution.

Figure 8a shows the bubble radius–time curve for an argon bubble of Ro = 17 µm driven with
an ultrasound amplitude of 1.7 atm and a frequency of 28.5 kHz [33], which mimics the observed
one remarkably [3]. This is a case in which the bubble emits light for two consecutive cycles after a
no-emission cycle. The calculation result with a polytropic relation shows the same pattern of bubble
behavior every cycle as shown in the inset of Figure 8a. The entropy generation rate due to the heat
transfer through the wall for the bubble shown in Figure 8a, which can be obtained from Equation (18),
is given in Figure 8b. Less entropy generation in one cycle provides more expansion work for the
bubble’s next cycle. Such an alternative motion is possible because the same ultrasound amplitude is
applied each cycle.
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Figure 8. (a) A theoretical radius–time curve for an argon bubble of Ro = 17.0 µm at PA = 1.72 bar
and fd = 28.5 kHz in a sulfuric acid solution. The insert shows the bubble radius–time curve with a
polytropic relationship; (b) The rntropy generation rate for the bubble shown in Figure 8a.
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4. Evolution of Stars

Cosmological fluid equations (continuity, Euler, and Newtonian gravity) were first proposed
by Sir James Jeans [34] as a theory of galaxy formation. The stellar stability, spherical oscillation,
and gravitational collapse of Newtonian stars such as the Sun, Jupiter, and Saturn could be obtained
by solving the cosmological fluid equations [5]. It is very interesting to consider the heat transfer
mechanism occurred during the evolution of such astronomical objects, which have been done
numerically by many researchers. For examples, the radiation hydrodynamics code coupled
with neutron transport [35] and a sophisticated two-dimensional, time-dependent, multi-group,
and multi-angle radiation hydrodynamics numerical scheme [36] were developed for the core-collapse
supernova simulation. Buras et al. [37] used mass, momentum and energy equation in spherical
coordinates and azimuthal symmetry in their hydrodynamic simulations for the core-collapse
supernovae. The Newtonian gravity term and the neutrino interaction term for momentum transfer
were included in the momentum equation. Instead of the heat flow term in the energy equation,
neutron source terms for energy exchange were included. Murphy and Burrow [38] used continuity,
Euler, and energy equations in their simulation. The Newtonian gravity term was included in the
momentum equation. However, the term representing heat flow in the energy equation was replaced
as the neutrino heating and cooling terms which are dependent on the electron neutrino temperature
and the neutron and proton fractions. However, the core-collapse supernova mechanism has never
been studied by hydrodynamic equations with keeping the heat flow term in the energy equation,
which may provide a simple and quantitative theory of the supernova explosion.

4.1. Hydrodynamics for the Stars

The equation of continuity, the Euler equation for an irrotational fluid, and Newtonian gravity are
given below.

∂ρ

∂t
+∇ · (ρ⇀u ) = 0 (33)

∂
⇀
u

∂t
+

⇀
u · ∇⇀

u = −1
ρ
∇P−∇φ (34)

∇2φ = 4πGρ (35)

In these equations, ρ is the density, P is the pressure, u is the fluid velocity, φ(r,t) is gravitational
potential, and G is the gravitational constant.

From the continuity equation, the following linear velocity and quadratic density profiles can be
obtained as a lowest-order approximation. The full derivations of these equations can be found in the
literature [19,21].

u =
.
Rr/R (36)

ρ(r, t) =
b

R3(t)
+

ar2

R5(t)
(37)

where R is the radius of the star, dR/dt is the velocity of the star, and “a” and “b” are constants which
will be identified later.

With the density profile given in Equation (37) and the velocity u in Equation (36), the gravitational
potential φ(r,t) and the pressure P(r,t) can be obtained by solving the Poisson and Euler equations.
These are in terms of a and b, given as follows.

φ(r, t) = φo(t) +
(

2πGb
3

r2

R3 +
πGa

5
r4

R5

)
(38)

P(r, t) = Po(t)−
[(

b
2

r2

R2 +
a
4

r4

R4

) ..
R
R2 +

(
2πGb2

3
r2

R2 +
8πGab

15
r4

R4 +
2πGa2

15
r6

R6

)
1

R4

]
(39)
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At the center of the star, the above equation can be arranged as follows after applying the boundary
conditions, P = 0 and φ = −GM/R at r = R.

φo = −
GM

R
− πG(3a + 10b)

15
1
R

(40)

and

Po(t) =
(

a + 2b
4

) ..
R
R2 +

2πG(a2 + 4ab + 5b2)

15
1

R4 (41)

To determine the values of “a” and “b” in Equation (37), an equation of state for the gas inside the
star is required. Excluding the viscous dissipation term, the energy equation with internal energy and
enthalpy representations can be written as follows [13,19]

ρCv
DT
Dt

= −P∇ ·⇀u −∇ ·⇀q (42)

ρCp
DT
Dt

=
DP
Dt
−∇ ·⇀q (43)

In the above equations, T is the temperature, and Cv and Cp are the specific heats at a constant volume
and constant pressure, respectively, and q is the heat flux.

From Equations (42) and (43), one can obtain the following equation by eliminating the
term DT/Dt.

(γ− 1)∇ ·⇀q = −DP
Dt
− 3γP

.
R

R
(44)

where γ is the specific heat ratio.
The above equation indicates that the heat transport inside the star can be obtained if one knows

the evolution of the star without the detailed mechanism of heat transfer, which can be possible only
for an “ideal gas system”. On the other hand, by eliminating the term,∇ ·→q , in Equations (42) and (43),
one can obtain the temperature at the center of the star in terms of the pressure at the center and
the radius.

bRgTo(t) = Po(t)R3(t) (45)

where Rg is the gas constant and the subscript “o” denotes the property at the center.
Assuming that the “polytrope” only holds true at the center, the following equation can be applied,

P0 = κρ
γ
0 (46)

The polytrope assumption at the center is equivalent to the assumption that the center is neither a heat
source nor a heat sink, i.e., ∇ ·→q = 0 at the center. This assumption, of course, is not valid when a
nuclear reaction occurs inside the star.

Using the velocity, density, and pressure profiles given in Equations (36), (37) and (39), respectively,
one can solve the energy equation given in Equation (42) or Equation (43) with the boundary condition
given in Equation (46). These are

a = −b = −15M/8 (47)

T(r, t) = To −
(

R
..
R

4Rg
+

2πGb
5RgR

)( r
R

)2
+

2πGb
15RgR

( r
R

)4
(48)

where

To =
R

..
R

4Rg
+

4πGb
15RgR

(49)
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Using the polytrope assumption at the center and the explicit values of “a” and “b”, the profiles for
pressure, temperature, density and gravitational potential in the star can be obtained [5]. These are

P(r, t) =
15M
32π

(
32πκ′

15M
1

R3γ−4 − GM
( r

R

)2
)(

1− r2

R2

)2 1
R4 (50)

T(r, t) =
1

4Rg

(
32πκ′

15M
1

R3γ−4 − GM
( r

R

)2
)(

1− r2

R2

)
1
R

(51)

ρ(r, t) =
15M
8π

(
1− r2

R2

)
1

R3 (52)

where κ′ = (15M/8π)γκ.
It is noted that the above profiles for the pressure, temperature, and density satisfy the mass,

momentum and energy equations and the ideal gas law. The requirement that the pressure and
temperature should be greater than zero everywhere results in the following constraint for κ′.

32πκ′

15M
≥ GMR3γ−4 (53)

Such an ideal gas model of Newtonian stars provides the upper bound value of the Chandrasekhar
mass for white dwarfs and the central densities, pressures, and temperatures of the stars such as Sun,
Jupiter and Saturn [39].

4.2. Core-Collapse Implosion: Early Supernova

With the polytrope assumption at the center of the star, the equation for the pressure simplifies to
the following equation of motion for the star.

d2

dt2 R(t) =
32πκ′

15M
1

R3γ−2 −
2GM

R2 (54)

Thus, the continuity, Euler, Poisson, and energy equations with the polytrope assumption only at the
center can be reduced to Equation (54), which can be solved using the standard “energy” method if
Equation (54) is converted into the following form:

1
2

.
R

2
+ W(R) = ε (55)

where ε is a constant and the potential V(R) is given by Equation (56).

W(R) =
32πκ′

45M(γ− 1)
1

R3γ−3 −
2GM

R
(56)

The solution of Equation (54) and, hence, Equation (55) can then be given by the elementary integral
shown in Equation (57). ∫ R

Rmax

dR√
2[ε−W(R)]

= ±t (57)

where + and − correspond to the cases of expansion and contraction, respectively.
From Equation (56), it follows that there is a bound state for γ > 4/3 but there is no stable bound

state for γ < 4/3. For the collapsing star, the potential should be less than zero so that the constant κ′

satisfies the following constraint.

GMR3γ−4 ≤ 32πκ′

15M
≤ 6(γ− 1)GMR3γ−4 (58)
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With the upper bound value of κ′, W(Rmax) = 0, the equation of motion for the collapsing star,
Equation (54), can be rewritten as

d2

dt2 R(t) = −(4− 3γ)
2GM

R2 (59)

One can immediately obtain the following solutions for Equation (59).

t =
ψ + sin ψ

2k
(60)

R =
1
2

Rmax(1 + cos ψ) (61)

where
k =

√
−2ε(Rmax)/Rmax (62)

And
ε(Rmax) = −(4− 3γ)2GM/Rmax (63)

Note that the solutions given in Equations (60)–(63) coincide with those of the
Oppenheimer–Snyder [40] equations of gravitational collapse. This coincidence stems from their
oversimplified assumption of uniform density and zero pressure even though they started with
general relativistic equations. Their general relativistic equation for the equation of motion for a star is
given by

d2R
dt2 = −GM

R2 (64)

Comparing Equation (64) with Equation (59), Equation (64) has no inner pressure force acting against
the gravitational collapse so that the star governed by Equation (64) will collapse infinitely.

From Equations (42) and (43), their solutions, and Equations (50)–(52) for P, T, and ρ, respectively,
the heat flow into a sphere of radius r < R(t) in a star during the expansion as well as contraction is
given by [5]

−∇ ·→q =
(4− 3γ)

4(γ− 1)
GM2

R
15
8π

(
1− r2

R2

)2( r2

R2

) .
R
R

1
R3 (65)

Equation (65) indicates that the heat transfer rate is dependent on the velocity of the evolution and the
gravitational energy. While a star is at a stable equilibrium, there is no heat flow in or out. For γ > 4/3,
−∇ ·→q is negative when a star expands and positive when it contracts. Thus, during the expansion,
the heat flows radially outwards in a star so that the pressure decreases, causing the gravitational
attraction to dominate over the pressure, which prevents a star from expanding forever. On the other
hand, during the contraction, the heat flows radially inwards so that the pressure increases dominantly
over the gravitational attraction. This prevents a star from collapsing. The heat flow rate to the system
with a sign convention of heat given in Equation (8) is given by
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Equation (18) shows that the entropy generation due to the transfer at the bubble wall during the 
bubble evolution is always positive. The lost work, which is proportional to the entropy generation 
(Guoy-Stodolar theorem, [1]), induces thermal damping in the bubble motion. 

2.7. Evolution of a Bubble Formed from a Droplet at Its Superheat Limit in Hot Liquid Medium 

The calculated far-field pressure wave signals from the evolving butane bubble in ethylene 
glycol at the ambient pressure of 1 atm and at a liquid temperature of 378 K are shown in Figure 2a. 
The initial conditions for nonlinear bubble evolution are chosen to be Ro = 1.37 mm, Pb (Ro) = 6.67 bar 
and Tb = 378 K, the superheat limit of butane. The empty circles in this figure denote the 
experimental data by Shepherd and Sturtevant [10]. Figure 2b displays the instantaneous bubble 
radius during the evolution of a butane bubble. Full circles indicate some of the observed data [10]. 
The time rate change of the vapor temperature inside the bubble is shown in Figure 3a, which 
shows that the bubble evolution is neither isothermal nor adiabatic. The conventional method of 
polytropic assumption, which produces an isothermal bubble or an adiabatic bubble, cannot catch 
this bubble behavior. In Figure 3b, the entropy generation rate experienced by the butane bubble is 
shown. As expected, the entropy generation during the bubble oscillation is always positive. 
Thermal damping due to finite heat transfer [13] is barely seen in the bubble’s radius–time curve 
shown in Figure 2b. 

Bubble dynamics formulated in this section contain the thermal behavior for the vapor inside 
the bubble in oscillation for a particular case of ‘uniform temperature limit’, which is appropriate 
for the case in which the characteristic time of the bubble evolution (ms) is much longer than the 
relaxation time of the translational motion of the vapor molecules [16]. 

dt
=
∫ R

0
(−∇ ·→q )4πr2dr (66)

For γ < 4/3, exactly the opposite takes place, i.e., −∇ · →q is positive when a star expands, and is
negative when it contracts. Thus, during expansion, the heat flows radially inwards so that the
pressure increases in comparison with the gravitational attraction, which promotes the star‘s continued
expansion. Conversely, when a star contracts, heat flows radially outwards so that the pressure
decreases in comparison with the gravitational attraction, which furthers the star collapse. This kind
of scenario occurs for supernova explosions.
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4.3. Supernova Explosions

The stellar core continues collapsing until its density reaches the nuclear density. At the nuclear
density, the core may explode if the inner pressure force term is greater than the gravitational force in
Equation (54). This condition may be written as

2GM
Rmin

≤ 32πκ′

15MR3γ−3
min

(67)

At the upper bound value of 2GM/Rmin, the potential energy becomes

W(Rmin) =
(4− 3γ)

3(γ− 1)
32πκ′

15M
1

R3γ−3
min

=
(4− 3γ)

3(γ− 1)
2GM
Rmin

(68)

The potential energy given above is the total energy deposition during the core-collapse [6].
The equation of motion of the star corresponding to this potential energy is given by

d2

dt2 R(t) = (4− 3γ)
32πκ′

15M
1

R3γ−2 (69)

The right side of Equation (69) is always positive if γ is less than 4/3, in which case Equation (69)
is an equation of motion for an expanding star. Consequently, the potential given in Equation (68) may
be considered as the energy per unit mass that is needed for a protoneutron star to explode.

The solution of Equation (69) can be obtained using the aforementioned energy method.
The solution for the case of γ = 7/6, which provides an explicit form of analytical solution for an
expanding star, is given by [41]

R = Rmin cosh4 θ (70)

t =
Rmin√

2V(Rmin)
(

sinh4θ

8
+ sinh2θ +

3θ

2
) (71)

The explosion velocity of the protoneutron star can be obtained from Equations (70) and (71). That is,

dR
dt

=
√

2V(Rmin)tanhθ =

√
(4− 3γ)

3(γ− 1)
2GM
Rmin

tanhθ (72)

The explosion velocity whose asymptotic limit is
√

2GM/Rmin generates a strong outgoing shock.

4.4. Heat Transport Equation for the Core-Collapse Supernova Explosions

During the collapsing phase of the star with γ < 4/3, the right side of Equation (65) becomes
negative so that the heat flows radially outward. Thus, the heat flow from the whole volume of the
star at a given time, which may be transported by radiation, is given by

−
∫ R

0
(∇ ·→q )4πr2dr = 0.048

(4− 3γ)

(γ− 1)
GM2

R

.
R
R

(73)

The above equation reveals that the heat flow rate is linearly dependent on the collapsing rate of the star
when the core-mass and the specific heat ratio are given. The heat may radiate away by the neutrino
flux, which can leave the star without interaction during the collapse of the supernova. The heat
gain during the expansion phase may occur due to the absorption of neutrinos [42]. Solving the heat
transport equation for the supernova given in Equation (42) is very hard task [35–37,43–45] because
one can hardly know the processes inside the supernova during the core-collapsing explosions.
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However, we can calculate the time rate change of heat flow from the core-collapsing supernova
through Equation (73). The entropy generation rate when heat radiates away by neutrino flux can be
written as

.
Sgen =

1
Tavg
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Equation (18) shows that the entropy generation due to the transfer at the bubble wall during the 
bubble evolution is always positive. The lost work, which is proportional to the entropy generation 
(Guoy-Stodolar theorem, [1]), induces thermal damping in the bubble motion. 
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The time rate change of the vapor temperature inside the bubble is shown in Figure 3a, which 
shows that the bubble evolution is neither isothermal nor adiabatic. The conventional method of 
polytropic assumption, which produces an isothermal bubble or an adiabatic bubble, cannot catch 
this bubble behavior. In Figure 3b, the entropy generation rate experienced by the butane bubble is 
shown. As expected, the entropy generation during the bubble oscillation is always positive. 
Thermal damping due to finite heat transfer [13] is barely seen in the bubble’s radius–time curve 
shown in Figure 2b. 

Bubble dynamics formulated in this section contain the thermal behavior for the vapor inside 
the bubble in oscillation for a particular case of ‘uniform temperature limit’, which is appropriate 
for the case in which the characteristic time of the bubble evolution (ms) is much longer than the 
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dt
(74)

where Tavg is the instantaneous average temperature of the star. The entropy generation given in
Equation (74) is positive because 1/T∞ is much greater than 1/Tavg. On the other hand, when the star
contracts, the entropy generation rate is given by

.
Sgen =

1
Tavg
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relaxation time of the translational motion of the vapor molecules [16]. 

dt
(75)

The entropy generation is again positive because the heat generates inside the supernova by the
absorption of neutrinos. No heat flows into the star from outer space in this case.

Figure 9a shows the time-dependent radius and the collapse velocity of a stellar iron-core having
a mass of 1.5 M�. In this calculation, the initial radius and the specific heat ratio for the iron core were
taken as 3000 km [42] and 1.2, respectively, and the density and temperature of the medium outside
the core were taken as 106 kg/m3 and 106 K, respectively. The central density of 1010 kg/m3 and the
central temperature of 6 × 1010 K (~509 keV), at which Fe-He transition can occur, were used in the
calculation. The initial pressure estimated by the Wheeler equation of state for the progenitor star is
about 1023 Pa [6]. However, an initial pressure of 1.2 × 1024 Pa for the star was used to satisfy the
inequality given in Equation (58) in this study.
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The collapse time and the heat flow are dependent on the specific heat ratios of the iron core.
The shorter collapse time and larger heat flow from the star are obtained for a smaller value of
the specific heat ratio. The calculated total of the heat flow from the iron core is as much as
5.9 × 1051 ergs during the collapse period of 1.2 s. At the final stage of the collapse, the calculated
heat flow rate from the star is about 3.6 × 1052 ergs/s. This value is higher than the result obtained by
Libendoerfer et al. [44] by one order of magnitude. The rate of the heat flow from the star is almost
equal to the neutrino energy issued from the collapse, which is about 1051 ergs [45]. As can be seen
in Figure 9b, the calculated energy input rate to the star at the earlier post-bounce is approximately
6.1 × 1053 ergs/s. This energy corresponds to the energy of the electron-type neutrinos emerging
during the expansion phase. This calculation result is higher than other numerical calculations by an
order of magnitude [36]. The calculated total of the energy input during expansion is about 1052 ergs.
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The heat flow into the expanding protoneutron star may occur through the absorption of neutrinos [42].
Without knowledge of the heat flow mechanism due to neutrino transport, the hydrodynamic
equations, including the energy equation, predict the magnitude of the heat flow rate during the
evolution of stars remarkably well.

5. Conclusions

The entropy generation due to heat transfer for evolving spherical objects such as mini and
microbubbles and supernovae is discussed. The entropy generation due to heat transfer across the
system boundary affects the delicate evolution of a bubble formed from a fully evaporated droplet
at its superheat limit and sonoluminescing microbubbles under ultrasound. This is a case in which
the heat transfer through the system boundary determines the evolution of the system. On the other
hand, the heat transfer rate from supernovae is determined by their gravitational energy and evolving
speed, which is the case in which the evolution of the system determines the heat transfer rate value
through the system boundary [41]. All discussions in this article are based on the explicit solutions
of the hydrodynamic equations such as mass, momentum and energy equations, and Newtonian
gravitational equations for the homologically evolving spherical objects. The nonlinear behavior of
sonoluminescing gas bubbles in sulfuric acid solutions and the heat transfer mechanism during the
core-collapse supernova explosion cannot be obtained from the conventional approach such as the
polytropic approximation for the bubble behavior and the assumption of an adiabatic process for
the evolution of a star. The entropy generation rate is always positive for the evolving bubbles and
supernova, which experience heat transfer.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Nomenclature

CB sound speed at the bubble wall
Cp heat capacity of star at constant pressure
Cp,b heat capacity of gas at constant pressure
Cv heat capacity of stat at constant volume
Cv,b heat capacity of gas at constant volume
dm average distance between molecules
dw van der Waals’ diameter of liquid molecule
E internal energy
fd driving frequency of ultrasound
G gravitational constant
kg conductivity of gas
k1 conductivity of liquid
mb mass of bubble
M mass of star
N number density
n polytropic index
P pressure inside the star
PA driving amplitude of ultrasound
Pb pressure inside the bubble
Pbo pressure at the bubble center
Ps driving ultrasound pressure
Po pressure at the center of star
P∞ ambient pressure
Q heat flow
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qr heat flux inside the bubble or star
rd distance from the bubble center
R radius of star
Ro equilibrium radius of bubble
Rb radius of bubble
Rg gas constant
Rmin minimum radius of star
Rmax maximum radius of star
S entropy
Sg entropy generation
t time
T temperature of star
Tavg average temperature of star
Tb temperature of gas inside the bubble
Tbl temperature at the bubble-liquid interface
Tbo temperature at the bubble center
To temperature at the center of star
T∞ ambient temperature
Ub velocity at the bubble wall
u velocity inside the star
ug gas velocity inside the bubble
V volume of bubble
Vo initial volume of fire-ball
Vm effective volume of liquid molecule
W potential for evolution of star
Z coordination number

Greek Letters

α thermal diffusivity of liquid
γ specific heat ratio
δ thermal boundary layer thickness
ε energy of fire-ball or star
εm energy needed to separate of pair of molecules
εo potential parameter of London dispersion force
ρ density of star
ρc critical density of liquid
ρg gas density inside the bubble
ρm density of liquid
ρo gas density at the center of bubble or star
ρ∞ density of liquid medium
φ gravitational potential
ω angular frequency of ultrasound
µ dynamic viscosity of liquid
σ interfacial tension of liquid

Subscripts

b bubble
o center
∞ ambient liquid medium
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