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Abstract: Stochastic processes are ubiquitous in nature and laboratories, and play a major role
across traditional disciplinary boundaries. These stochastic processes are described by different
variables and are thus very system-specific. In order to elucidate underlying principles governing
different phenomena, it is extremely valuable to utilise a mathematical tool that is not specific to
a particular system. We provide such a tool based on information geometry by quantifying the
similarity and disparity between Probability Density Functions (PDFs) by a metric such that the
distance between two PDFs increases with the disparity between them. Specifically, we invoke
the information length L(t) to quantify information change associated with a time-dependent PDF
that depends on time. L(t) is uniquely defined as a function of time for a given initial condition.
We demonstrate the utility of L(t) in understanding information change and attractor structure in
classical and quantum systems.

Keywords: stochastic processes; Langevin equation; Fokker–Planck equation; information length;
Fisher information; relaxation; chaos; attractor; probability density function

1. Introduction

Stochastic processes are ubiquitous in nature and laboratories, and play a major role across
traditional disciplinary boundaries. Due to the randomness associated with stochasticity, the evolution
of these systems is not deterministic but instead probabilistic. Furthermore, these stochastic processes
are described by different variables and are thus very system-specific. This system-specificity makes
it impossible to make comparison among different processes. In order to understand universality or
underlying principles governing different phenomena, it is extremely valuable to utilise a mathematical
tool that is not specific to a particular system. This is especially indispensable given the diversity of
stochastic processes and the growing amount of data.

Information geometry provides a powerful methodology to achieve this goal. Specifically,
the similarity and disparity between Probability Density Functions (PDFs) is quantified by a metric [1]
such that the distance between two PDFs increases with the disparity between them. This was the very
idea behind a statistical distance [2] based on the Fisher (or Fisher–Rao) metric [3] which represents the
total number of statistically different states between two PDFs in Hilbert space for quantum systems.
The analysis in [2] was extended to impure (mixed-state) quantum systems using a density operator
by [4]. Other related work includes [5–12]. For Gaussian PDFs, a statistically different state is attained
when the physical distance exceeds the resolution set by the uncertainty (PDF width).

This paper presents a method to define such distance for a PDF which changes continuously in
time, as is often the case of non-equilibrium systems. Specifically, we invoke the information length
L(t) according to the total number of statistically different states that a system evolves through in
time. L(t) is uniquely defined as a function of time for a given initial condition. We demonstrate

Entropy 2018, 20, 574; doi:10.3390/e20080574 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-5607-6635
http://www.mdpi.com/1099-4300/20/8/574?type=check_update&version=1
http://dx.doi.org/10.3390/e20080574
http://www.mdpi.com/journal/entropy


Entropy 2018, 20, 574 2 of 11

the utility of L(t) in understanding information change and attractor structure in classical and
quantum systems [13–21].

This paper is structured as follows: Section 2 discusses information length and Section 3
investigates attractor structure. Sections 4 and 5 present the analysis of classical music and quantum
systems, respectively. Conclusions are found in Section 6.

2. Information Length

Intuitively, we define the information length L by computing how quickly information changes
in time and then measuring the clock time based on that time scale. Specifically, the time-scale of
information change τ can be computed by the correlation time of a time-dependent PDF, say p(x, t),
as follows.

1
τ2 =

∫
dx

1
p(x, t)

[
∂p(x, t)

∂t

]2

. (1)

From Equation (1), we can see that the dimension of τ = τ(t) is time and serves as a dynamical
time unit for information change. L(t) is the total information change between time 0 and t:

L(t) =
∫ t

0

dt1

τ(t1)
=
∫ t

0
dt1

√∫
dx

1
p(x, t1)

[
∂p(x, t1)

∂t1

]2

. (2)

In principle, τ(t) in Equation (1) can depend on time, so we need the integral for L in Equation (2).
To make an analogy, we can consider an oscillator with a period τ = 2 s. Then, within the clock time
10 s, there are five oscillations. When the period τ is changing with time, we need an integration of
dt/τ over the time interval.

We now recall how τ(t) and L(t) in Equations (1) and (2) are related to the relative entropy
(Kullback–Leibler divergence) [15,16]. We consider two nearby PDFs p1 = p(x, t1) and p2 = p(x, t2)

at time t = t1 and t2 and the limit of a very small δt = t2 − t1 to do Taylor expansion of
D[p1, p2] =

∫
dx p2 ln (p2/p1) by using

∂

∂t1
D[p1, p2] = −

∫
dx p2

∂t1 p1

p1
, (3)

∂2

∂t2
1

D[p1, p2] =
∫

dx p2

{
(∂t1 p1)

2

p2
1
−

∂2
t1

p1

p1

}
, (4)

∂

∂t2
D[p1, p2] =

∫
dx
{

∂t2 p2 + ∂t2 p2
[
ln p2 − ln p1

]}
, (5)

∂2

∂t2
2

D[p1, p2] =
∫

dx
{

∂2
t2

p2 +
(∂t2 p2)

2

p2
+ ∂2

t2
p2
[
ln p2 − ln p1

]}
. (6)

In the limit t2 → t1 = t (p2 → p1 = p), Equations (3)–(6) give us

lim
t2→t1

∂

∂t1
D[p1, p2] = lim

t2→t1

∂

∂t2
D[p1, p2] =

∫
dx∂t p = 0,

lim
t2→t1

∂2

∂t2
1

D[p1, p2] = lim
t2→t1

∂2

∂t2
2

D[p1, p2] =
∫

dx
(∂t p)2

p
=

1
τ2 . (7)

Up to O((dt)2) (dt = t2 − t1), Equation (7) and D(p1, p1) = 0 lead to

D[p1, p2] =
1
2

[∫
dx

(∂t p(x, t))2

p(x, t)

]
(dt)2, (8)
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and thus the infinitesimal distance dl(t1) between t1 and t1 + dt as

dl(t1) =
√

D[p1, p2] =
1√
2

√∫
dx

(∂t1 p(x, t1))2

p(x, t1)
dt. (9)

By summing dt(ti) for i = 0, 1, 2, ..., n− 1 (where n = t/dt) in the limit dt→ 0, we have

lim
dt→0

n−1

∑
i=0

dl(idt) = lim
dt→0

n−1

∑
i=0

√
D[p(x, idt), p(x, (i + 1)] dt ∝

∫ t

0
dt1

√∫
dx

(∂t1 p(x, t1))2

p(x, t1)
= L(t), (10)

where L(t) is the information length. Thus, L is related to the sum of infinitesimal relative entropy.
It cannot be overemphasised that L is a Lagrangian distance between PDFs at time 0 and t and
sensitively depends on the particular path that a system passed through reaching the final state.
In contrast, the relative entropy D[p(x, 0), p(x, t)] depends only on PDFs at time 0 and t and thus does
not tell us about intermediate states between initial and final states.

3. Attractor Structure

Since L(t) represents the accumulated change in information (due to the change in PDF) at time
t, L(t) settles to a constant value L∞ when a PDF reaches its final equilibrium PDF. The smaller
L∞, the smaller number of states that the initial PDF passes through to reach the final equilibrium.
Therefore, L∞ provides us with a unique representation of a path-dependent, Lagrangian measure of
the distance between a given initial and final PDF. We will utilise this property to map out the attractor
structure by considering a narrow initial PDF at a different peak position y0 and by measuring L∞

against y0. We are particularly interested in how the behaviour of L∞ against y0 depends on whether
a system has a stable equilibrium point or is chaotic.

3.1. Linear vs. Cubic Forces

We first consider the case where a system has a stable equilibrium point when there is no stochastic
noise and investigate how L∞ is affected by different deterministic forces [15,16]. We consider the
following Langevin equation [22] for a variable x:

dx
dt

= F(x) + ξ. (11)

Here, ξ is a short (delta) correlated stochastic noise with the strength D as

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′), (12)

where the angular brackets denote the average over ξ and 〈ξ〉 = 0. We consider two types of F,
which both have a stable equilibrium point x = 0; the first one is the linear force F = −γx (γ > 0 is
the frictional constant) which is the familiar Ornstein–Uhlenbeck (O-U) process, a popular model for
a noisy relaxation system (e.g., [23]). The second is the cubic force F = −µx3 where µ represents the
frictional constant. Note that, in these models, the dimensions of γ (s−1) and µ (s−1m−2) are different.

Equivalent to the Langevin equation governed by Equations (11) and (12) is the Fokker–Planck
equation [22]

∂

∂t
p(x, t) =

∂

∂x

{
−F(x) + D

∂

∂x

}
p(x, t). (13)

As an initial PDF, we consider a Gaussian PDF

p(x0, 0) =

√
β0

π
e−β0(x0−y0)

2
. (14)
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Then, for the O-U process, the PDF remains Gaussian for all time with the following form [15,16]:

p(x, t) =

√
β(t)

π
e−β(t)(x−〈x〉)2

. (15)

In Equations (14) and (15), 〈x〉 = y0e−γt is the mean position and y0 is its initial value; β0 is the
inverse temperature at t = 0, which is related to the variance at t = 0 as 〈(x0 − y0)

2〉 = 1
2β0

= D0
γ .

The fluctuations level (variance) changes with time, with time-dependent β(t) given by

〈(x− 〈x〉)2〉 = 1
2β(t)

=
D(1− e−2γt)

γ
+

e−2γt

2β0
. (16)

Note that, when D = D0, β(t) = β0 = γ
2D for all t, PDF maintains the same width for all t.

For this Gaussian process, β and 〈x〉 constitute a parameter space on which the distance is defined
with the Fisher metric tensor [3] gij (i, j = 1, 2) as [16]

gij =
∫

dx 1
p(x,t)

∂p
∂zi

∂p
∂zj =

(
1

2β2 0

0 2β

)
, (17)

where i, j = 1, 2, z1 = β, z2 = 〈x〉. This enables us to recast 1
τ2 in Equation (1) in terms of gij as

1
τ2 =

1
2β2

(
dβ

dt

)2
+ 2β

(
d〈x〉

dt

)2

= gij
dzi

dt
dzj

dt
. (18)

The derivation of the first relation in Equation (18) is provided in Appendix A (see Equation (A2)).
Using Equations (2) and (18), we can calculate L analytically for this O-U process (see also Appendix A).

In comparison, theoretical analysis can be done only in limiting cases such as small and large
times for the cubic process [17,24]. In particular, the stationary PDF for large time is readily obtained as

p(x) =
2β

1
4
c

Γ
(

1
4

) e−βcx4
, (19)

where βc =
µ

4D . For the exact calculation of L(t), Equation (13) is to be solved numerically.
To summarise, due to the restoring forcing F, the equilibrium is given by a PDF around x = 0,

Gaussian for linear force and quartic exponential for cubic force. If we were to pick any point in x,
say y0, we are curious about how close y0 is to the equilibrium and how F(x) affects it. To determine
this, we make a narrow PDF around x = y0 (see Figure 1) at t = 0 and measure L∞. The question is
how this L∞ depends on y0. We repeat the same procedure for the cubic process, as shown in Figure 1,
and examine how L∞ depends on y0.

L∞ as a function of y0 is shown for both linear (in red dotted line) and cubic (in blue solid line)
processes in Figure 2. In the linear case we can see a clear linear relation between y0 and L∞, meaning
that the information length preserves the linearity of the system. This linear relationship holds for all
D and D0. In particular, when D = D0, we can show that L∞ = 1√

D/γ
y0 by taking the limit of t→ ∞

(y→ 0) in Equation (A10).
In contrast, for the cubic process, the relation is not linear, and the log-log plot on the right

in Figure 2 shows a power-law dependence with the power-law index p. This power-law index
p varies between 1.52 and 1.91 and depends on the width (∝ D1/2

0 ) of initial PDF and stochastic forcing
amplitude D, as shown in [16]. This indicates that nonlinear force breaks the linear scaling of geometric
structure and changes it to power-law scalings. In either cases here, L∞ has a smooth variation with y0

with its minimum value at y0 = 0 since the equilibrium point 0 is stable. This will be compared with
the behaviour in chaotic systems in Section 3.2.
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Figure 1. Initial (red) and final (blue) Probability Density Functions (PDFs) for the O-U process in (a)
and the cubic process in (b).
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Figure 2. (a): L∞ against 〈x(t = 0)〉 = y0 for the linear process in red dashed line and for the cubic
process in blue solid line; (b): L∞ against 〈x(t = 0)〉 = y0 for the cubic process on log-log scale
(data from [17]).

3.2. Chaotic Attractor

Section 3.1 demonstrates that the minimum value of L∞ occurs at a stable equilibrium
point [15,16]. We now show that in contrast, in the case of a chaotic attractor, the minimum value of L∞

occurs at an unstable point [13]. To this end, we consider a chaotic attractor using a logistic map [13].
The latter is simply given by a rule as to how to update the value x at t + 1 from its previous value at t
as follows [25]

xt+1 = 1− ax2
t , (20)

where x = [−1, 1] and a is a parameter, which controls the stability of the system.
As we are interested in a chaotic attractor, we chose the value a = 2 so that any initial value x0

evolves to a chaotic attractor given by an invariant density (shown in the right panel of Figure 3). A key
question is then whether all values of x0 are similar as they all evolve to the same invariant density
in the long time limit. To address how close a particular point x0 is to equilibrium, we (i) consider
a narrow initial PDF around x0 at t = 0, (ii) evolve it until it reaches the equilibrium distribution,
(iii) measure the L∞ between initial and final PDF, and (iv) repeat steps (i)–(iii) for many different
values x0. For example, for x0 = 0.7, the initial PDF is shown on the left and final PDF on the right
in Figure 3. We show L∞ against x0 in Figure 4. A striking feature of Figure 4 is an abrupt change in
L∞ for a small change in x0. This means that the distance between x0 and the final chaotic attractor
depends sensitively on x0. This sensitive dependence of L∞ on x(t = 0) means that a small change in
the initial condition x0 causes a large difference in a path that a system evolves through and thus L∞.
This is a good illustration of a chaotic equilibrium and is quite similar to the sensitive dependence of
the Lyapunov exponent on the initial condition [25]. That is, our L∞ provides a new methodology to
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test chaos. Another interesting feature of Figure 4 are several points with small values of L∞, shown
by red circles. In particular, x0 = 0.5 has the smallest value of L∞, indicating that the unstable point is
closest to the chaotic attractor. That is, an unstable point is most similar to the chaotic attractor and
thus minimises L∞.
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Fig. 1. Plot of the discrete version of L equation (5) against time in black which 
shows a good agreement with Eq. (10) plotted in black with circles. Both use 
M = 1 × 106 initial points who all start as a delta function around, xo = 0.3826834.

exhibits much of the interesting properties of L. But also since the 
logistic map can be considered one of the most difficult classes 
of systems to analyse using our sets, being a non-differentiable 
(in time) discrete system. The system being discrete in time means 
that for almost the entire evolution of the system we have zero-
probability states, p(x, t) = 0 while p(x, t′) ̸= 0. This means that 
our set representation of the evolution is vital to avoid unphysical
infinite lengths. We recall that the logistic map is governed by the 
following mapping

xt+1 = 1 − ax2
t , (17)

which describes the position of an orbit xt+1 at time t + 1 as a 
function of its position xt at the earlier time t . a is the control 
parameter, which is taken to be 2 for simulating a chaotic region. 
The stationary density for a = 2 is given by p0 = 1/π(1 − x2)1/2. 
In this chaotic region, the map has the two unstable fixed points 
x = − 1 and x = 1/2, which turn out to play an interesting role in 
"L(t) as shown later.

A key question of our interest is how an initial state far from 
equilibrium approaches p0(x) in probability space in terms of 
"L(t). For instance, is there any unique property of "L(t) that 
can be identified for all evolutions starting from different initial 
conditions? To answer this question, we perform numerical sim-
ulation of Eq. (17) starting from an initial PDF which is strongly 
localised at x = x0, approximated by a delta function. For each 
simulation using different initial x0, the domain, [ − 1, 1] will be 
broken into M bins, with the width of each bin 2

M . The number 
of bins used is a free parameter after all “There is no law of na-
ture that defines the coarse grains” [17]. Here we have fixed the 
number so as to make each simulation comparable. p(x, t) thus 
represents the probability of finding an orbit in bin x at time t .

Using the random initial distribution of M = 9  × 107 points, 
centred at x0 = − 0.553, we first check the validity of approximat-
ing Eq. (5) with Eq. (10). Interestingly, Fig. 1 shows that L given in 
Eq. (5) plotted in the solid black line with solid dots agrees very 
well for most of the evolution with L given by Eq. (10) shown 
by the line with circles, respectively. It is seen from Fig. 1 that 
initially, the PDFs never overlap at the two consecutive times, oc-
cupying only set Q p . For 12 < t ≤ 15, the PDFs overlap and change 
rather rapidly but still do not fill the whole state space. In this 
regime, approximation of the derivative seems to give errors, caus-
ing the difference in the results from Eq. (5) and Eq. (10). This 
is a clear manifestation of the difference between the local rel-
ative entropy and L in a strongly non-equilibrium evolution. For 

Fig. 2. The evolution of L starting from x0 = − 0.553 using M = 9 × 107 orbits.

Fig. 3. P (x, 13) plotted in black and p(x, 14) is plotted (in red in the web version)
with the dashed line.

15 < t ≤ 20, the PDFs fill out the entire domain [ − 1, 1] but still are 
not in the stationary distribution. The less dramatic change of the 
PDF on each time step recovers a good agreement between Eq. (10)
and Eq. (5). From t = 21 on, the system fluctuates around the sta-
tionary distribution and thus both equations are trivially near zero. 
We have checked that a similar agreement is also obtained for all 
other initial conditions that are considered in this paper.

The evolution of L starting at x0 = − 0.553 is shown in Fig. 2
where we see that the system for almost its entire evolution fol-
lows the minimum path, i.e. a straight line. For 0 < t ≤ 12, PDFs 
do not overlap on each time step (as mentioned above), and thus 
have a slope of "L(t) = 1. When 12 < t ≤ 16, "L(t) also follows 
a slope of "L(t) = 0.41453. For 16 < t ≤ 20, there is a non-linear 
transition towards the stationary distribution. Finally, for t > 20, 
the system has approximately come to the stationary distribution, 
resulting in almost no increase in L.

The finite discretisation of the domain for numerical simulation 
artificially takes areas of measure zero, such as the sink at x = − 1
and increases their influence to areas of non-zero measure. That is, 
orbits for short time periods may land very near a sink. On the 
next time step, due to their proximity near the sink their small 
movement again lands them in the same bin, this creates the ap-
pearance of a fixed point. This results in the decrease of the slope 
at t = 12 in Fig. 2. Here the PDFs overlap once they have landed in 
the bin which has the x = − 1 fixed point. Fig. 3 shows two con-
secutive PDFs near x = − 1. Since only part of the orbits are able to 

x0=0.7 

(a) (b)

Figure 3. (a): an initial narrow PDF at the peak x0 = 0.7; (b): the invariant density of a logistic map.S.B. Nicholson, E.-j. Kim / Physics Letters A 379 (2015) 83–88 87

Fig. 4. The evolution of L as a function of time for many initial conditions spread 
over the domain. Most initial conditions travel a distance of between 13 and 16 be-
fore reaching p0(x). The points x0 = [−1, −0.96, −0.708, −0.5, 0, 0.5, 0.708, 0.96, 1]
whose initial conditions are marked with circles, start at or quickly occupy the bin 
of a fixed point and thus reach p0(x) in a far shorter distance.

leak out of the Bin containing x = −1 the PDFs overlap on subse-
quent time steps between −1 and approximately −0.75, thus also 
occupying Q w . This results in the slope of !L(t) < 1. Yet since the 
rate in which orbits leave the bin that includes x = −1 is constant, 
the reduced slope is also constant. The constant slope is equivalent 
to the system taking the path of minimum available work through 
Eq. (10).

To understand how the initial position x0 and the unsta-
ble fixed points are related to L, we plot in Fig. 4 the total 
change in L starting from different initial delta functions uni-
formly spread over the domain. The total change in L between 
t = 0 and the final time when the evolution reaches its in-
variant density varies with the initial position x0. Interestingly, 
the total change in L takes the minimum value for the initial 
ensembles starting from or quickly entering the two unstable 
fixed points x = −1, 1/2. Some of these initial conditions x0 =
[−1, −0.96, −0.708, −0.5, 0, 0.5, 0.708, 0.96, 1] are marked with 
the circles in Fig. 4. All of these initial conditions reach fixed 
points in 5 iterations or less. Since L represents the statistical dis-
tance between the initial PDFs and the final, invariant density, this 
means that the unstable fixed points are what is most efficiently 
converting available work into wasted work such as heat. Phrased 
another way, the fixed points reduce the information of the PDF, 
bringing each PDF nearer to the invariant density, which is the 
distribution with the highest disorder [9]. If one wished to then 
prolong the distance to a stationary distribution or conversely find 
the shortest path to said distribution, one simply finds the path 
that rarely (or quickly) comes into the vicinity of an unstable fixed 
point.

There are more complicated paths the system can take to the 
stationary distribution than those presented above. For instance, 
starting at x0 = 0.7071 gives us Fig. 5, where we can see four main 
phases involved in its evolution. The first is again only occupying 
Q p for 0 < t ≤ 4. For 4 < t < 7, the orbits all fall into the bin that 
includes x = −1. This does not contradict the results in Section 2
where we showed that for a system governed by an irreducible 
operator !L(t) > 0 out of equilibrium. For if one were to build an 
operator from the paths the system has taken it would indeed be 
reducible. For 7 < t ≤ 16 the orbits have escaped the attractor and 
the slope is again less than one. Finally the system quickly reaches 
the stationary distribution for t > 16.

Fig. 5. The evolution of L starting from xo = 0.7071. The evolution is divided up 
into four main phases. 0 < t ≤ 4, all x ∈ Q p , 4 < t ≤ 7 all orbits are in the bin that 
holds the x = −1 fixed point, though the operator that would be made from the 
orbits is reducible. 7 < t ≤ 16, !L(t) < 1 as the PDFs overlap and the information 
changes. t > 16 the system settles into p0(x).

5. Conclusion

In this paper we have investigated both theoretically and nu-
merically the information length using our set theoretic approach. 
We have shown that dL

dt > 0 is guaranteed for systems out of 
equilibrium as long as the system is evolved under an irreducible 
operator.

On of the sets that contribute to L is Q p which is the amount 
of probability not being used in the systems evolution. Due to con-
servation of probability, when one PDF does not intersect with the 
PDF at the next time step only set Q p is occupied and !L(t) = 1, 
meaning the system has no correlation with itself in time. When 
the system’s PDFs start intersecting at the two subsequent times 
we have non-zero Q w and the rate of change in L decreases in 
time. This is because the available work attributed at each state 
(measured with DS) is reduced through the conversion of avail-
able probability in Q p . The logistic map was used to corroborate 
our results. An interesting result of this simulation is that the sys-
tem almost always follows the minimum path. The only time it 
appears to deviate from this is when the system is transitioning 
from a non-stationary distribution that fills the entire phase space 
to the invariant distribution. We also showed the special role of 
unstable fixed points as the most efficient areas of state space to 
convert a non-equilibrium distribution into the invariant density 
for the logistic map. This curious result may warrant further inves-
tigation as to the scope of its generality in other systems. Future 
work will also include a more detailed investigation between the 
total change in L and the structure of attractors (e.g. various un-
stable orbits).

We emphasise that our set methodology capitalises on the at-
tributes of the information length lending strong generality to the 
systems that can be studied while illustrating the relationship be-
tween the distance a system travels in state space and the available 
work from that evolution. This is an improvement on other meth-
ods that rely on assumptions such as that of detailed balance, 
distinct PDFs (such as Gaussian, etc.) or ergodicity in the system. 
S.B. Nicholson would like to thank Stephen Chaffin for his many 
useful discussions.
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Figure 4. L∞ against the peak position x = x0 of an initial PDF in the chaotic regime of a logistic map
(Reprinted from Physics Letters A, 379, S.B. Nicholson & E. Kim, Investigation of the statistical distance
to reach stationary distributions, 83-88, Copyright (2015), with permission from Elsevier).

4. Music: Can We See the Music?

Our methodology is not system-specific and applicable to any stochastic processes. In particular,
given any time-dependent PDFs that are computed from a theory, simulations or from data, we can
compute L(t) to understand information change. As an example, we apply our theory to music data
and discuss information change associated with different pieces of classical music. In particular, we are
interested in understanding differences among famous classical music in view of information change.
To gain an insight, we used the MIDI file [26], computed time-dependent PDFs and the information
length as a function of time [14].

Specifically, the midi file stores a music by the MIDI number according to 12 different music notes
(C, C#, D, D#, E, F, F#, G, G#, A, A#, B) and 11 different octaves, with the typical time ∆t between
the two adjacent notes of order ∆t ∼ 10−3 s. In order to construct a PDF, we specify 129 statistically
different states according to the MIDI number and one extra rest state (see Table 1 in [14]) and calculate
an instantaneous PDF (see Figure S1 in [14]) from an orchestra music by measuring the frequency
(the total number of times) that a particular state is played by all instruments at a given time. Thus,
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the time-dependent PDFs are defined in discrete time steps with ∆t ∼ 10−3, and the discrete version
of L (Equation (7) in [14]) is used in numerical computation. Figure 5 shows L(t) against time for
Vivaldi’s Summer, Mozart, Tchaikovsky’s 1812 Overture, and Beethoven’s Ninth Symphony 2nd
movement. We observe the difference among different composers, in particular, more classical, more
subtle in information change. We then look at the rate of information change against time for different
music by calculating the gradient of L ( dL

dt = 1/τ) in Figure 6, which also manifests the most subtle
change in information length for Vivaldi and Mozart.

Figure 5. L(t) against time T for different composers (from [14]).

Figure 6. 1
τ = dL

dt for different composers shown in Figure 5 (from [14]).

5. Quantum Systems

Finally, we examine quantum effects on information length [21]. In Quantum Mechanics (QM),
the uncertainty relation ∆x∆P ≥ h̄

2 between position x and momentum P gives us an effect quite
similar to a stochastic noise. We note here that we are using P to denote the momentum to distinguish
it from a PDF (p(x, t)). For instance, the trajectory of a particle in the x− P phase space is random and
not smooth. Furthermore, the phase volume h plays the role of resolution in the phase space, one unit
of information given by the phase volume h. Thus, the total number of states is given by the total
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phase volume divided by h. This observation points out a potentially different role of the width of
PDF in QM in comparison with the classical system since a wider PDF in QM occupies a larger region
of x in the phase space, with the possibility of increasing the information.

To investigate this, for simplicity, we consider a particle of mass m under a constant force F and
assume an initial Gaussian wave function around x′ = 0 [21]

ψ(x′, 0) =
(

2β0

π

) 1
4

e−β0x′2+ik0x′ , (21)

where k0 = P0/h̄ is the wave number at t = 0, Dx = (2β0)
−1/2 is the width of the initial wave function,

and P0 is the initial momentum. A time-dependent PDF p(x, t) is then found as (e.g., see [21,27]):

p(x, t) = |ψ(x, t)|2 =

√
β(t)

π
e−β(t)(x−〈x〉)2

. (22)

Here,

β(t) =
2β0m2

m2 + (2h̄β0t)2 , 〈x〉 = h̄k0t
m

+
Ft2

2m
. (23)

Equation (22) clearly shows that the PDF is Gaussian, with the mean 〈x〉 = h̄k0t
m + Ft2

2m and
the variance

Var(t) = 〈(x− 〈x〉)2〉 = 1
4β

=
1

4β0
+

β0h̄2t2

m2 = Var(0) +
h̄2t2

4Var(0)m2 . (24)

In Equation (24), Var(0) = 〈(x(0)− 〈x(0)〉)2〉 = 1
4β0

= Dx
2 is the initial variance. We note that the

last term in Equation (24) increases quadratically with time t due to the quantum effect, the width of
wave function becoming larger over time. Obviously, this effect vanishes as h̄→ 0.

Since the PDF in Equation (22) is Gaussian, we can use Equation (18) to find (e.g., see [16])

1
τ2 = 2t2 1

(T2 + t2)2 + 2β0
T2

T2 + t2 v2
0

[
1 +

Ft
h̄k0

]2
, (25)

where T = m
2h̄β0

, the time scale of the broadening of the initial wave function [21]. It is interesting
to note that when there is no external constant force F, the two terms in Equation (25) decrease for
large time t, making τ large. The situation changes dramatically in the presence of F in Equation (25)
as the second term approaches a constant value for large time. The region with the same value of τ

signifies that the rate of change in information is constant in time, and was argued to be an optimal
path to minimise the irreversible dissipation (e.g., [16]). Physically, this geodesic arises when when the
broadening of a PDF is compensated by momentum Ft which increases with time. Mathematically,
the limit t→ ∞ reduces Equation (25) and thus L to

1
τ
∼ FDx

h̄
, L ∼ (Ft)Dx

h̄
. (26)

Since Ft = P and Dx = (2β0)
−1/2 is the width of the wave function at t = 0, FtDx in Equation (26)

represents the volume in the P − x phase space spanned by this wave function. This reflects the
information changes associated with the coverage of a phase volume h̄. Interestingly, similar results
are also obtained in the momentum representation where L is computed from the PDF p(P, t) in the
momentum space:

p(P, t) =

√
λ

π
e−λ(p−(mv0+Ft))2

, 1
τ2 = 2λF2, L =

√
2λFt, (27)
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where λ = 1
2h̄2β0

. In Equation (27), τ is obviously constant, and L linearly increases with time t.

We can see even a strong similarity between Equation (27) and Equation (26) as t → ∞ once using
L ∝
√

2λFt ∼ (Ft)Dx/h̄. In view of the complementary relation between position and momentum in
quantum systems, the similar result for L in momentum and position space highlights the robustness
of the geodesic.

6. Conclusions

We investigated information geometry associated with stochastic processes in classical and
quantum systems. Specifically, we introduced τ(t) as a dynamical time scale quantifying information
change and calculated L(t) by measuring the total clock time t by τ. As a unique Lagrangian measure
of the information change, L∞ was demonstrated to be a novel diagnostic for mapping out an attractor
structure. In particular, L∞ was shown to capture the effect of different deterministic forces through the
scaling of L∞ again the peak position of a narrow initial PDF. For a stable equilibrium, the minimum
value of L∞ occurs at the equilibrium point. In comparison, in the case of a chaotic attractor, L∞

exhibits a sensitive dependence on initial conditions like a Lyapunov exponent. We then showed
the application of our method to characterize the information change associated with classical music
(e.g., see [14]). Finally, we elucidated the effect of the width of a PDF on information length in quantum
systems. Extension of this work to impure (mixed-state) quantum systems and investigation of
Riemannian geometry on the space of density operators would be of particular interest for future work.

Funding: This research received no external funding.
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co-authors. Among these, I am particularly grateful to Rainer Hollerbach, Schuyler Nicholson and James Heseltine
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Appendix A. L for the O-U Process

To make this paper self-contained, we provide here the main steps for the derivation of L for the
O-U process [15,16]. We use y = 〈x〉 = y0e−γt in p(x, t) in Equation (12) and differentiate it to find

∂p
∂t

=

[
β̇

(
1

2β
− (x− y)2

)
+ 2β(x− y)ẏ

]
p. (A1)

Equations (A1) and (1) and using the properties of a Gaussian PDF [〈(x− y)2〉 = 1
2β , 〈(x− y)4〉 =

3〈(x− y)2〉2] lead to

1
τ2 =

1
2β(t)2

(
dβ

dt

)2
+ 2β

(
dy
dt

)2
. (A2)

We express β in Equation (16) in terms of T = 2β0D(e2γt − 1) + γ as β = γβ0e2γt

T . Differentiating
this and using r = 2β0D− γ then give

β̇2

2β2 = 2γ2r2 1
T2 . (A3)

Similarly, using dy
dt = −γy0e−γt, T = 2β0D(e2γt − 1) + γ and q = β0γy0

2, we obtain

2βẏ2 = 2qγ2 1
T

. (A4)

Using these results, Equations (A3) and (A4) in (A2) gives us
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1
τ2 =

1
2β2

(
dβ

dt

)2
+ 2β

(
dy
dt

)2
=

2γ2

T2 (r2 + qT). (A5)

Again, in Equation (A5), q = β0γy0
2, r = 2β0D − γ, andT = 2β0D(e2γt − 1) + γ [15–17]. It is

worth noting that q and r, respectively, arise from the difference in mean position at t = 0 and t→ ∞
(i.e., y0 6= y(t → ∞)) and in PDF width at t = 0 and t → ∞ (i.e., D0 6= D). Thus, the first and
second terms in Equation (A5) represent the information change due to the change in PDF width and
the movement of the PDF, respectively. Using D0 = γ

2β0
, we express r, q and T in Equation (A5) as

q =
γ2y2

0
2D0

, r = γ
(

D
D0
− 1
)

, T = γ
[

D
D0

(e2γt − 1) + 1
]

. Equations (A5) and (2) then give us

L =
1√
2

∫ Tf

Ti

{
1
T

1
T + r

√
r2 + qT

}
dT, (A6)

where Ti = T(t = 0) and Tf = T(t). To compute Equation (A6) for r 6= 0, we use Y =
√

r2 + qT
and integrate

L =
1√
2

[
ln
(

Y− r
Y + r

)]Yf

Yi

+

√
2

r
H, H =

∫ Yf

Yi

qr− r2

Y2 + qr− r2 dY, (A7)

where Yi = Y(t = 0) and Yf = Y(t). To calculate H in Equation (A7), we need to consider the two
cases where q ≥ r or q < r. First, when q ≥ r, we use the change of the variable Y =

√
qr− r2 tan θ

to find

H =
√

qr− r2

[
tan−1

(
Y√

qr− r2

)]Yf

Yi

. (A8)

When q < r, we let Y =
√

r2 − qr sec θ and find

H = −
√

r2 − qr
2

[
ln

(
Y−

√
r2 − qr

Y +
√

r2 − qr

)]Yf

Yi

. (A9)

When D = D0 (r = 0), β(t) = β0 for all t. Thus, Equation (2) can easily be calculated directly
from Equation (A5) with the result

L =
1√
2

∫ Tf

Ti

√
q

T
3
2

dT = −
√

2q
[

1√
T

]Tf

Ti

=
1√

D/γ
[y0 − y] , (A10)

where again y = 〈x〉 = y0e−γt.
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