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Abstract: A single-leaf type paddle heat exchanger with molten salt as the working fluid is a proper
option in high temperature heating processes of materials. In this paper, based on computational fluid
dynamics (CFD) simulations, we present the thermo-fluid characteristics of high temperature molten
salt flowing in single-leaf type hollow paddles in the view of both the first law and the second law of
thermodynamics. The results show that the heat transfer rate of the hollow paddles is significantly
greater than that of solid paddles. The penalty of the heat transfer enhancement is additional pressure
drop and larger total irreversibility (i.e., total entropy generation rate). Increasing the volume of the
fluid space helps to enhance the heat transfer, but there exists an upper limit. Hollow paddles are
more favorable in heat transfer enhancement for designs with a larger height of the paddles, flow rate
of molten salt and material-side heat transfer coefficient. The diameter of the flow holes influences
the pressure drop strongly, but their position is not important for heat transfer in the studied range.
Other measures of modifying the fluid flow and heat transfer like internal baffles, more flow holes
or multiple channels for small fluid volume are further discussed. For few baffles, their effects are
limited. More flow holes reduce the pressure drop obviously. For the hollow paddles with small
fluid volume, it is possible to increase the heat transfer rate with more fluid channels. The trade-off
among fluid flow, heat transfer and mechanical strength is necessary. The thermo-fluid characteristics
revealed in this paper will provide guidance for practical designs.
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1. Introduction

Paddle heat exchangers were first used in drying materials, called paddle dryers [1–8]. In high
temperature heating industries (e.g., in the range of 300 to 600 ◦C), molten salts (e.g., Hitec salt) are
commonly used as working fluids for heat transfer. Recently, many researchers have investigated
molten salt thermo-fluid characteristics in different geometrical structures. For example, Wu et al. [9]
experimentally investigated the turbulent flow and transitional flow of molten Hitec salt in a circular
tube. Their results provided different convective heat transfer coefficients of molten Hitec salt.
Ferng et al. [10] used the computational fluid dynamics (CFD) technique and the two-equation k-ε
turbulent model to study the thermal-hydraulic characteristics of molten FLiNaK salt in a circular
tube. Their numerical simulation results agree with experimental data and general correlations. Also
based on CFD simulation, Srivastava et al. [11] investigated the flow and heat transfer characteristics of
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molten FLiNaK salt in a circular tube for different flow regimes, i.e., laminar, transitional and turbulent
flow. Their numerical predictions agreed with that of the available correlations.

Zhang et al. [12] tested the thermal performance of molten salt cavity receivers. They showed
that the flow rate does not have a strong effect on the instantaneous efficiency of the receiver in the
pro-steady state. Du et al. [13] experimentally studied the heat transfer performance of molten Hitec
salt in the shell side of a shell-and-tube heat exchanger with segmental baffles. New Nusselt number
correlation in specified turbulent regime was provided. Later, Du et al. [14] further investigated the
heat transfer characteristics of molten Hitec salt in the shell side of a shell-and-tube heat exchanger
without baffles experimentally and numerically. The two-equation k-ε turbulent model and Fluent
commercial software were used to simulate the convection process. The experimental and numerical
results showed good agreement. Lu et al. [15] measured the heat transfer performance of ternary nitrate
salt flowing in an annular duct with a cooled wall. Based on experimental data, a new heat transfer
correlation in the turbulent regime was proposed. Chen et al. [16], in laminar-transition-turbulent
regimes, experimentally investigated the convective heat transfer performance of transversely-grooved
tubes with heat transfer salt KNO3-NaNO2-NaNO3 (53-40-7 mol %) as the working fluid. Compared
to circular tubes, transversely-grooved tubes show significant heat transfer enhancement.

Except circular tubes and shell-and-tube heat exchangers, the CFD technique has been used in
simulating molten salt flow and heat transfer in other geometrical structures. It has been accepted as
an important tool in analysis and design. Based on the Reynolds-averaged Navier–Stokes method,
Carasik et al. [17] calculated the turbulent pressure drop of molten salt (FLiBe) flow in an in-line heat
exchanger. Several one- and two-equation turbulence models were compared. The standard low
Reynolds number k-ε turbulent model, which provides reasonable predictions, was recommended.
Chen et al. [18] simulated the mixed convection heat transfer of Hitec salt in horizontal square tubes.
The two-equation RNG k-ε model was adopted. The comparison of experimental and simulation
results showed good agreement. In [19], Hitec salt flow and heat transfer in hollow disc-shaped heaters
were simulated by using the standard k-ε model. The optimal design was suggested based on the
simulation results. A brief review of high temperature molten salt heat transfer and heat exchangers
was given by Du et al. in [20].

Few studies focused on the fluid flow and heat transfer of molten salt in hollow paddle-shaft
structures of paddle heat exchangers. Inspired by constructal law [21], Zhang et al. [22] presented the
molten salt fluid flow and heat transfer performance of three two-leaf-type paddle-shaft structures
and showed that, in the heat transfer aspect, the open hollow paddle-shaft structure is much better
than that of closed hollow paddle-shaft structure and solid paddle-shaft structure. Ji et al. [23] further
studied the effects of a guiding plate near the outlet flow hole of a two-leaf-type paddle heat exchanger.
Their results show that in the two leaves, the fluid flow and heat transfer are non-symmetrical, and
it is possible to enhance the heat transfer and decrease the pressure drop simultaneously. In [24],
it was shown that the influence of rotation rate (<10 rpm) on fluid flow and heat transfer is negligible.
Compared to those two-leaf-type paddle heat exchangers, the single-leaf type design has a higher
heat transfer area and a simpler structure and manufacture. This may be used in non-agglutination or
weak-agglutination materials [25]. When the heat transfer coefficients of the two sides (i.e., the working
fluid side and the material side) are at the same scale, it is helpful to enhance the heat transfer of the
working fluid side. Furthermore, the heat transfer enhancement will also improve the temperature
uniformity of the heating surfaces, which is important for heating temperature-sensitive materials.
Up to now, to the authors’ knowledge, there are no published data on the thermo-fluid characteristics
of high temperature molten salt flowing in single-leaf type hollow paddles.

In this paper, we first describe the geometry of single-leaf type hollow paddles, and then build
a CFD model to simulate the fluid flow and heat transfer performance for the structures. Based on
the simulation results, we identify the optimal design for heat transfer enhancement. The trade-off in
designs is also discussed. This work is the starting point prior to real product design, manufacture
and testing.
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2. Geometry Description

There are two common types of paddles for paddle heat exchangers, i.e., single-leaf type
represented in Figure 1a and two-leaf type in Figure 1b. In this study, we only discuss the single-leaf
type hollow paddles. Figure 2 shows the cross-section of a heat exchanger with single-leaf type paddles.
Under normal working conditions, the working fluid flows in the hollow paddle-shaft structure and
heats the shell-side material, which is driven by the rotating paddles. In order to provide sufficient
residence time for materials to be heated, the rotation is usually very slow, e.g., less than 10 rpm [24].
The work in [24] has shown that the effect of slow rotation (<10 rpm) is very weak. Therefore, in this
paper, we neglect the influence of rotation on flow and heat transfer.
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Figure 2. Cross-section of a single-shaft and single-leaf type paddle heat exchanger.

Consider a single-leaf type paddle heat exchanger with Hitec salt (53% KNO3, 40% NaNO2,
7% NaNO3 based on mass fraction) as the working fluid. The overall shaft is composed of some
segments. In every segment, there is one paddle for single-leaf type design. We assume that the
molten salt is distributed uniformly into all the segments [23], so only one segment is studied. For all
shaft-paddle structures to be investigated, the inner and outer diameters of the hollow shaft are the
same, so for simplicity, we only discuss the thermo-fluid characteristics in the paddle domain. In order
to study the effects of the fluid volume in the hollow paddles, we use the solid paddle design (i.e., zero
fluid volume) as the reference. Figure 3 shows the candidate designs: solid paddle and different
hollow paddles.
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3. Numerical Model

In this section, we present a CFD model to simulate the molten salt flow and heat transfer in
the paddle domain shown in Figure 3. The basic assumptions for the simulations are: zero rotation
rate, steady turbulent forced flow for molten salt, constant temperature and convective heat transfer
coefficient of the shell-side material, constant properties of molten salt and the solid and zero radiation
of the outer surfaces of the paddle due to the material’s covering.

The three-dimensional mass, momentum and energy equations for molten salt flow without phase
change are presented as follows [26]:

∂
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For the solid region, the energy equation is:
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∂

∂xi

(
λs

∂Ts

∂xi

)
= 0. (5)

The turbulent kinetic energy k and its rate of dissipation ε are obtained from the transport
Equations (6) and (7), and the turbulent viscosity µt is calculated by combining k and ε according to
Equation (8):

∂

∂xj
(ρkuj) =

∂

∂xj

[(
µ +

µt

σk

)
∂k
∂xj

]
− ρu′ iu′ j

∂uj

∂xi
− ρε, (6)

∂

∂xj
(ρεuj) =

∂

∂xj

[(
µ +

µt

σε

)
∂ε

∂xj

]
+ C1ε

ε

k

(
−ρu′ iu′ j

∂uj

∂xi

)
− C2ερ

ε2

k
, (7)

µt = ρCµ
k2

ε
, (8)

In Equation (3), Prt = 0.85 and in Equations (6) and (7), the constants adopt the following values:
C1ε = 1.44, C2ε = 1.92, Cµ = 0.09, σk = 1, σε = 1.3 [26]. The boundary conditions and the properties of
the materials are given in Tables 1 and 2, respectively. In Figure 3, the following sizes are assumed
constant: L3 = 28 mm, L4 = 41 mm, L5 = 4 mm.

Table 1. The boundary conditions.

Paddle Structure Boundary Condition

Fluid
Inlet

.
m

Tin = 550 ◦C
Outlet Pout = 0 Pa

Shell-side material Shell-side material To = 300 ◦C, ho = 250 W/(m2K)

Solid
Inside surfaces of shaft Tw = 550 ◦C

End-wall surfaces of shaft Adiabatic

Table 2. Properties of molten salt (T = 550 ◦C) and stainless steel 316L (T = 20 ◦C) [27].

Property ρ (kg/m3) cp (J/(kg·K)) λ (W/(m·K)) µ (kg/(m·s))

Molten salt 1944 1559.886 0.908 0.0012
Stainless steel 316L 8000 500 21.5

To obtain the flow and temperature fields and the overall thermo-fluid performance (e.g.,
the pressure drop ∆P of the molten salt flow and the heat transfer rate of the paddle

.
Q), we used a

finite-volume computational package ANSYS Fluent (14.5, ANSYS, Canonsburg, PA, USA) [28], with
the pressure-based solver and SIMPLE algorithm for pressure–velocity coupling, and the second order
upwind scheme for momentum and energy equations. The residuals for mass, momentum, turbulent
kinetic energy and dissipation rate equations are 10−4, and for the energy equation, the residuals
are 10−6. The mesh independence for each simulation was checked. A maximum of 1% changes in
pressure drop and heat transfer rate between successive mesh sizes are considered acceptable results.
The number of grids varies from case to case, from a few million to more than 10 million. An example
of the mesh independence check is given in Table 3. In Table 3, for 7,539,242 and 6,825,664 elements, the
differences of the pressure drop (30,997 Pa and 30,992 Pa) and heat transfer rate (2836 W and 2841 W)
are both less than 1%. In this case, 7,539,242 elements were selected in the simulations to ensure the
mesh independence of the results.
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Table 3. Mesh independence checking (Case II,
.

m = 0.39 kg/s, ho = 250 W/(m2K), m = 2, n = 0, q = 1,
H = 92 mm, d = 8 mm, ϕ = 0.53, θ = 45◦).

Number of elements 7,539,242 6,825,664 6,094,076 5,003,249 4,004,098
Number of nodes 1,866,142 1,731,115 1,566,281 1,318,141 1,063,456

Pressure drop ∆P (Pa) 30,997 30,922 31,131 31,430 28,020
Heat transfer rate

.
Q (W) 2836 2841 2848 2848 2942

According to the second law of thermodynamics, the irreversible processes take place due to two
factors, to be specific, fluid flow and heat transfer. The total irreversibility can be measured by the
entropy generation rate. Based on the first and second laws of thermodynamics, we obtain the energy
balance and entropy balance equations for the heat transfer process as follows [29,30]:

dE/dτ =
.

Qw −
.

Q +
.

m(hin − hout) = 0, (9)

dS/dτ =

.
Qw
Tw
−

.
Q
To

+
.

m(sin − sout) +
.
Sg = 0. (10)

The entropy generation rate is derived as:

.
Sg =

.
Q
To
−

.
Q +

.
m(hout − hin)

Tw
+

.
m(sout − sin), (11a)

.
Sg =

.
Q
To
−

.
Q +

.
mcp(Tout − Tin)

Tw
+

.
m
[

cpln
(

Tout

Tin

)
+

αV∆P
ρ

]
, (11b)

In Equation (11b), the ∆P term corresponds to the fluid flow irreversibility (∆P-induced entropy
generation rate). On the right side of Equation (11b), the sum of the terms except the ∆P term is the
heat transfer-induced entropy generation rate.

Based on the CFD model (i.e., Equations (1)–(8)), the pressure drop and heat transfer rate are first
obtained. Then, the entropy generation rate is calculated through Equation (11a) or Equation (11b).
To compare the performance of hollow paddles and solid paddles, the simulation results are
summarized in dimensionless groups as follows:

M =

.
mcp

λL
, (12)

Be =
∆PL2

µα
, (13)

R =

.
Q
.

Qs

, (14)

S =

.
Sg
.
Sgs

, (15)

In Equation (14), if R > 1, the heat transfer performance of the hollow paddle is better than that of
the solid paddle. In Equation (15), if S > 1, the total irreversibility in the heat transfer process of the
hollow paddle is larger than that of the solid paddle. Because we use Case I as the reference design
to define dimensionless groups and the focus is to reveal the advantages or disadvantages of hollow
paddles compared to solid paddles, in Section 4, we will not list Case I as an independent subsection.
For Case I and ho = 250 W/(m2K), when H = 46, 92 and 184 mm,

.
Q = 760, 929 and 1021 W, respectively.

For Case I and H = 92 mm, when ho = 50 and 150 W/(m2K),
.

Q = 429 and 758 W, respectively. Therefore,
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based on the dimensional values for Case I and the dimensionless values documented in Section 4,
dimensional results for hollow paddles can be easily obtained.

4. Results and Discussion

4.1. Case II

In product designs, the outer shape of the hollow paddle is determined by the shell-side material,
and there exists a least thickness of the paddle wall (t = 3 mm in this paper) regarding the requirement
of the mechanical strength. Compared to pure conduction in the solid paddle, both conduction and
convection in the hollow paddle affect the heat transfer process. The fluid volume in the hollow paddle
is a critical design parameter. The fluid volume ratio is defined as:

φ =
Vf

V
(16)

where ϕ = 0 corresponds to the solid paddles. Table 4 shows the simulated cases with different ϕ.

Table 4. Cases of hollow paddles with different ϕ (m = 2, n = 0, q = 1, H = 92 mm, d = 8 mm, θ = 45◦).

ϕ Paddle Type Geometry Description

0 Solid Reference: no fluid space in the paddle.
0.04 Hollow The fluid space is a tube of 8 mm diameter in the paddle.
0.22 Hollow t = 20 mm
0.46 Hollow t = 6 mm
0.53 Hollow t = 3 mm

Figure 4 shows the effects of ϕ of hollow paddles. In Figure 4a, in the range M < 20,000, the
effect of ϕ on Be is small. When M > 20,000, the difference of Be emerges for the designs with different
ϕ. For specified M, Be increases with the increase in ϕ, especially when ϕ is small, e.g., ϕ = 0~0.46.
For ϕ = 0.46 and 0.53, Be is nearly the same. Figure 5 shows an example of the pressure distribution in
the middle cross-section of the fluid space. For the hollow paddle with ϕ = 0.04, the fluid space has a
uniform cross-section area (i.e., constant diameter 8 mm), and for such flow in a tube, the pressure drop
is mainly caused by the wall friction. Therefore, in this case, the distributed loss (depending on the
diameter and the length of the tube for fixed mass flow rate and fluid properties) is dominant. However,
for the hollow paddles with a large fluid space (e.g., ϕ = 0.22, 0.46 and 0.53), in sequence, the molten
salt flows through the inlet flow hole with a small diameter, the internal space with both radial flow
and circumferential flow and the outlet flow hole. This forms a complicated three-dimensional flow.
Both the local losses (e.g., vortex, sudden-convergence and sudden-divergence) and the distributed
losses are important. For some examples, like the case in Figure 5d, the pressure changes significantly
near the outlet flow hole (sudden-divergence), which can be directly viewed from the color change.
However, in other domains, the pressure does not change significantly. This observation tells us that
the local loss near the outlet flow hole (sudden-divergence) is dominant.

In Figure 4b, all R values are greater than one, illustrating that the heat transfer performance
of the hollow paddles is always better than the corresponding solid paddles in the specified range.
In the range ϕ = 0~0.46, larger ϕ generates greater heat transfer rate because of stronger convection.
This is the mechanism of the heat transfer enhancement of hollow paddles: the introduction of the
convection reduces the thermal resistance of the conduction in the paddle. Figure 4b also shows that
for ϕ = 0.46 and 0.53, there is no difference in R. This implies that the heat transfer improvement via
increasing ϕ has an upper limit. In fact, larger ϕ leads to lower (average) fluid velocity in the fluid
space, weakening the advantage of convection. This also means that a trade-off between conduction
and convection exists. It is known that for a solid paddle, heat is transferred from its bottom surface
(i.e., the hot surface) to its top surface and side surfaces through conduction. The thermal resistance of
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conduction is proportional to the heat transfer path length. When the hollow structure is introduced
in the paddle, convection makes the temperature distribution in the hollow paddle more uniformly
than pure conduction in the solid paddle. The effect of convection depends on the velocity. The larger
the velocity, the less the thermal resistance. As the fluid volume increases, the velocity drops. If the
velocity is too small, convection in the hollow paddle will not work. In Figure 4c, the total entropy
generation rate (S) shows a similar trend as the heat transfer rate, which indicates that a greater heat
transfer rate leads to larger irreversibility; the price for the heat transfer enhancement. The ∆P-induced
entropy generation rate (S∆P) increases with the increase of M, and it is much less than S, which means
that the heat transfer contributes to the main irreversibility.
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For paddle heat exchangers, the paddle height H determines the heat transfer area and the
material driving characteristics. Figure 6a shows that when M is small, e.g., less than 20,000, the effect
of H on Be is negligible. When M becomes larger, Be of the design with H = 46 mm is less than that
with H = 92 and 184 mm. Figure 6b shows that in the specified range, compared to the solid paddles,
the improvement of the heat transfer performance of the hollow paddles is greater when H increases.
This is understandable because larger H is equivalent to a longer path or larger thermal resistance
of conduction. In this condition, hollow paddles are more favorable. Figure 6c further shows that S
increases with the increase of H and the heat transfer-induced irreversibility is dominant.
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In hollow paddles, the diameter and the position angle of the flow holes influence the flow field
and the stress distribution (or mechanical strength) of the shaft. Figure 7a shows that the diameter
d affects Be significantly, especially when M is large, which means that the local loss of the molten
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salt flow is very important in the total pressure drop (also, cf. Figure 5d). Figure 7b shows that d has
a weak effect on R. Actually, d only affects the local region near the inlet and outlet holes while the
main heat transfer region (i.e., the internal fluid space) is nearly not influenced. In Figure 7c, when d
decreases, S∆P/S increases especially for large M. For example, when M = 51,756, S∆P/S= 0.035, 0.011
and 0.007 for d = 6 mm, 8 mm and 9 mm, respectively. For the specified range in Figure 8, we notice
that the effect of θ is weak. This observation encourages us to use larger θ to avoid stress concentration
in the shaft. Actually, in Figure 8a (or Figure 8c), the curves of Be (or S∆P/S) for different position
angles overlap each other.Entropy 2018, 20, x FOR PEER REVIEW 11 of 19 
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Figure 8. The effects of the position angle of the flow holes. (a): Be; (b): R; (c): S, S∆P.

Although the shell-side material convective heat transfer coefficient (ho) does not affect Be
(Figure 9a), it does influence R (Figure 9b). For a specified M, R increases with the increasing of
ho. Even in the condition ho = 50 W/(m2K), R is greater than 1.15. In theory, when ho increases, the
thermal resistance of conduction in the solid paddles becomes more dominant in which case hollow
structures are more attractive. Because higher ho corresponds to a greater heat transfer rate, S is also
larger (Figure 9c).
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4.2. Case III

In Section 4.1, we verified the goodness of hollow structures in enhancing the heat transfer of the
paddles. In this section, we further explore the flow field modification through internal baffles, aiming
to bathe the fluid space as uniformly as possible. One simple way is to introduce one baffle (n = 1) near
the outlet of the fluid space in order to narrow the corner region with poor flow near the outlet of the
fluid space [23]. Increasing the height of the baffle (L2) obviously leads to higher pressure drop when
M > 20,000 (Figure 10a). For L2 = 0 (n = 0, no baffle) and L2 = 25 mm, R is very close in the specified
range of M, and for L2 = 40 mm, R is slightly greater (Figure 10b). For example, for M = 4849, R with
L2 = 40 mm is 2.5% higher than that of L2 = 0 mm. The entropy generation rate S in Figure 10c displays
a similar trend as R in Figure 10b. For large M (e.g., M > 25,000), Be increases with the increasing in L2,
so S∆P increases, as well.

The effects of the number of the internal baffles (n) are shown in Figure 11. Here, we assume that
the baffles are arranged uniformly and have a fixed height (L2 = 25 mm). In the range M < 20,000, n
does not have a significant effect on Be (Figure 11a). When M > 20,000, there is limited gap in Be for
n = 0 and n > 0. For n = 1~4, the gap of Be is small. From Figure 11b,c, we see that the effects of n are
not monotonous. For example, for M = 9706, R for n = 3 is the largest and 6% greater than that for
n = 0. For M = 9706, S for n = 3 is also the largest and 15% greater than that for n = 0. Realize that the
present number of baffles (Figure 11) is few (n < 5). Much more baffles or three-dimensional baffles
may generate plug flow that is good for convective heat transfer, but undoubtedly, the price is much
higher pressure drop and manufacture cost.
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4.3. Case IV

Figure 12 shows the simulation results of the four-hole design, i.e., two inlet flow holes and
two outlet flow holes. Seen in Figure 12a, Be of the four-hole design is significantly less than that
of the two-hole design in most of the specified range. When M increases, the gap between the two
designs becomes larger. This is the obvious advantage of the four-hole design. However, R of the
four-hole design reduces only 1.3~2.9% compared to that of the two-hole design in the specified range
(Figure 12b). Note that Figure 12b is only a case study. For other conditions, the quantitative effect
of the four-hole design may not be the same. Correspondingly, the entropy generation rate (S) of the
four-hole design reduces 1.2~5.1% compared to that of the two-hole design in the specified range
(Figure 12c). We know that the hollow paddles are welded on the outer surface of the hollow shaft, and
the fluid space in the paddles is connected to that in the hollow shaft through the flow holes. More flow
holes, corresponding to less pressure drop as shown in Figure 12, mean lower mechanical strength of
the shaft. For sure, the four-hole design will weaken the mechanical strength of the shaft more heavily
than the two-hole design, so the trade-off between the thermo-fluid design and the mechanical design
is necessary. The analysis of the mechanical strength is beyond the scope of the present paper.
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Theoretically, more holes (e.g., n = 6) is also possible. Note that in Figure 12a, c, the values of Be
and S∆P/S are approximately the same along the range, so the curves cover each other.
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4.4. Further Discussion

In the above sections, we showed the efficacy of using hollow paddles to enhance heat transfer.
At the same time, the temperature uniformity of the paddles is also improved. Figure 13 provides
an example of the temperature fields of the outer surfaces of two designs, namely one solid paddle
(the reference design) and one hollow paddle. Apparently, the hollow paddle shows better temperature
uniformity, and its average temperature approaches the inlet molten salt temperature more closely.
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For hollow paddles with a small fluid volume ratio (also called vascular structures [21]), e.g.,
ϕ = 0.04, an alternative way of further improving the heat transfer rate is to optimize the distribution of
the fluid channels, such as using multiple channels or multi-scale channels. In Section 4.1, for ϕ = 0.04,
we used one tube with a diameter of 8 mm to form the fluid space. Here, in Figure 14, an example with
two channels (q = 2) for ϕ = 0.04 is shown. In Figure 14a, Be for q = 2 is larger than that for q = 1. This is
because the diameter of the two channels is less than that with only one channel. When M > 9706,
R for q = 2 is greater than that for q = 1. When M < 9706, the gap between the two designs is limited.
The entropy generation rate (S) shows a similar trend as R. Figure 15 shows the temperature fields of
the designs with different q. The temperature uniformity of the design with q = 2 is better than that
with q = 1.Entropy 2018, 20, x FOR PEER REVIEW 16 of 19 
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5. Conclusions

In this paper, based on the widely-accepted CFD technique for single-phase flow and heat transfer,
we used three-dimensional numerical simulations to investigate the fluid flow and heat transfer
characteristics of high temperature molten salt flowing in single-leaf type hollow paddles. First,
we showed that the heat transfer rate of the hollow paddles is significantly greater than that of the solid
paddles. The heat transfer enhancement of the hollow paddles is attributed to convection replacing
conduction partly in the paddles. The price of the heat transfer enhancement is additional pressure
drop and a larger total entropy generation rate. The heat transfer-induced irreversibility is much larger
than the pressure drop-induced irreversibility under the studied conditions.

Secondly, the effects of the main geometrical parameters and working conditions were revealed.
Increasing the volume of the fluid space helps enhance the heat transfer, but there exists an upper
limit. For a larger height of the paddles, the hollow paddles are more favorable compared to the solid
paddles. The diameter of the flow holes influences the pressure drop strongly, but does not affect
the heat transfer rate significantly. In the studied range, the effects of the position angles of the flow
holes are weak. A larger material-side heat transfer coefficient corresponds to greater enhancement of
heat transfer.

Finally, we discussed other possibilities of modifying the fluid flow and heat transfer, like using
internal baffles to organize the flow field, using a four-hole design to replace the two-hole design or
adopting multiple channels instead of a single channel for designs with small fluid volume. When
the number of baffles is few (n < 5), the effects are limited. More flow holes reduce the pressure drop
obviously. For the hollow paddles with small fluid volume, it is possible to increase the heat transfer
rate with more fluid channels.
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The complexity of the flow in hollow paddles lies on its three dimensionality, both radial and
circumferential. Both local losses and distributed losses are important. The design selection depends
on the trade-off among three factors, namely fluid flow (pressure drop), heat transfer and mechanical
strength, although the mechanical strength was not included in this paper.

The present work reveals the goodness and badness of hollow paddles compared to solid paddles,
which can help us make a decision about which will be selected in the real design of molten salt
paddle heat exchangers. The research identifies the important factors that influence the pressure drop,
the heat transfer rate and the total entropy generation rate and deepens our understanding of the
heat transfer process for hollow paddles, e.g., from the viewpoint of irreversibility. It provides useful
data (in dimensionless form) for design. The information in this paper is important and necessary for
product design, manufacture and testing. Experimental work will be next.
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Nomenclature

Be Dimensionless pressure drop, i.e., Bejan number
cp Specific heat at constant pressure, J/(kgK)
C1ε, C2ε, Cµ Constants, Equations (7) and (8)
d Diameter of flow holes, mm or m
e Specific total energy, J/kg
E Total energy, J
h Enthalpy, J/kg

ho
Shell-side material convective heat transfer
coefficient, W/(m2K)

H Paddle height, mm or m
k Turbulent kinetic energy, m2/s2

L, L1, ..., L5 Dimensions, mm or m, Figure 3
m Number of flow holes
.

m Mass flow rate, kg/s
M Dimensionless mass flow rate
n Number of baffles
P Pressure, Pa
Prt Turbulent Prandtl number
q Number of channels
.

Q Heat transfer rate, W
R Dimensionless heat transfer rate
s Specific entropy, J/(kgK)
S Dimensionless entropy generation rate
.
Sg Entropy generation rate, W/K
t Paddle thickness, mm or m
T Temperature, K or ◦C
To Shell-side material temperature, K or ◦C
u Velocity component, m/s
u′ Fluctuating velocity component, m/s
v Velocity, m/s
V Volume of a paddle, m3

Vf Fluid volume in a paddle, m3

x Coordinate component, mm or m



Entropy 2018, 20, 581 18 of 19

Greek symbols
α Thermal diffusivity, m2/s
αV Thermal expansion coefficient, 1/K
δij Unit tensor
∆P Pressure drop, Pa
ε Dissipation rate, m2/s3

θ Position angle of flow holes
λ Thermal conductivity, W/(mK)
µ Dynamic viscosity, kg/(ms)
µt Turbulent viscosity, kg/(ms)
ρ Density, kg/m3

σk, σε Constants in Equations (6) and (7)
τ Time
φ Volume ratio, Equation (16)
Subscripts
i, j, l Coordinate direction
in Inlet
out Outlet
s Solid
w Wall
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