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Abstract: The gate array version of quantum computation uses logical gates adopting convenient
forms for computational algorithms based on the algorithms classical computation. Two-level
quantum systems are the basic elements connecting the binary nature of classical computation with
the settlement of quantum processing. Despite this, their design depends on specific quantum systems
and the physical interactions involved, thus complicating the dynamics analysis. Predictable and
controllable manipulation should be addressed in order to control the quantum states in terms of
the physical control parameters. Resources are restricted to limitations imposed by the physical
settlement. This work presents a formalism to decompose the quantum information dynamics in
SU(22d) for 2d-partite two-level systems into 22d−1 SU(2) quantum subsystems. It generates an
easier and more direct physical implementation of quantum processing developments for qubits.
Easy and traditional operations proposed by quantum computation are recovered for larger and
more complex systems. Alternating the parameters of local and non-local interactions, the procedure
states a universal exchange semantics on the basis of generalized Bell states. Although the main
procedure could still be settled on other interaction architectures by the proper selection of the basis
as natural grammar, the procedure can be understood as a momentary splitting of the 2d information
channels into 22d−1 pairs of 2 level quantum information subsystems. Additionally, it is a settlement
of the quantum information manipulation that is free of the restrictions imposed by the underlying
physical system. Thus, the motivation of decomposition is to set control procedures easily in order to
generate large entangled states and to design specialized dedicated quantum gates. They are potential
applications that properly bypass the general induced superposition generated by physical dynamics.

Keywords: quantum information; quantum dynamics; entanglement

1. Introduction

Quantum information is generating new applications and tentative future technologies such
as quantum computation [1–3] and quantum cryptography, based on disruptive phenomena in its
main trends: quantum key distribution [4,5], quantum secret sharing [6], and quantum secure direct
communication [7,8]. All these trends highlight the importance of entangled states—a basic aspect
involved in the current work in order to achieve quantum information processing tasks. In this
arena, the understanding of quantum information dynamics and the control of quantum systems
is a compulsory development to manage the quantum resources involved. Applications require a
tight control of resources and interactions—especially those related with coherence and entanglement.
They are fundamental in most applications. Quantum control has developed the fine management
of physical variables to prepare, maintain, and transform quantum states in order to exploit them
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for concrete purposes. The outstanding high-tech commercial appliances D-Wave and IBM-Q use
qubits in the form of two-level systems, either with superconducting circuits or ions as well as several
approaches to their interconnecting architecture.

For multipartite systems, research in control is oriented to achieve different goals in quantum
applications. Most of them are numerical approaches rather than analytical due to the inherited
complexity in the quantum information dynamics when the number of parts grows. For a single system
with a two-level spectrum, the control problem has been extensively studied in terms of exact optimal
control for energy or time cost [9,10]. Recently, research of the anisotropic Heisenberg–Ising model
for bipartite systems in SU(4) [11] has shown how this model exhibits SU(2) block decomposition
when it is written in the non-local basis of Bell states instead of the traditional computational basis.
This means that H2 becomes a direct sum of two subspaces, each one generated by a pair of Bell
states, while U underlies in the direct product U(1)× SU(2)2. Thus, control can be reduced to SU(2)
control problems, each one in each block. Then, exact solutions for some control procedures can
be found [12,13]. There, controlled blocks can be configured by the direction of external driven
interactions introduced. That scheme allows controlled transformations between Bell states on demand
and therefore on a general state. Thus, the procedure sets a method of control to manipulate quantum
information on magnetic systems, where the computational grammar is based on Bell states instead
of the traditional computational basis. It allows an easier programmed transformation among any
pair of elements in that basis. This result provided the inspiration to reproduce similar decomposition
schemes for larger systems in terms of simpler problems based on quasi-isolated two-level subsystems,
developing easier and universal (not necessarily optimal) controlled manipulation procedures for
quantum information. Technology to set up the possible architecture of these generic systems is
currently being achieved through trapped-ion qubits [14] and superconducting qubits [15].

Thus, the generalization of SU(2) block decomposition is a convenient formalism to express
dynamics, revealing certain quantum information states algebraically free of the complexity
introduced by the entangling operations (doing few convenient the use of the computational basis).
Nevertheless, they still conserve their entangled properties. This reveals how the probability exchange
happens together with the structure of entanglement behind the randomness introduced by the
complexity of large quantum information systems. Still, as for their predecessor, those bases maintain
a certain degree of universality, including several alternative local and non-local interactions. As for
their SU(4) predecessor, when they are combined, it states a series of punctual operations that can
be set: (a) fine control based on well-known SU(2) control procedures; (b) the construction of universal
gates for the entire process based on two-channel like operations; and (c) the design of more complex
dedicated multi-channel gates by factorization.

The general aim of this paper is to show that such decomposition and reduction is achievable for
large qubit systems, not only for those in [11,13]. The second section states the general Hamiltonian to
be analyzed. The third section shows how the SU(2) decomposition procedure can be generalized
on general n-partite two-level systems (not only for the driven Heisenberg–Ising interactions),
reducing them to 2n−1 selectable transformations between pairs of specific quantum energy states.
Then, these transformations can be based on known control schemes for SU(2) systems such as those
in [9,10]. The selection of these 2n−1 pairs of states can be based on the convenience of the quantum
process being considered and the resources involved. Thus, the basis on which the decomposition
can be established works as a computational grammar for the quantum procedures being attained.
These bases are not completely arbitrary, and thus the fourth section shows how a kind of generalized
Bell basis is able to generate the SU(2) decomposition for an even number of parts, n = 2d. The fifth
section is devoted to analyzing the restrictions on the Hamiltonian to get the SU(2) decomposition,
the inherited states, and the block properties. This analysis includes a classification of interactions
able to generate the SU(2) decomposition. Because the presented procedure can reproduce complex
quantum gates, generate large entangled states, and introduce control procedures in SU(22d) if the
grammar is based on the proposed basis, the sixth section analyzes potential applications in these
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trends. The final section concludes, summarizing the findings and settling the related future work to
be developed. Because several aspects in the work may be complex for the reader, an appendix with
some critical concepts has been included to clarify the contents.

2. Generalized Hamiltonian

The problem can be established for a general Hamiltonian for n coupled two-level systems on
U(2n) forming a closed system. It can be written as a general combination of tensor products of
Pauli matrices for each subsystem (for a more detailed discussion of this Hamiltonian, please see
Appendix A.1):

H̃ = ∑
{ik}

h{ik}
n⊗

k=1

σik =
4n−1

∑
I=0

hIn
4

n⊗
k=1

σIn
4,k

, (1)

where {ik} = {i1, i2, . . . , in}, ik = 0, 1, 2, 3, and h{ik} is a general set of time-dependent real
functions. Sometimes, as in the second expression in (1), {ik} will be represented as the number
I ∈ {0, 1, . . . , 4n − 1}, as it is expressed in base-4 with n digits, In

4 . Then, In
4,k = ik for k = 1, 2, . . . , n.

σik for ik = 0, 1, 2, 3 are the traditional Pauli matrices in the computational basis |0〉 , |1〉 ∈ H2 for each
part k. Note that due to the SU(2) algebra of Pauli matrices, this Hamiltonian comprises all analytical
Hamiltonians based on two-level systems with n parts. The Hamiltonian obeys the Schrödinger
equation for its associated evolution operator Ũ:

H̃Ũ = ih̄
∂Ũ
∂t

. (2)

Although h{0,...,0} is not necessarily zero, if {Ẽj |j = 1, . . . , 2n} are the eigenvalues of H̃ and
E ≡ ∑2n

j=1 Ẽj = 2nh{0,...,0}, then defining

H ≡ H̃ − h{0,...,0}

n⊗
k=1

σ0, U ≡ Ũe
i
h̄ h{0,...,0}t, (3)

these operators become the equivalent traceless Hamiltonian and its corresponding evolution operator
with eigenvalues Ej = Ẽj − h{0,...,0}, both fulfilling (2) as well. H and H̃ have the same set of
eigenvectors {

∣∣bj
〉
∈ H2n |j = 1, . . . , 2n}. Thus, the Hamiltonian can be written alternatively as

H = ∑2n

j=1 Ej
∣∣bj
〉 〈

bj
∣∣. Thus, in the following, the Hamiltonian can be assumed traceless without loss

of generality. Note that while Ũ ∈ U(2n), then U ∈ SU(2n). In the following, only H and U symbols
will be used as equivalent to H̃ and Ũ. H can be split in two parts—the local Hl and the non-local
Hnl interactions:

Hl =
n

∑
k=1

3

∑
i=1

h(i4k−1)n
4

n⊗
s=1

σ(i4k−1)n
4,s
→ H̃ = H̃nl + Hl, (4)

where (i4k−1)n
4 is the number i4k−1 represented in base-4 with n digits and (i4k−1)n

4,s is its sth term in
that basis.

3. SU(2) Decomposition Generalities

In order to support the understanding of some aspects in the further discussion, Appendix A.2
contains a brief of group theory that is relevant for this work as well as some critical points in the
decomposition procedure being presented here. Delgado [11] found that the SU(2) decomposition
procedure can be induced by considering a set of 2n orthogonal states: {|αi〉} and 2n−1 pairs
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{j(i), k(i)}, i = 1, 2, ..., 2n−1, with k(i) = j(i) + 1 ∈ {2, 4, ..., 2n} related with the eigenvalues through a
mixing matrix, in such way that they fulfill:

2 |b2i−1〉 = Ai

∣∣∣αj(i)

〉
+ Bi

∣∣∣αk(i)

〉
→

∣∣∣αj(i)

〉
= A∗i |b2i−1〉 − Bie−iφ |b2i〉 ,

|b2i〉 = −B∗i eiφ
∣∣∣αj(i)

〉
+ A∗i eiφ

∣∣∣αk(i)

〉
→

∣∣∣αk(i)

〉
= B∗i |b2i−1〉+ Aie−iφ |b2i〉 ,

(5)

with |Ai|2 + |Bi|2 = 1, where last relations are clearly true because of orthogonality (note that energies
Ej become ordered as the states are paired). States {

∣∣αj
〉
} are then defined by the selection of Ai, Bi.

Each pair sets one of the orthogonal subspaces:

H2
i = span({|b2i−1〉 , |b2i〉}) = span({

∣∣∣αj(i)

〉
,
∣∣∣αk(i)

〉
})→ H2n

=
2n−1⊕
i=1

H2
i . (6)

There are many possibilities for this selection, but not necessarily all practical bases fit
in this construction. In particular, separability or entanglement properties are not
necessarily assured for {|αi〉} as in [11]. Clearly, because these states are assumed unitary,

then Ai =
〈

b2i|αk(i)

〉
eiφ =

〈
b2i−1|αj(i)

〉∗
, Bi =

〈
b2i−1|αk(i)

〉∗
= −

〈
b2i|αj(i)

〉
eiφ. By applying H

on (5) and considering that |bi〉 has the eigenvalue Ei, it is possible to arrive at the following expressions:

H
∣∣∣αj(i)

〉
= (|Ai|2E2i−1 + |Bi|2E2i)

∣∣∣αj(i)

〉
+ A∗i Bi(E2i−1 − E2i)

∣∣∣αk(i)

〉
,

H
∣∣∣αk(i)

〉
= AiB∗i (E2i−1 − E2i)

∣∣∣αj(i)

〉
+ (|Ai|2E2i + |Bi|2E2i−1)

∣∣∣αk(i)

〉
,

(7)

giving the Hamiltonian components in this basis:〈
αj(i)|H|αj(i)

〉
= |Ai|2E2i−1 + |Bi|2E2i,〈

αk(i)|H|αk(i)

〉
= |Ai|2E2i + |Bi|2E2i−1,〈

αj(i)|H|αk(i)

〉
= AiB∗i (E2i−1 − E2i),

(8)

which can be alternatively obtained from (5). Note that the phase φ is non-physical. This basis
transformation changes the diagonal structure for the basis {|bi〉} into a 2× 2 diagonal block structure
for the basis {

∣∣αj
〉
}. For simplicity, we define the following quantities:

Ai = rAi e
iγAi , Bi = rBi e

iγBi ,

∆±i =
1

2h̄
(E2i ± E2i−1),

Γi = γAi − γBi .

(9)

Then, each 2× 2 block in H (labeled as SHi) can be written in matrix form as (see Appendix A.2):

SHi =

(
∆+

i − (rAi
2 − rBi

2)∆−i −2rAi rBi ∆
−
i eiΓi

−2rAi rBi ∆
−
i e−iΓi ∆+

i + (rAi
2 − rBi

2)∆−i

)
= ∆+

i Ii − 2rAi rBi ∆
−
i cos ΓiXi + 2rAi rBi ∆

−
i sin ΓiYi − (rAi

2 − rBi
2)∆−i Zi (10)

≡ ∆+
i Ii + SH

0
i ,

where although rAi
2 + rBi

2 = 1, we use both terms rAi and rBi for the symmetry. In addition, Ii,Xi,Yi,
and Zi are respectively the 2× 2 unitary matrix and the Pauli matrices settled as basis for the block SHi.
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Thus, H can be written as a sum of operators acting on the different subspacesH2
i or as the following

direct sum structure of 2n−1 2× 2 block-diagonal matrices:

H =
2n−1⊕
i=1

SHi =


SH1 0 . . . 0

0 SH2 . . . 0
...

...
. . .

...
0 0 . . . SH2n−1

 , (11)

with 0, the 2 × 2 zero matrix. Because this structure is preserved under matrix products, it is
inherited by the evolution matrix U. In particular, if the Hamiltonian (1) is not time-dependent,

then U = ∑2n

j=1 e−
i
h̄ Ejt

∣∣bj
〉 〈

bj
∣∣. Thus, when the basis is changed (see Appendix A.2):

SUi = e−
i
h̄ E2i−1t |b2i−1〉 〈b2i−1|+ e−

i
h̄ E2it |b2i〉 〈b2i|

= e−i∆+
i t
(
(ei∆−i t − 2irBi

2 sin ∆−i t)
∣∣αj(i)

〉 〈
αj(i)

∣∣+
2irAi rBi sin ∆−i t(eiΓi

∣∣αj(i)
〉
〈αk(i)|+ e−iΓi |αk(i)〉

〈
αj(i)

∣∣)+
(e−i∆−i t + 2irBi

2 sin ∆−i t) |αk(i)〉 〈αk(i)|
)

.

(12)

Similarly, in matrix form or in terms of Ii,Xi,Yi, and Zi:

SUi = e−i∆+
i t

(
cos ∆−i t + i(rAi

2 − rBi
2) sin ∆−i t 2irAi rBi e

iΓi sin ∆−i t
2irAi rBi e

−iΓi sin ∆−i t cos ∆−i t− i(rAi
2 − rBi

2) sin ∆−i t

)

= e−i∆+
i t
(

cos ∆−i tIi + 2irAi rBi cos Γi sin ∆−i tXi−

2irAi rBi sin Γi sin ∆−i tYi + i(rAi
2 − rBi

2) sin ∆−i tZi

)
≡ e−i∆+

i tSU
0
i .

(13)

Note that the election of Γi lets us simplify the last expression to contain only one operator
between Xi and Yi (as in [11,12]). This property is useful to set the optimal control in [9] in each block.
Then, similar to H:

U =
2n−1⊕
i=1

SUi =


SU1 0 . . . 0

0 SU2 . . . 0
...

...
. . .

...
0 0 . . . SU2n−1

 , (14)

where in general for the time-dependent Hamiltonian:

SUi = τ{e−
i
h̄
∫ t

0 SH i dt′} = e−i∆+
i tτ{e−

i
h̄
∫ t

0 SH
0
i dt′} ≡ e−i∆+

i tSU
0
i , (15)

where τ is the time-ordered integral. This implies that U is an element in the direct product
U(1)2n−1−1 × SU(2)2n−1 ⊂ SU(2n) (because any factor phase e−i∆+

i t depends on the remaining
phase factors through E , see Appendix A.2). In the following, we will informally call this
factorization the SU(2) decomposition (in reality, each block has the form U(1) × SU(2)) due to
the block structure. Consequently, the Hilbert space Hn becomes the direct sum of 2n−1 subspaces
generated by each pair {

∣∣∣αj(i)

〉
,
∣∣∣αk(i)

〉
}, i = 1, 2, . . . , 2n−1. In each subspace, dynamics mixes the

probabilities, but probabilities among subspaces remain unmixed if there is no rearrangement in
the pairing between {|bi〉} and {

∣∣αj
〉
} (clearly, in this rearrangement, the basis {

∣∣αj
〉
} could change).
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Thus, if |ψ0〉 = ∑2n−1

i=1 |ψ0i〉 is the initial state with |ψ0i〉 = ψ0i,j(i)

∣∣∣αj(i)

〉
+ ψ0i,k(i)

∣∣∣αk(i)

〉
, then each

component is evolved in the subspace i = 1, 2, ..., 2n−1, fulfilling ‖ |ψti〉 ‖ = ‖SU
0
i |ψ0i〉 ‖ = ‖ |ψ0i〉 ‖.

Finally, note that the SU(2) decomposition is not the only one available, although it is the most
valuable for the binary inheritance from the classical computation. In fact, other decompositions
involving bigger subgroups are possible, whether using bigger systems than two-level ones and/or
simply involving more than two eigenvectors in (5). Inclusively, a mixed-sized block structure can
be realized.

4. GBS: A Non-Local Basis Fitting in {
∣∣αj
〉
}

Non-local bases are used as a theoretical resource to explicitly show how evolution [16] and
measurement [17] can generate entangled states. In [11], it was shown that the Heisenberg–Ising model
including driven magnetic fields in a fixed direction allows the generation of the block structure in the
traditional Bell basis. Thus, the Bell basis for two-level bipartite systems has been shown to fit in the
U(1)× SU(2)2 decomposition of SU(4). Despite the added complexity to manage non-local states,
recent work has moved towards the control of entangled states [18]. This basis works as a universal
basis for the Heisenberg–Ising interaction, including an external magnetic field in any specific direction
on a couple of qubits [11–13]. This model includes other interaction models, such as XXX [19], XY [20],
and XXZ [21]. In the current development, the most obvious guess is the generalized Bell states (GBS)
basis for n = 2d presented in [22] as tensor products of Bell states. In the next sections, some further
useful formulas are obtained to show how the GBS basis fits in the SU(2) decomposition for larger
systems than bipartite ones.

4.1. GBS Basis and Hamiltonian Components

For n = 2d, the GBS basis [22] forms an orthogonal basis of partial entangled states for 2d
particles. A more extended treatment for this basis is given in Appendix A.3 in order to ease further
understanding in the current context, particularly related with the underlying single Bell states in their
construction together with their index notation—a key aspect in the remaining development. Each
element in this basis can be written briefly as:

∣∣∣ΨId
4

〉
=

d⊗
s=1

1√
2

1

∑
εs ,δs=0

(σ̃is)εs ,δs |εsδs〉

=
1√
2d ∑
{εj},{δk}

(σ̃i1 ⊗ . . .⊗ σ̃id)ε1 ...εd ,δ1 ...δd |ε1 . . . εd〉 ⊗ |δ1 . . . δd〉 (16)

=
1√
2d

2d−1

∑
E ,D=0

(σ̃i1 ⊗ . . .⊗ σ̃id)Ed
2 ,Dd

2

∣∣∣E d
2

〉
⊗
∣∣∣Dd

2

〉
,

where {εj} = {ε1, . . . , εd}, {δk} = {δ1, . . . , δd}; εj, δk = 0, 1. At this point, σ̃i can be considered as
proportionally unitary to the traditional Pauli matrices [22]. In addition, Id

4 is a brief expression
of {i1, i2, . . . , id} as the digits set of I ∈ {0, 1, . . . , 4d − 1} when it is written in base-4 with d digits.
Similarly, E d

2 ,Dd
2 are numbers written in base-2 with d digits (E ,D ∈ {0, 1, . . . , 2d − 1}) representing

{ε1, . . . , εd}, {δ1, . . . , δd}, respectively (note that digits are used inverted, as they commonly appear in
E d

2 or Id
4 expressions). In the following, for simplicity, we use Id

b and I interchangeably because the
base b can normally be inferred from the context. Each element in this basis is not maximally entangled.
Instead, they have maximally entangled bipartite subsystems (see Appendix A.3), which are separable
from the remaining system. Separable pairs contain the parts [s, s + d], s = 1, 2, ..., d (in the following,
square brackets will be used to point out a subsystem of parts in the whole system).

In order for {
∣∣∣ΨId

4

〉
} (I ∈ {0, 1, . . . , 4d − 1}) to reach the kind of sets {

∣∣αj
〉
} stated in the previous

section where H and U achieve the SU(2) block structure, H should fulfill some restrictions. We are
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interested in setting these in the current subsections. Combining expressions (1) and (16), we can
express the components of H in the GBS basis. First, we note [23]:

〈
ΨId

4
|σj1 ⊗ . . .⊗ σj2d |ΨKd

4

〉
=

d

∏
s=1

1√
2

1

∑
εs ,δs=0

(σ̃∗is)εs ,δs

1√
2

1

∑
γs ,φs=0

(σ̃ks)γs ,φs

〈
εs|σjs |γs

〉 〈
δs|σjs+d |φs

〉
=

1
2d ∑
E ,D
F ,G

(σ̃∗i1 ⊗ . . .⊗ σ̃∗id)Ed
2 ,Dd

2
(σj1 ⊗ . . .⊗ σj2d)Ed

2Dd
2 ,F d

2 Gd
2
(σ̃k1 ⊗ . . .⊗ σ̃kd

)F d
2 ,Gd

2

=
1
2d

d

∏
s=1

Tr(σ̃∗is σjd+s σ̃T
ks

σT
js ),

(17)

where combined subscripts as E d
2Dd

2 represent the set of subscripts obtained by merging {ε1 . . . εd} and
{δ1 . . . δd}. Therefore, the final and notable expression for the Hamiltonian components becomes [23]:

〈
ΨId

4
|H|ΨKd

4

〉
=

1
2d

42d−1

∑
J=0

hJ 2d
4

d

∏
s=1

Tr(σ̃∗is σjd+s σ̃T
ks

σT
js ), (18)

where J ∈ {0, 1, . . . , 42d− 1} (here, J = 0 can be removed in spite of the discussion in the first section).
In the last expressions, the product σ̃∗is σjd+s σ̃T

ks
σT

js has some properties inherited from Pauli matrices.

Because σ1, σ2, σ3 are traceless and σT
i = ±σi (negative sign only if i = 2), then Tr(σ̃∗is σjd+s σ̃T

ks
σT

js ) is
non-zero only if is, jd+s, ks, js are: (a) completely different between them; or (b) equal by pairs.

A remark is convenient at this point. In some works (e.g., [22]), GBS are preferred to be defined
using σ̃i = σi for i = 0, 1, 3 and σ̃2 = iσ2 because it allows real coefficients when they are expressed in
the computational basis |0〉 , |1〉 (alternative definitions introduce specific phase factors in σ̃i). We adopt
the last definition in the following, which does not produce changes in the previous discussion. Note
that σ̃i

∗ = σT
i = σi. The last expression should be fitted to (11), in particular with the non-diagonal

block entries. In the following sections, we will show that the GBS basis naturally generates the SU(2)
decomposition if the Hamiltonian fulfills certain restrictions. The use of the GBS basis allows the
management of this analysis because it is based on Pauli matrices.

4.2. Case d = 1

For d = 1 there are three possibilities to arrange the pairs in the corresponding GBS basis (reduced
in this case to the traditional Bell states: {|β00〉 , |β01〉 , |β10〉 , |β11〉}). A direct but large analysis shows
that by fitting (18) to (11), the Hamiltonian should be reduced to the forms shown in Table 1 (assuming
always h02d

4
= 0 and H0 = ∑3

j=1 hjjσj ⊗ σj). The first column shows the pairs arrangement to construct
the blocks. These results generalize those found in [11,12] for the anisotropic Heisenberg–Ising model
reached if the crossed interaction terms such as hijσi ⊗ σj with i, j = 1, 2, 3; i 6= j are not present.
These terms are similar to the Dzyaloshinskii–Moriya model [24,25], opening additional possibilities
for control in the pair exchange. Case d = 1 is special in the current context because for d > 1 crossed
terms can be present only for a unique pair in order to keep the SU(2) decomposition.

Table 1. Basis pairs and Hamiltonian required to get the SU(2) block decomposition for case d = 1.

Basis Arrangement Hamiltonian

{{|β00〉 , |β01〉}, {|β11〉 , |β10〉}} H = H0 + h01σ0 ⊗ σ1 + h10σ1 ⊗ σ0 + h23σ2 ⊗ σ3 + h32σ3 ⊗ σ2
{{|β00〉 , |β11〉}, {|β01〉 , |β10〉}} H = H0 + h02σ0 ⊗ σ2 + h20σ2 ⊗ σ0 + h13σ1 ⊗ σ3 + h31σ3 ⊗ σ1
{{|β00〉 , |β10〉}, {|β01〉 , |β11〉}} H = H0 + h03σ0 ⊗ σ3 + h30σ3 ⊗ σ0 + h12σ1 ⊗ σ2 + h21σ2 ⊗ σ1

Although the eigenvalues {Ej} do not follow a specific order, expressions in (18) can be arranged in

several orders as functions of the pairs selected {
∣∣∣αj(i)

〉
,
∣∣∣αk(i)

〉
}, being related with the decomposition
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process. In general, there are (22d)!
(22d−1)!222d−1 combinations for these pairs, which grow very quickly with

d (3 for d = 1; 2, 027, 025 for d = 2, etc.), making the cases for d > 1 unmanageable in an analogous
direct analysis.

4.3. Case d > 1

The exponential growth of the problem with d makes an exhaustive analysis for d > 1 based on a
large algebraic equation system impossible, as in the previous case. The previous case and the results
in [11,12] suggest some possible Hamiltonians for more complex cases. Thus, some of the following
forms (see Appendix A.1) could allow the SU(2) decomposition for the basis (16):

H0 =
3

∑
j=1

H(j)
0 , H(j)

0 = h
(j 42d−1

3 )2d
4

σ⊗2d
j , (19)

Hnli =
2d

∑
k′>k=1

H(k,k′)
nli

, H(k,k′)
nli

= h(i(4k−1+4k′−1))2d
4

2d⊗
s=1

σ(i(4k−1+4k′−1))2d
4,s

, (20)

Hcnli =
2d

∑
k′>k=1

H(k,k′)
cnli

, H(k,k′)
cnli

=
1

∑
p=0

h(jp4k−1+kp4k′−1)2d
4

2d⊗
s=1

σ(jp4k−1+kp4k′−1)2d
4,s

, (21)

Hli =
2d

∑
k=1

H(k)
li

, H(k)
li

= h(i4k−1)2d
4

2d⊗
s=1

σ(i4k−1)2d
4,s

, (22)

where (i4k−1)2d
4 is the base-4 representation with 2d digits of i4k−1, a number with only one i in position

k and zero in the other; (i4k−1)2d
4,s is its element s; and (j 42d−1

3 )2d
4 is the base-4 representation with 2d

digits of j 42d−1
3 , a number with j in each digit position (by using the geometric partial sums properties).

Note that i ∈ {1, 2, 3} is fixed in all expressions. Physically, H0 represents a full simultaneous
interaction between all particles (as in the bipartite Heisenberg–Ising anisotropic interaction). Although
this kind of interaction is non-physical for d > 1, it is included here for reference. Hnli represents the
interaction between the component i of the spin for pairs of particles as in the Heisenberg–Ising model.
Hcnli is the crossed non-local interactions by pairs in the direction i (as those for d = 1 in Table 1), a
label used to characterize these interactions (as in the Dzyaloshinskii–Moriya model). Note that i, jp, kp

is a permutation of 1, 2, 3 with parity p = 0, 1, even and odd, respectively. Finally, Hli is the component
i of the local interactions with h(i4k−1)2d

4
as strengths (e.g., magnetic fields in the direction i for magnetic

systems). These cases generalize the bipartite models presented in [11,12] and those found for d = 1.
Some observations are useful at this point: (a) σ̃i = αiσi, αi ∈ {1, i}; (b) σT

i = βiσi,
βi ∈ {−1, 1}; (c) σiσj = γi,jσjσi, γi,j ∈ {−1, 1}. Thus, 2cis ,ks

js ,jd+s
≡ Tr(σ̃is σjd+s σ̃T

ks
σT

js ) =

αis αks β js βks γks js γksis Tr(σis σks σjd+s σjs) ∈ {0,±2,±2i}. We do not provide extensive formulas for

the coefficients αi, βi, γi,j, cis ,ks
js ,jd+s

, but they are trivially constructed departing from the Pauli
matrices properties.

At this point, a convenient definition is introduced for the following cases. We will say that
two particles or parts, i, j, are correspondents if j = i + d, with i, j − d ∈ {1, 2, ..., d}. This means
simply that one is in the same position of the first group of the Hamiltonian subscripts 1, 2, ..., d as the
other is in the second group d + 1, d + 2, ..., 2d. Then, the analysis of

〈
ΨId

4
|H0|ΨKd

4

〉
,
〈

ΨId
4
|Hli |ΨKd

4

〉
,〈

ΨId
4
|Hcnli |ΨKd

4

〉
and

〈
ΨId

4
|Hnli |ΨKd

4

〉
is conducted with the following results.

4.3.1. Analysis of
〈

ΨId
4
|H0|ΨKd

4

〉
Because J = j 42d−1

3 in (18), then jd+s = js = j ∀s = 1, 2, ..., d, implying cis ,ks
js ,jd+s

6= 0 only if
is = ks ∀s = 1, 2, . . . , d. Thus, H0 is diagonal in the GBS basis representation and each entry will
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contain the same three terms h
(j 42d−1

3 )2d
4

for j = 1, 2, 3, but each with diverse signs. Despite the similitude

of H0 with the bipartite case (d = 1), for multipartite cases this interaction is non-physical, but it allows
the main idea to be introduced and understood in the remaining analysis.

4.3.2. Analysis of
〈

ΨId
4
|Hli |ΨKd

4

〉
The treatment for the remaining cases is compressed in the explanation of the current case. By first

considering only an isolated term H(k)
li

(in this case J = i4k−1 for some i ∈ {1, 2, 3} and k = 1, 2, . . . , 2d
in (18)), then J in the base-4 representation contains only one i (in the position k) while other digits are
zero. Thus, there are only two meaningful possibilities for each correspondent part: (1) jd+s = js = 0
in most cases, so is = ks is the only case with cis ,ks

js ,jd+s
6= 0; or (2) one and only one position s = k or

d + s = k in J d
4 has jk = i, either for js or jd+s, while the other is zero. This last case implies only two

possibilities for is, ks: Case (A) one of is, ks is i and other is zero (both possibilities are possible); or Case
(B) i, is, ks are different among them and from zero, thus they are a permutation i, i′, i′′ of 1, 2, 3. In this
case, there are two possibilities, is = i′, ks = i′′ or is = i′′, ks = i′.

Case A is depicted in Figure 1 for indexes I ,K being considered in
〈

ΨId
4
|Hli |ΨKd

4

〉
. There

is a pair of entries whose labels for rows and columns have 0 or i in the position s = k:
((i1, i2, . . . , i, . . . , id), (i1, i2, . . . , 0, . . . , id)) and ((i1, i2, . . . , 0, . . . , id), (i1, i2, . . . , i, . . . , id)). This will be
named the 0↔ i association (or index exchange) rule.

Figure 1. First case for a pair of entries in which
〈

ΨId
4
|Hli
|ΨKd

4

〉
is non-zero. In them, for a fixed

position s = k in the row and the column labels appears i or 0, while the other corresponding positions
in the row and in the column have the same values.

Case B is depicted in Figure 2. Here, there is a pair of entries whose labels for rows
and columns have i′ or i′′ in the position s = k: ((i1, i2, . . . , i′, . . . , id), (i1, i2, . . . , i′′, . . . , id)) and
((i1, i2, . . . , i′′, . . . , id), (i1, i2, . . . , i′, . . . , id)), i, i′, i′′ being a permutation of 1, 2, 3. This will be named the
i′ ↔ i′′ association (or index exchange) rule.

Clearly, in each case (A or B), for each pair of correspondent interaction terms with i and k fixed
(k ≤ d and k + d positions), there are only two pairs on non-zero entries in rows (i1, i2, . . . , i, . . . , id),
(i1, i2, . . . , 0, . . . , id) for case A and in rows (i1, i2, . . . , i′, . . . , id), ((i1, i2, . . . , i′′, . . . , id)) for case B (with
the corresponding column labels exchanged in both cases). Together with the diagonal entries
generated by other adequate Hamiltonians (e.g., H0 or Hnli as it will be seen), they will form 2× 2
blocks. In fact, each non-zero entry for Hli will have only two hJ terms corresponding with h0,0...0,i,0,...,0
with i in positions s or d + s (meaning local interaction with each element of the pair of correspondent
parts in position k). Noting that labels in the position s = k in I (row) and K (column) for the non-zero
entries are 0, i; i, 0; i′, i′′; or i′′, i′, they cover all possibilities ik = 0, 1, 2, 3. Thus, for a fixed column and
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defined i, k values in
〈

ΨId
4
|Hli |ΨKd

4

〉
, there is exactly one non-zero row. Still, if two correspondent k

elements are considered (local interactions on each element of a correspondent pair), they still generate
only one non-zero row (each one with the two terms explained before).

Figure 2. Second case for a pair of entries in which
〈

ΨId
4
|Hli
|ΨKd

4

〉
is non-zero. In them, for a fixed

position s = k in the row and the column labels appears i′ or i′′ alternatively (i, i′, i′′ being a permutation
of 1, 2, 3), while other corresponding positions in the row and in the column have the same values.

Although there are 2d possibilities to select the position s = k in (22), they do not count as separate
blocks because they appear in other entries in (18). Instead, each term in non-correspondent terms
will appear in a different non-zero row, giving d non-zero rows as total. For each i direction of the
interaction being included, additional non-zero rows will appear. This implies that 3d rows could
appear when all parts have local interactions in the three spatial directions at time, destroying in this
case the 2× 2 block structure. Thus, maintaining local interactions in only one direction and on only
one correspondent pair of elements, together, cases A and B form 1

2 4d 2× 2 blocks as was required
in the previous section. In any case, each non-zero entry will have the same 2 terms h(i4k−1)2d

4
with

different signs depending on cis ,ks
js ,jd+s

involved in each factor of H(k)
li

. Clearly, blocks can be rearranged
to adequately order the GBS basis elements getting the form (11). A brief analysis shows that there are
no more diagonal-off elements in addition to last cases being generated by local terms. Additional
diagonal-off elements come from the non-local terms, such as those in Table 1.

4.3.3. Analysis of
〈

ΨId
4
|Hnli |ΨKd

4

〉
With the correspondent parts definition and the analysis for Hli , we can identify two cases for

the different terms H(k,k′)
nli

: (a) non-local interactions between correspondent parts; and (b) non-local
interactions between non-correspondent parts. The discussion is similar to the previous subsection.
Correspondent terms H(k,k+d)

nli
. This term in the Hamiltonian Hnli contains σ0 ⊗ ...⊗ σi ⊗ ...⊗ σi ⊗ ...⊗

σ0 with σi in positions k and k + d, and σ0 in any other. When this term is allocated in
〈

ΨId
4
|Hnli |ΨKd

4

〉
in agreement with (18), it does not cancel if each factor in the product become different from zero,
implying is = ks ∀s = 1, 2, ..., d. Thus, this term gives non-zero entries only in the diagonal elements.
Thus, each non-zero entry of Hnli will have d different terms in each diagonal element (one for each
pair of interacting correspondent particles). Those terms will appear with different signs in each
diagonal element in spite of cis ,ks

js ,jd+s
. At this point, note that results for H(k,k+d)

nli
and H(k)

li
were expected

due to the results in [11,26] and the separability of the GBS basis in their constitutive entangled pairs.

Non-correspondent terms H(k,k′ 6=k+d)
nli

. These terms have a different behavior. Each term contains
σ0 ⊗ ... ⊗ σi ⊗ ... ⊗ σi ⊗ ... ⊗ σ0, with σi in positions k and k′, and σ0 in any other. It defines two
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pairs of correspondent parts involving σi: [k, k + d, k′, k′ + d] if k < k′ ≤ d or k, k + d, k′ − d, k′ if
k ≤ d < k′ ≤ 2d. Then, each factor in (18) related with those two pairs (s = k, k′ or s = k, k′ − d) will
now include Tr(σis σiσks) (until unitary factors), which is non-zero only if: (a) is or ks are one of the
pairs 0 and i or i and 0; (b) i, is, ks are a permutation i, i′, i′′ of 1, 2, 3 (having two cases depending on
the parity). The last situation is similar to the local terms in the previous subsection, but in two parts
simultaneously. The remaining factors for s 6= k, k′ or s 6= k, k′ − d will require is = ks in order to
become non-zero. The latter scenario gives 16 possibilities for each term h(i(4k−1+4k′−1))2d

4
, which will

appear in diagonal-off positions obtained departing from the diagonal position (i1, ..., id; i1, ..., id) in〈
ΨId

4
|Hnli |ΨKd

4

〉
, by changing each index in the pair (ik, i′k) in the row, following the rules depicted

in cases A and B. Thus, for each column and with i, k, k′ fixed, only one row becomes non-zero, in
agreement with the previous rule. Each entry of this kind involves four terms, including the four
combinations of each pair of non-correspondent parts selected from the set [k, k′, k + d, k′ + d]. Instead,
when all values i and k, k′ are considered, a total of 3 · 1

2 d(d− 1) non-zero rows appear in each column
(clearly, by considering all these terms, SU(2) decomposition is not achieved).

4.3.4. Analysis of
〈

ΨId
4
|Hcnli |ΨKd

4

〉
Correspondent terms H(k,k+d)

cnli
. For each term H(k,k+d)

cnli
, the behavior is similar as for H(k′)

li
. Because

only one correspondent pair has jp = js 6= 0 6= jd+s = kp in (18), then is, ks for s = k′ should be
0, i or jp, kp. For s 6= k′, is = ks. As before, it means that each term is diagonal-off by combining
the values of index k′ in I and K as before: 0, i; i, 0; jp, kp; and kp, jp. For a fixed column and i, k,
it will give four possibilities and two SU(2) blocks. Each entry will have two terms corresponding
to the different parities p. Note that only one i and k′ can be considered to achieve the SU(2)
decomposition. Otherwise, for each column, 3d rows different from zero could appear, breaking the
SU(2) decomposition as for the local interaction case.

Non-correspondent terms H(k,k′ 6=k+d)
cnli

. As for H(k,k′ 6=k+d)
nli

, in this case the only non-zero terms have
is = ks for s 6= k, k′, k− d, k′ − d. Meanwhile, for the two remaining cases s ∈ {k, k′, k− d, k′ − d} ∩
{1, 2, . . . , d}, each is, ks should be selected from the set 0, jp; jp, 0; i, kp; kp, i or 0, kp; kp, 0; i, jp; jp, i. In a

specific column and fixing i, it will give 16 possibilities and 8 blocks in SU(2), as for the H(k,k′ 6=k+d)
nli

case. Note that parity p should be fixed in this case because each one gives a different decomposition.
Each entry will contain four terms for each parity p combining the four possible interaction terms.
Again, if all options for i and k, k′, p are considered, then 3 · d(d − 1) non-zero rows will appear
for each column, breaking the SU(2) decomposition. These terms are not commonly introduced
in models such as Heisenberg–Ising and those related. Instead, for magnetic systems they are the
first-order approximation in the spin–orbit coupling, introducing antisymmetric exchange as in the
Dzyaloshinskii–Moriya model: HDM =

−→
D · (−→σ1 ×−→σ2 ). There,

−→
D is the Dzyaloshinskii–Moriya vector

defining the orientation of coupling. Here, as only one term can be included in order to preserve the
SU(2) reduction property, this coupling should be strictly oriented.

4.4. Explicit Analytical Formulas for Hamiltonian Components

After the last analysis, it is clear that other candidates to generate SU(2) decomposition are
possible, but they involve more than two parts at a time (as in the case of H0), which are non-physical
for common point-like interactions. Nevertheless, these terms could appear for the quantum
mechanical extended objects in which (1) is a mere expansion of the interactions. Therefore, we
will restrict our remaining discussion to local or pairwise interactions. In this section, analytical
formulas for

〈
ΨId

4
|Hli |ΨKd

4

〉
,
〈

ΨId
4
|Hnli |ΨKd

4

〉
, and

〈
ΨId

4
|Hcnli |ΨKd

4

〉
are provided to summarize the

previous findings and because of their utility for optimal computer simulation purposes for larger
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systems. In order to simplify the expressions, we introduce the definition of the following generalized
Kronecker delta:

δS
IK ≡

d

∏
s=1
s/∈S

δisks , (23)

where S is a set of scripts of the excluded parts in the product. Thus, for Hli :〈
ΨId

4
|Hli |ΨKd

4

〉
=

d

∑
k′=1

δ
{k′}
IK H

k′
li Id

4 ,Kd
4
,

with : Hk′
li Id

4 ,Kd
4
=

1

∑
t′=0

h(i4k′+dt′−1)2d
4
F iδ0,t′ ,iδ1,t′

i,k′ ,

(24)

by noting cis ,is
0,0 = 1. In Hk′

li Id
4 ,Kd

4
, [k′, k′ + d] is the correspondent pair where each local interaction is

being applied. There, the exchange factor generating the diagonal-off entries in the SU(2) blocks is:

F j,k
i,k′ = δik′0δkk′ ic

0,i
j,k + δik′ iδkk′0

ci,0
j,k +

3

∑
i′ ,i′′=1

ε2
ii′i′′δik′ i

′δkk′ i
′′ci′ ,i′′

j,k . (25)

For Hnli : 〈
ΨId

4
|Hnli |ΨKd

4

〉
=

d

∑
k′=1

δ
{k′}
IK H

c,k′
nli Id

4 ,Kd
4
+

d

∑
k′′>k′=1

δ
{k′ ,k′′}
IK Hnc,k′k′′

nli Id
4 ,Kd

4
,

with : Hc,k′
nli Id

4 ,Kd
4
= h(i(4k′−1+4k′+d−1))2d

4
δik′ kk′

cik′ ,ik′
i,i ,

Hnc,k′k′′
nli Id

4 ,Kd
4
=

1

∑
t′ ,t′′=0

h(i(4k′+dt′−1+4k′′+dt′′−1))2d
4
F iδ0,t′ ,iδ1,t′

i,k′ F iδ0,t′′ ,iδ1,t′′
i,k′′ .

(26)

Each term belongs to correspondent and non-correspondent interactions, respectively. In
Hc,k′

nli Id
4 ,Kd

4
andHnc,k′k′′

nli Id
4 ,Kd

4
, [k′, k′′] are the parts with non-local interactions between them. Similarly,

forHcnli : 〈
ΨId

4
|Hcnli |ΨKd

4

〉
=

d

∑
k′=1

δ
{k′}
IK H

c,k′
cnliId

4 ,Kd
4
+

1

∑
p=0

d

∑
k′′>k′=1

δ
{k′ ,k′′}
IK Hnc,k′k′′p

cnli Id
4 ,Kd

4
,

with : Hc,k′
cnliId

4 ,Kd
4
=

1

∑
p=0

h(jp4k′−1+kp4k′+d−1)2d
4
F jp ,kp

i,k′ ,

Hnc,k′k′′p
cnli Id

4 ,Kd
4
=

1

∑
t′ ,t′′=0

h(jp4k′+dt′−1+kp4k′′+dt′′−1)2d
4
F jpδ0,t′ ,jpδ1,t′

jp ,k′ F kpδ0,t′′ ,kpδ1,t′′
kp ,k′′ .

(27)

Again, Hc,k′
cnli

and Hnc,k′k′′p
cnli

are the correspondent and non-correspondent interactions in the
Hamiltonian, [k′, k′′] being the parts where there are non-local interactions. This explicitly shows

the existence of four (for Hk′
li

and Hc,k′
cnli

) and sixteen (for Hnc,k′k′′
nli

and Hnc,k′k′′p
cnli

) diagonal-off entries,
respectively, in agreement with cases A and B depicted by Figures 1 and 2 (if only single specific values
of i, k′, k′′ are considered instead of the whole sum), generating 2× 4d−1 = 1

2 × 4d and 8× 4d−2 = 1
2 × 4d

blocks, respectively. Then, the SU(2) decomposition could be achieved only by: (a) including any
desired non-local termsHc,k′

nli
(to generate the diagonal elements); and (b) including only one type of

interaction amongHk′
li

,Hnc,k′k′′
nli

,Hc,k′
cnli

orHnc,k′k′′p
cnli

for concrete values for i, k′, k′′, and p.
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An important property used later for F js ,jd+s
i,k′ is that only one term in (25) remains with the election

of ik′ and kk′ . Because each cjs ,jd+s
j,k is real or imaginary, and more concretely as a brief analysis shows,

if it is not zero, then it becomes imaginary only if js or jd+s is equal to 2, this property is transferred
to F js ,jd+s

i,k′ .

5. Specific Interactions Generating SU(2) Decomposition

In this section, we summarize and organize the global findings to reach the SU(2) block structure
on the GBS basis. Finally, we conclude that there are three great types of interactions that are able to
generate the block structure depicted in Section 3.

5.1. General Depiction of Interactions Having SU(2) Decomposition for the GBS Basis

Based on the previous discussion, there are three groups of interactions that are able to generate
the SU(2) decomposition on the GBS basis. The first one (Type I) involves all kinds of non-local
and non-crossed interactions between any two correspondent parts in any direction. These terms
generate the diagonal terms depicted previously in the Hamiltonian. Together, only two local
interactions in only one specific direction and on only one pair of correspondent parts, kl , should
be included to generate the diagonal-off entries. Thus, this group of interactions generates the
SU(2) blocks. Note that local interaction terms could be intended as external driven fields as
in [11,26]. The second interaction (Type II) is obtained by substituting the previous local interactions
with non-local interactions among only those non-correspondent elements included in two pairs
of correspondent parts. This means that if k, k′, k + d, k′ + d with k < k′ ≤ d are these elements in
the two correspondent parts, then only the interactions between the following non-correspondent
elements are allowed: [k, k′], [k, k′ + d], [k′, k + d], and [k + d, k′ + d]. This group of four interactions
generates the diagonal-off terms to conform the SU(2) blocks. Nevertheless, the Type II interaction
should normally be understood as a non-driven process of control. Note that Type II interaction
could be classified into two other subclasses: (a) Type IIa for non-crossed interactions Hnc,k′k′′

nli
; and

(b) Type IIb for crossed interactionsHnc,k′k′′p
cnli

. Finally, the third interaction (Type III) involves both the
non-local and non-crossed interactions, with the inclusion of crossed interactions between one specific
correspondent pair.

In order to clarify the structure of those notable interaction architectures as special cases of
Hamiltonian (1), we make some remarks as follows. Figure 3 summarizes the three types of interactions
depicted above by listing the 2d qubits involved and then relating them with arrows in agreement
with their mutual interactions. Then:

A: Curved arrows point out those qubits related through entangling operations in any case.
B: All curved arrows in the bottom refer to Heisenberg–Ising-like (non-crossed) interactions

involving the three possible spatial directions together. Those interaction relations set the
correspondent pairs.

C: For the curved arrows in the top, two kinds of entangling operations can be considered according
to the text: Heisenberg–Ising-like (non-crossed) interactions or Dzyaloshinskii–Moriya-like
(crossed) interactions. Only one characteristic spatial direction is allowed.

D: Type II interactions can be split into Type IIa and Type IIb if interactions in the top are non-crossed
or crossed (between parts of two different correspondent pairs), respectively. Type IIb interactions
in the top admits only one possible parity from the two possible.

E: Type III interactions admit only crossed interactions in the top between parts of one specific
correspondent pair, but the two possible parities together are allowed.

F: For Figure 3a, the right arrows correspond to external local interactions such as those generated
by magnetic fields on spin-based qubits. Due to their locality, they are referred to as driven
interactions, although it actually depends on the available control of the interactions.
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Figure 4a shows a pictorial representation of each interaction, where the pairing is graphically
represented. Therein, yellow rays with blue contour are non-crossed interactions in the three
spatial directions [B]. Yellow rays with red contour represent one interaction from non-crossed
or crossed entangling interactions in only one spatial direction [D]. Blue rays with red contour
indicate non-crossed interaction in three spatial directions together with a crossed interaction in
only one direction [E]. Yellow triangles indicate local interactions on the respective qubits in only one
correspondent pair [F].

Figure 3. Three types of physical interactions able to generate the block decomposition. Non-local and
non-crossed interactions among any correspondent parts combined with: (a) local interactions on only
two correspondent parts (kl , kl + d); (b) any two non-correspondent parts in only two specific pairs of
correspondent parts of only one subtype, non-crossed or crossed; and (c) crossed interactions between
a specific pair of correspondent parts.

In particular, note that this description is in agreement with the results in Table 1 for d = 1,
although it is a special case because diagonal-off entries for Type I, II, and III coincide in the same
diagonal-off entries, so both interactions could be combined at the same time, preserving the SU(2)
decomposition. This case has a richer structure for control in terms of the number of free parameters
involved with respect to the number of parts to be controlled. Note that while Types I and III are
only able to modify the inner entanglement of the correspondent pairs, Type II interaction (Type IIa
and IIb) allows the modification of the global entanglement between different correspondent pairs,
thus letting it spread on the entire system by switching the pairs involving interactions generating
diagonal-off entries.
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Figure 4. Representation of qubit interactions able to generate SU(2) decomposition: (a) Type I, II, and
III interactions among 2d qubits (Type III assumes the inclusion of crossed interactions in the pair k′);
and (b) Distributed evolution on 22d−1 Bloch spheres, each one for the states

∣∣∣ψj

〉
.

5.2. General Structure of SU(2) Blocks

A complementary analysis of SU(2) blocks obtained for the last interactions is given in this
subsection. Their form is particularly useful as a connection with optimal control schemes, such as
those presented in [9]. In any case (Type I, II, or III), each block SHI ,I ′ (with I , I ′ the rows in which is
situated) has the form:

SHI ,I ′ =

(
h11 h12

h∗12 h22

)

=
h11 + h22

2
II ,I ′ + Re(h12)XI ,I ′ − Im(h12)YI ,I ′ +

h11 − h22

2
ZI ,I ′ ,

(28)

where {II ,I ′ ,XI ,I ′ ,YI ,I ′ ,ZI ,I ′} is the Pauli basis for the SU(2) block. If the Hamiltonian coefficients
involved in the block are time-independent, then the corresponding SUI ,I ′ block in the evolution
matrix becomes:

SUI ,I ′ =eiSHI ,I′
t
h̄ = ei h11+h22

2h̄ teiωn·sI ,I′ t = ei h11+h22
2h̄ t(cos ωt + i sin ωtn · sI ,I ′)

=ei h11+h22
2h̄ t

(
cos ωt + i h11−h22

2h̄ω sin ωt i h12
h̄ω sin ωt

i h∗12
h̄ω sin ωt cos ωt− i h11−h22

2h̄ω sin ωt

)
,

with :n =
1

h̄ω
(Re(h12),−Im(h12),

h11 − h22

2
),

sI ,I ′ = (XI ,I ′ ,YI ,I ′ ,ZI ,I ′),

h̄ω =

√
|h12|2 +

1
4
|h11 − h22|2,

(29)

clearly belonging to U(1)× SU(2) (see Appendix A.2). As stated previously, F js ,jd+s
j,k′ is imaginary only

if js or jd+s is 2. Thus, only one component from n1 or n2 is different from zero because non-diagonal
entries of block in (24), (26), and (27) are always real or imaginary. This reduces the optimal control to
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the second case reported by [9]. An additional analysis shows that h11 ± h22 6= 0 in general (without
imposing restrictions on the non-local strengths hJ ). This aspect will be relevant later.

5.3. Structure of SU(2) Blocks for Each Interaction

Several classical interactions fitting in the current procedure were analyzed. All them generate
blocks (not necessarily SU(2) blocks) when they are expressed in the GBS basis, denoting a kind
of universality for this basis due to its ability to gather similar interactions through simplified
representations. For the sake of the search for SU(2) decomposition, we discuss finally closed forms
for the specific Hamiltonians able to achieve the SU(2) decomposition. These formulas are quite useful
for computer simulation purposes.

5.3.1. Blocks in Type I Interaction

This interaction includes non-crossed spin interactions between correspondent particles in all
spatial directions and external local interactions on the pair [k′, k′ + d] of correspondent particles in
direction j. From (24)–(26), it can be written as:

HI =HD + H(j,k′)
NDI

,

with :HD ≡
3

∑
i′=1

d

∑
k=1

h(i′(4k−1+4k+d−1))2d
4

2d⊗
s=1

σ(i′(4k−1+4k+d−1))2d
4,s

,

H(j,k′)
NDI

=
1

∑
t′=0

h(j4k′+dt′−1)2d
4

2d⊗
s=1

σ(j4k′+dt′−1)2d
4,s

,

(30)

generating SU(2) blocks with the diagonal terms from non-local interactions between correspondent
parts and the non-diagonal terms from local interactions. Departing from (24)–(26), we obtain for the
Hamiltonian components:

〈
ΨId

4
|HI |ΨKd

4

〉
= δIK

3

∑
i′=1

d

∑
k′′=1

(
(−1)

δi′ ,2+(1−δi′ ,ik′′
)(1−δ0,ik′′

)
h(i′(4k′′−1+4k′′+d−1))2d

4

)
+

1

∑
t′=0

h(j4k′+dt′−1)2d
4

δ
{k′}
IK F

jδ0,t′ ,jδ1,t′
j,k′ ≡ HDIK + H(j,k′)

NDI IK.

(31)

The last formula is obtained noting that cik′′ ,ik′′
i,i = (−1)δi,2+(1−δi,ik′′

)(1−δ0,ik′′
). The first term of the

last expressions denotes the diagonal terms of interaction. This formula shows that the pair of entries
in the diagonal of each SU(2) block are generally different. Because the block is formed by switching
an index ik′′ in the row labels (or two as in the following cases) in agreement with the association rules
0↔ j or i↔ k (j is the direction associated to the interaction and i, j, k a permutation of 1, 2, 3), then for
i′ 6= j the terms in HDIK have a sign change. This implies that in general h11 6= h22 in (28), generating
non-diagonal SHI ,I ′ -blocks. The second term contains the four diagonal-off elements generating two

blocks with two terms each. Note that Hamiltonian terms (hI ) are real together with cik′′ ,ik′′
i,i , so diagonal

terms are real, as expected. Diagonal-off terms will be real or imaginary depending on F j,0
j,k′ ,F

0,j
j,k′ .

In any case, concretely, they are imaginary only if j = 2.
Note that this interaction (when it is applied to a combination of correspondent pairs with

bipartite entangled states) generates only non-local operations on each correspondent pair, such as
those presented in [11,13]. Still switching the direction j and the correspondent pair k′ on which the
local interaction is applied, this kind of Hamiltonian cannot generate extended entanglement between
correspondent pairs more than that included in the initial state. This means that if the initial state is
separable by correspondent pairs, it will remain separable at this level (but should be able to entangle
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or untangle the parts of each pair). Conversely, it cannot disentangle each correspondent pair from the
remaining state in more complex cases. We dedicate a later section to analyzing these topics.

5.3.2. Blocks in Type II Interaction

Type IIa: In this case, the interaction is completely non-local between correspondent pairs to generate
the diagonal entries, and in only one direction between non-correspondent parts in two correspondent
pairs to generate the diagonal-off entries. The Hamiltonian becomes:

HI Ia =HD + H(j,k′k′′)
NDI Ia

,

with :H(j,k′k′′)
NDI Ia

=
1

∑
t′ ,t′′=0

h(j(4k′+dt′−1+4k′′+dt′′−1))2d
4

2d⊗
s=1

σ(j(4k′+dt′−1+4k′′+dt′′−1))2d
4,s

,
(32)

with a non-local and non-crossed interaction in the direction j for the group of non-correspondent
terms defined by k′ < k′′ ≤ d. The Hamiltonian entries are similar to those in (24)–(26), but with
the last restriction for the non-correspondent terms of interaction. Due to discussion in the previous
subsection, diagonal-off entries in the Hamiltonian are now always real. The components become:〈

ΨId
4
|HI Ia|ΨKd

4

〉
= HDIK + H(j,k′k′′)

NDI Ia IK,

H(j,k′k′′)
NDI Ia IK ≡

1

∑
t′ ,t′′=0

h(j(4k′+dt′−1+4k′′+dt′′−1))2d
4

δ
{k′ ,k′′}
IK F jδ0,t′ ,jδ1,t′

j,k′ F jδ0,t′′ ,jδ1,t′′
j,k′′ .

(33)

Type IIb: For this interaction, the non-diagonal part generated by the non-local interaction between
non-correspondent parts is supplied by a non-local and crossed interaction among non-correspondent
parts of two correspondent pairs:

HI Ib =HD + H(i,k′k′′p)
NDI Ib

,

with :H(i,k′k′′p)
NDI Ib

≡
1

∑
t′ ,t′′=0

h(jp4k′+dt′−1+kp4k′′+dt′′−1)2d
4

2d⊗
s=1

σ(jp4k′+dt′−1+kp4k′′+dt′′−1)2d
4,s

.
(34)

As before, i, jp, kp is a permutation of 1, 2, 3 with parity p = 0, 1 (even and odd, respectively).
Thus, the components become:〈

ΨId
4
|HI Ib|ΨKd

4

〉
= HDIK + H(i,k′k′′p)

NDI Ib IK
,

H(i,k′k′′p)
NDI Ib IK

=
1

∑
t′ ,t′′=0

h(jp4k′+dt′−1+kp4k′′+dt′′−1)2d
4

δ
{k′ ,k′′}
IK F jpδ0,t′ ,jpδ1,t′

jp ,k′ F kpδ0,t′′ ,kpδ1,t′′
kp ,k′′ .

(35)

The non-diagonal entries are now imaginary, except for i = 2.

5.3.3. Blocks in Type III Interaction

Finally, for Type III interaction, the non-diagonal part is generated by the non-local and crossed
interaction between a pair of correspondent parts k′:

HI I I = HD + H(i,k′)
NDI I I

,

with :H(i,k′)
NDI I I

=
1

∑
p=0

h(jp4k′−1+kp4k′+d−1)2d
4

2d⊗
s=1

σ(jp4k′−1+kp4k′+d−1)2d
4,s

,
(36)
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with the Hamiltonian components:〈
ΨId

4
|HI I I |ΨKd

4

〉
= HDIK + H(i,k′)

NDI I I IK,

H(i,k′)
NDI I I IK =

1

∑
p=0

h(jp4k′−1+kp4k′+d−1)2d
4

δ
{k′}
IK F

jp ,kp
i,k′ ,

(37)

where non-diagonal entries are imaginary only if i = 2.
Figure 4b shows a distributed evolution on 22d−1 Bloch spheres for the states∣∣ψj
〉

= α2j−2
∣∣Ψ2j−2

〉
+ α2j−1

∣∣Ψ2j−1
〉

, which are part of the global state |ψ〉 = ∑22d−1

j=1
∣∣ψj
〉
,

where each |Ψk〉 is an element of the GBS basis. Each state
∣∣ψj
〉

evolves as a different curve on each
Bloch sphere depending on parameters hJ .

Finally, we should note that each of the previous interactions involves labels to be completely

identified, namely: H(j,k′)
I , H(j,k′ ,k′′)

I Ia , H(j,k′ ,k′′ ,p)
I Ib , and H(j,k′ ,k′′)

I I I . These labels will be omitted by simplicity
unless their specification becomes needed. In any case, closed expressions (31), (33), (35), and (37) are
computationally efficient to generate matrix representations of Hamiltonians HI , HI Ia,b, HI I I , and for
their respective U, inclusively in the time-dependent case, although a numerical approach to construct
could also be necessary.

5.4. Available Parameters and Structure of Entries

The number of free parameters (coefficients hI of Hamiltonian) and their availability are important
to set control procedures. In this section, we count the entries and terms for each Hamiltonian,
summarizing the previous findings. If D ≤ 3 is the number of spatial dimensions involved in each
interaction, then the accounting of free parameters generating the SU(2) decomposition, together with
the maximum number of entries by column able to generate it (breaking the SU(2) decomposition) is
reported in Table 2. Note that the number of entries by column for all Hamiltonians (labeled with i, in
some sense the direction of the interaction) can be increased by a factor D if all directions are considered
at time. In the table, each Hamiltonian analyzed is reported, arriving at the main Hamiltonians
HI , HI Ia,b, and HI I I . Accounting shows few free parameters at time (compared with the exponential
growth of the matrix with the system size d) to set a whole control (over all blocks) in one period
of constant driven parameters, suggesting the use of time-dependent or at least constant-piecewise
parameters to increase the control.

Table 2. Rows generated and free parameters in each interaction considered in the text.

Hamiltonian Entries Type Entries by Column/Row Parameters by Entry

H0 Diagonal 1 D ≤ 3
Hli

Non-diagonal d 2
Hc

nli
Diagonal 1 d

Hnc
nli

Non-diagonal 1
2 d(d− 1) 4

Hc
cnli

Non-diagonal d 2
Hnc

cnli
Non-diagonal d(d− 1) 4

HI 2 × 2 block 2 2 + Dd ≤ 2 + 3d
HI Ia,b 2 × 2 block 2 4 + Dd ≤ 4 + 3d
HI I I 2 × 2 block 2 2 + Dd ≤ 2 + 3d

5.4.1. Structure of Diagonal Entries Belonging to a Specific Block

Other aspects should be discussed. The first is related to terms in diagonal entries generated by
non-local interactionsHc,s

nlj
among correspondent parts. Note that blocks are generated by interactions

other than those, which are prescribed as a difference in one (Hc,k′
nli

orHc,k′
cnli

) or two (Hnc,k′k′′
nli

orHnc,k′k′′p
cnli

)
terms in the scripts labels, in agreement with the rules depicted in Figures 1 and 2. This implies
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that there will be two or eight blocks, each one relating rows (and columns) differing in only one
or two terms of their scripts, respectively. Note the diagonal entries for Hc,s

nlj
in (18) for the GBS

defined as in [22]: Tr(σ̃∗is σjσ̃
T
is σT

j ) = 2(−1)δj,2+(1−δj,is )(1−δ0,is ). Then, for each three strengths for a
fixed correspondent pair, there will be only four sign combinations (none is the negative of another)
depending on: (a) the direction of the interaction involved (on the correspondent pair s) is j = 2 or
j 6= 2; and (b) is for the sth script is in the set {0, j} or in {i, k} (with i, j, k a permutation of 1, 2, 3).
There, the factors corresponding to other correspondent pairs will be equal to one. Then, for the 3d
terms included in all diagonal entries there will be 4d combinations for the whole terms—precisely the
number of rows. This implies that all diagonal entries are different (but not independent because there
are only 3d parameters). For two rows differing in only one or two terms in their scripts, only the three
or six terms corresponding with the strengths ofHc,s

nlj
for such correspondent pairs (associated with

those terms in the scripts) will change their signs in the diagonal terms in their block. Consequently,
for such 4d−1 or 4d−2 groups of blocks having the same scripts exchanged and generated by the whole
combinations in the other d − 1 or d − 2 terms in their scripts, they will have the same h11 − h22

parameters, respectively. Thus, it will be only two or eight different h11 − h22 parameters for the entire
H. Meanwhile, h11 + h22 parameters could be different.

5.4.2. Structure of Diagonal-Off Entries Belonging to a Specific Block

The second aspect is related to the explicit calculation of cis ,ks
js ,jd+s

for the basic cases of interest in
the diagonal-off entries. (a) For HI and HI Ia,b: js = j, jd+s = 0, or js = 0, jd+s = j (j being the direction
label involved in the local and non-local interactions between non-correspondent parts); and (b) for
HI I I : js = jp, jd+s = kp. Table 3 explicitly shows these values. Note the parallelism between their two
halves (vertically and horizontally).

Table 3. Values of cis ,ks
js ,jd+s

for all exchange scripts in HI , HI Ia,b, HI I I . i, j, k is an even permutation of 1, 2, 3.

(js, js+d) (is, ks) cis ,ks
js ,jd+s

(is, ks) cis ,ks
js ,jd+s

(is, ks) cis ,ks
js ,jd+s

(is, ks) cis ,ks
js ,jd+s

(0, 2) (0, 2) −i (2, 0) i (1, 3) i (3, 1) −i
(2, 0) (0, 2) i (2, 0) −i (1, 3) i (3, 1) −i

(0, j 6= 2) (0, j) 1 (j, 0) 1 (i, k) −(−1)δ2k (k, i) −(−1)δ2k

(j 6= 2, 0) (0, j) 1 (j, 0) 1 (i, k) (−1)δ2k (k, i) (−1)δ2k

2 ∈ (j, k) (j, k) −i (k, j) i (0, i) −i(−1)δ2k (i, 0) i(−1)δ2k

2 ∈ (k, j) (j, k) i (k, j) −i (0, i) −i(−1)δ2k (i, 0) i(−1)δ2k

(1, 3) (1, 3) 1 (3, 1) 1 (0, 2) −1 (2, 0) −1
(3, 1) (1, 3) 1 (3, 1) 1 (0, 2) 1 (2, 0) 1

These cases generate the diagonal-off entries in each block in agreement with the exchange rules
depicted previously for the sth scripts of such entries’ rows: (is, ks) ∈ {(0, j), (j, 0); (i, k), (k, i)}, with
i, j, k a permutation from 1, 2, 3 and j the associated direction for the corresponding interaction being
used from HI and HI Ia,b ; (is, ks) ∈ {(jp, kp), (kp, jp); (0, i), (i, 0)}, with i, jp, kp a permutation of parity p
from 1, 2, 3 and jp, kp are the associated directions for the interaction HI I I .

First, we should note that the signs for each term in the diagonal-off entries do not depend on
the entries’ scripts in positions other than the parts in which the interaction is being applied, k′, k′′ in
the expressions of the previous section (30), (32), (34), and (36). This is because Tr(σ̃∗is σjd+s σ̃T

ks
σT

js ) =

Tr(σ̃∗is σ0σ̃T
ks

σT
0 ) = 2 . Instead, signs only depend on the type of exchange indexes shown in Table 3.

It has already been noted that cis ,ks
js ,jd+s

is imaginary only if js = 2 or jd+s = 2. This property is then

transferred to the corresponding F js ,jd+s
j,s , and then transformed to h12 as a function of the number of

those factors in (31), (33), (35), and (37). Thus, by exchanging is, ks (block transposing), only the cases
with h12 ∈ I will change their sign.
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The final fact is related with the different signs appearing in the terms of diagonal-off entries.
This will be important to analyze the number of independent blocks in the entire evolution matrix. For
HI and HI I I , the two different terms are obtained by the exchange of js, jd+s. Thus, for HI , only the
cis ,ks

js ,jd+s
with (js, js+d) = (0, 2), (2, 0) and (is, ks) ∈ {(0, 2), (2, 0)} or (js, js+d) = (0, j 6= 2), (j 6= 2, 0) and

(is, ks) ∈ {(i, k), (k, i)} will change their sign (in the first four rows of Table 3). For HI I I , if (js, js+d) =

(1, 3), (3, 1) and (is, ks) ∈ {(0, 2), (2, 0)} or (js, js+d) = (0, 2), (2, 0) and (is, ks) ∈ {(i, k), (k, i)}, then
cis ,ks

js ,jd+s
will change their sign (in the last four rows of Table 3). For HI Ia,b, two terms in the scripts are

involved, so different aspects contribute: the location of interacting parts, the type of exchange, and
their order in the scripts.

Last properties exhibits the way in which each term in h12 will change its sign. The three aspects
mentioned in the previous paragraph allow us to understand the diagonal-off structure of HI , HI Ia,b,
and HI I I (considering that their diagonal components follow the properties discussed above). In
the following subsections, we analyze this structure for each interaction, particularly discussing the
independence of blocks in terms of the free parameters, making a distinction between the effective
parameters (those appearing in the final expression of (28)) and the physical parameters (those
appearing as coefficients hI in the Hamiltonian). They are not the same because many physical
parameters appear clustered in the same way in (28), because the entries of SU depend only on the
parameters h11 ± h22, h12. As a result, by grouping finally in the U(1)× SU(2) blocks, there will be
only two or eight different blocks SU in U.

5.4.3. Block Entries of HI

The diagonal-off entries have exactly the two terms h(j4s+dt−1)2d
4

for t′ = 0, 1, and there are only
two combinations: adding or subtracting terms. As was stated previously, they are imaginary only if
local interactions are in the direction j = 2. In this case, we separate the factor ±i for j = 2 cases in
the diagonal-off entries, and the remaining coefficients in the opposite corners in each block are equal
as expected from (28). Then, there is generally one term with the same sign through all diagonal-off
entries (when k = 2, or otherwise when js = 2 in the first four rows in the Table 3), leaving only two
possibilities for the remaining term. Thus, in each HI matrix there are blocks with only two different
diagonal-off entries, depending only on the index exchange type in the local interaction position and
not on the remaining indexes. Thus, for a fixed set of indexes for the positions unrelated to the part
on which the interaction is applied, a pair of blocks exists, one each for the exchanges (0, j), (j, 0) and
(i, k), (k, i), with different relative signs in their diagonal-off terms. For the corresponding diagonal
entries, in (29), only the difference h11− h22 is relevant. As previously stated by analyzing equation (31),
it is also possible realize that in each diagonal entry there are only two terms from the 3d terms changing
their sign with respect to other rows. Block scripts differ in only one index, those corresponding with
i′ 6= j (the local interaction direction) and k = k′ (the correspondent pair on which the local interaction
is being applied), leaving only two terms and two different combinations for h11− h22. This implies that
there are only two different blocks for (29) through all U, each one operating with different exchange
rules, (0, j), (j, 0) or (i, k), (k, i). Each one is the same (until unitary factors, which can be different) for
all entries with different indexes in positions other than k′. This fact can be attributed, depending on the
number of disposable parameters (five, including the time and excluding the parameters in the unitary
factor of each block), to the independence between the two types of blocks in the evolution matrix (29).

5.4.4. Block Entries of HI Ia

For the non-diagonal entries, because the exchange factor F js ,jd+s
j,s appears two times for each j, all

of them are real, so the opposite corners of each block are always equal. Each entry has four terms
with alternating signs, in agreement with the Table 3, as a function of the rows’ subscripts. Signs
only depend on both indexes exchanged: either they are the same type (0, j), (j, 0) or (i, k), (k, i), or
otherwise opposite with an exchange of each type. This will give only four sign combinations (a
calculation not developed explicitly here), except for j = 2, where the appearance of two factors i will
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change the overall factor, giving eight combinations, one half of them with opposite overall sign to the
remaining. For the diagonal entries, based on the ideas in the previous case for HI , there will be four
terms changing their relative signs with respect to other associated diagonal entries in the same block,
but now differing in two part indexes (due to the related non-local interaction). As before, one term
has a fixed sign, so there are only eight combinations for the three remaining terms from the 16
possible. This means eight different combinations for h11 − h22 in (29), due to the values k = k′, k′′

for the non-correspondent parts with non-local interactions in HD for this case. Thus, similar to HI ,
in this case there will be eight different blocks in U for (29): one for each one of the eight different
combinations of the exchange rules. Each type applies in the same way for all entries with different
indexes in positions other than k′, k′′. There are nine free parameters, including the time and excluding
the parameters in the unitary factor for the block, so independence among the eight types of blocks
can be more elusive. Despite all this, located operations not involving all GBS basis states appear
as achievable.

5.4.5. Block Entries of HI Ib

Although the exchange factorsF js ,jd+s
j,s are crossed and j takes two different values in the subscripts,

the discussion regards certain similitude to that for HI Ia. For the diagonal-off entries, in agreement
with Table 3, it implies that only if j = 2 is not included in the crossed interaction (i = 2 in (35))
will they become real. Each entry will have four terms with alternating signs, in agreement with the
outcomes of products of exchange factors in Table 3 as a function of the rows’ subscript involved. Here,
there will be eight combinations (four and four with opposite overall signs), except for j = 2 with only
four combinations. For the diagonal entries, h11 − h22 in (29), the situation is identical to HI Ia. Then,
there will be eight different block types in U for each combination of exchange rules on the indexes
k′, k′′. Again, nine free parameters for the SU(2) blocks are available.

5.4.6. Block Entries of HI I I

This is a special case exception of the previous remark where js, jd+s is not of the forms 0, j or

j, 0. Nevertheless, F jp ,kp
i,s becomes in the same way on of c0,i

jp ,kp
, ci,0

jp ,kp
, c

jp ,kp
jp ,kp

, or c
kp ,jp
jp ,kp

. However, several
aspects are identical to the HI case. A brief analysis shows that entries become real only for i = 2
(see the last four rows of Table 3). Each diagonal-off entry has two terms with alternating signs as
functions of entry labels. For the diagonal entries, again only two types of terms change their sign
in HD from (31) for the rows forming the SU(2) blocks with the exchange rules. This gives only two
types of h11 − h22 in (29), again generating only two different blocks in the whole U—each one for a
kind of exchange rule involved here, containing five free parameters.

To resume the findings, Figure 5 shows the relations exhibited in the exchange indexes for each
interaction. This figure depicts each of the exchange index relations of GBS basis states under the
interaction. Thus, Figure 5a,d, depicts the two groups of exchange states for HI and HI I I generated
by the two different blocks through the whole SU(22d) evolution matrix, both independent up to five
parameters and with h12 in (29). Figure 5b,c depict the double exchange indexes induced by the
eight blocks generated by HI Ia and HI Ib. These eight blocks are independent up to nine parameters.
All representations in Figure 5 are for a single GBS basis state, but clearly one specific block is operating
on any of them simultaneously. Note finally that for all cases there are a complementary number of
free physical parameters in h11 + h22: 3d + 2− 4 = 3d− 2 for HI and HI I I and 3d + 4− 8 = 3d− 4
for HI Ia and HI Ib (time t is not accounted because it was considered in the SU(2) fitting). Then, there
is a linearly growing space to fit the blocks into a programmed operation in terms of the physical
parameters, although there is an exponential growth of those blocks.
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Figure 5. Exchange index relations involved for each interaction and highlighted properties for their
correspondent S0

UI ,I′
: (a) HI ; (b) HI Ia; (c) HI Ib; and (d) HI I I . Exchange relations in (b,d) are doubled by

considering the vertical switching in one of the indexes for each pair shown.

6. Connectedness, Superposition, Entanglement and Separability

To understand how dynamics is addressed under the interactions HI , HI Ia,b, HI I I (used
independently or combined), some complementary analysis is convenient. In order to prepare the
reader, some illustrative examples are included in Appendix A.4 for d = 1 and d = 2, depicting some
notable properties of dynamics in such cases by including several kinds of entangling operations.

6.1. Exchange Connectedness under Interactions

Under the SU(2) decomposition, pairs of states in GBS basis become related, showing a probability
exchange between them. As it was seen, each one of the HI , HI Ia,b, HI I I interactions has rules for this
exchange. In any case, it should be clear this exchange is achievable between any pair by combining
all types of interactions obtained by switching the value of: (a) interaction direction and correspondent
pair j, k′ in (31) for HI ; (b) interaction direction and correspondent pairs j, k′, k′′ in (33) for HI Ia;
(c) interaction directions, correspondent pairs, and parity i, k′, k′′, p in (35) for HI Ib; and (d) interaction
direction and correspondent pair i, k′ in (37) for HI I I . Several types of interactions can be combined in
a sequence. The combination of interactions is not precise for the basis element connectedness, but it is
necessary to increase the entanglement, and thus to connect two arbitrary quantum states. In those
terms, there are only two types of states: (1) those exchanging one script (HI and HI I I), and (2) those
exchanging two scripts (HI Ia and HI Ib) in the GBS basis elements under the rules depicted in Figure 5
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(although the rules and connections are different). All basis states become connected under one or
several interactions applied consecutively, depending on the number of necessary exchanges in their
scripts. Figure 6 shows a graph with these relations for the cases d = 1, 2, 3. Green edges indicate one
script exchange and red lines indicate two script exchanges. The connection can only be achieved with
a single interaction in the first two cases, due to the low entanglement level. Figure 6a corresponds to
the figure presented in [11] for Bell states in SU(4) systems.

Figure 6. Connectedness graphs between states under SU(2) decomposition for one (green) and two
(red) exchange scripts for all generalized Bell state (GBS) basis states: (a) d = 1; (b) d = 2; and (c) d = 3.

Connectedness in a finite number of steps by applying some or all cases in each type of interaction
(piecewise with constant parameters or with time-dependent parameters in each case) warrants the
full probability exchange between the occupancy level of each state in terms of the discussion included
in Section 3. Nevertheless, not all interactions are able to reach an arbitrary evolution. As is obvious,
HI and HI I I are not able to generate extended entanglement out of the correspondent pair on which
they operate (this assumes no rearrangements are made in the correspondent pairs and their elements).
We discuss this aspect in the next subsection.
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6.2. Notable Quantum Processing Operations Achievable under SU(2) Decomposition

Departing from SU, then by fixing ωt = 2n+1
2 π, h11−h22

2h̄ω = ε, h12
h̄ω = icδ, h11+h22

2h̄ω = 2(m− 1
2); n, m ∈ Z,

c ∈ {0, 1}, δ ∈ R, where ε2 + δ2 = 1 in (29). Note that the parameter c depends on each kind of interaction
in the terms discussed in the previous section. Then, we get the SUI,I ′ block [27]:

Hc
m(δ, ε)I ,I ′ ≡ (−1)m

(
ε icδ

(−i)cδ −ε

)
, (38)

operating on the GBS basis. Note that this form cannot always be achieved independently in all blocks
in terms of the free parameters and the possible restriction h0,0,...,0 = 0 (here det(Hc

m(δ, ε)I ,I ′) = −1,
although it is not decisive in the following development). Nevertheless, we need only achieve it
in some blocks in the immediate discussion. We are using the time-independent case, but other
more practical cases with time-dependent Hamiltonian coefficients can be implemented. The last
form is highly versatile. If sε|ε| = δ = 1√

2
(sε = sign(ε), referred in the notation as −,+), we get a

Hadamard-like gate Hm,c,sign(ε)
I ,I ′ ≡ SUI ,I ′ (in particular, if c = 0, but this condition can be relaxed).

When δ = 1, we get an exchange-like gate [12,26] for the pair in the SU(2) block, Em,c
I ,I ′ ≡ SUI ,I ′ . Note

that this case is a limit case for the time-independent case (29) when h12 � h11 − h22. Otherwise, it can
be achieved in two steps of time-independent piecewise Hamiltonians (as in [12]) or as a continuous
time-dependent Hamiltonian. These gates are:

Hm,c,sε
I ,I ′ =

(−1)m
√

2

(
sε ic

(−i)c −sε

)
, Em,c

I ,I ′ = (−1)m

(
0 ic

(−i)c 0

)
. (39)

Note additionally that when h11+h22
2h̄ω = ( α

m − 1)π, ωt = mπ; n, m ∈ Z, we get the quasi-identity
gate SUI ,I ′ = eiαπII ,I ′ ≡ Iα

I ,I ′ . The combination of these blocks (allowed because the block
independence previously discussed) allows important quantum processing operations to be set.

6.3. SU(2) Decomposition in the Context of n−Qubit Controlled Gates

Transformation between quantum states can generally be achieved by means of linear and
anti-linear operators. Anti-linear operators are particularly useful to depict time-reversal operations or
the action of some Einstein-Podolsky-Rosen channels. If these kinds of operations are being considered
in the processing, an extension of the Hamiltonian (1) should be considered by the inclusion of
anti-linear operations [28]. In this work, we have restricted our development to linear operators, as
was settled in Sections 2 and 3.

Below of such context, it should be advised that SU(2) decomposition is compatible with the
most quantum information developments in the literature. Nevertheless, many of those works
do not consider that such proposed processing forms are rarely compatible with the dynamics of
physical systems if the computational basis continues to be used (the natural basis based on physical
properties of local systems such as spin and polarization). The nature of entangling operations naturally
induces both superposition and entanglement, thus generating a complex dynamics evolution in
such basis compared with the structured gates proposed in the quantum information developments
(whose authors were clearly not always concerned with the underlying physics). SU(2) decomposition
(mainly the part developed in the Sections 2 and 3) naturally proposes a better basis to set the quantum
processing grammar for certain interaction architectures (e.g., those developed in Sections 4 and 5).
The induced 2× 2 block structure allows such processing structures to be set more easily, mainly based
on binary processing.

In the context of quantum computation, the most common trend is the settlement of universal
gates in the sense of a quantum Turing machine. A set of universal quantum gates for two-qubit
processing was established by [29] as a set of local gates together with the CNot gate. Despite
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universality, this trend is not optimal because for a given processing, it is not clear how to express it in
terms of those elements in the universal set. In an alternative trend, [30] has settled a more optimal
gate decomposition by factorization in terms of P−unitary matrices. In the last two trends, SU(2)
decomposition for SU(4) (d = 1, meaning two-qubit processing) has shown how to adapt those results
for the physics of Heisenberg–Ising interactions including driven magnetic fields: (a) in [31], a set
of alternative universal gates has been proposed on the grammar of Bell states; and (b) in [26], an
optimal set of six gates (P−unitary matrices) is proposed using the forms of SU(2) decomposition
on a Bell states basis to reproduce any other gate for two-quibit processing. In the current context,
those outcomes are automatically applicable to Type I and III interactions. Type II interactions are
excluded because they require at least d = 2. In any case, the contribution of the SU(2) reduction is in
the proposal of Bell basis as a grammar instead of the computational one so that the physical evolution
fulfills the forms required by the processing gates.

Although two-qubit processing is still universal, more powerful processing is possible by attaining
more than two qubits at a time. In this approach, [32,33] have stated universal processing gates in
terms of local rotations and n−qubits controlled gates. In the computational basis, rotations are
obtained by local interactions by turning off the entangling operations, but controlled gates can be
physically difficult to reproduce. In the SU(2) reduction scheme, the form of rotations in those works
(Ry(α) and Rz(α)) are achieved by the forms (29) as follows. First, Ry(α) is mainly achieved by settling
h11 = h22 and h12 ∈ I. Rz(α) is obtained by fixing h12 = 0. Notably, those rotations are not necessarily
physical neither local, they could operate among entangled states. Instead, they can be determined
as rotations on the informational states being used (elements of GBS basis). Other basic forms are
also easily obtained, for example, Ph(δ) is obtained by settling cos ωt = ±1. For the controlled gates
Λn(U) proposed in [32], authors in [33] turn to a long factorization in terms of rotations and controlled
gates Λ1(U) (which can also be obtained departing from the CNot gate and rotations). In any case, if a
computational basis is used, the reproduction of the CNot gate can still bring certain difficulties in
many quantum systems [34]. In the context of SU(2) reduction, CNot gate and inclusively Λ1(U) are
directly obtained if the Bell basis is used as grammar:

Λ1(U) =

(
SU1 → I 0

0 SU2 → U

)
, (40)

where U is a general matrix in SU(2) as in (29). Because of the independence of blocks stated
in Section 5, the achievement of Λ1(U) is warranted. Then, the construction of Λn(U) follows
immediately as proposed in [32,33], but considering those forms working on the grammar basis
of the Bell states or on the GBS basis in general. Clearly, in the SU(2) decomposition scheme, other
controlled gates are achievable by the alternative selection of the elements on which interaction is
being applied. If more optimal factorization methods are possible for d > 1 (where blocks are repeated
by groups), based on the set of matrices U as in (14) by including all the possible forms generated by
Type I, IIa, IIb, and III interactions, it is still an open question.

6.4. Generating Superposition and Entanglement

In the following, we will use an arrow to depict a certain group of quantum operations. On the top
of the arrow, we set the type of interaction being used. On the bottom, we set the subspace on which
they apply or the generic form of each operation, together with their prescriptions. For instance, if an
operation for d = 4 (8 qubits and 256 elements in the GBS basis) generated by the Type IIa interaction
is applied in the associated direction y and on the pairs 1 and 4 (j = 2, k′ = 2, k′′ = 4 in (32)) with
prescriptions for a Hadamard gate mixing the basis states |Ψ0〉 = |Ψ0,0,0,0〉 and |Ψ130〉 = |Ψ2,0,0,2〉 (i.e.,
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H0,0,+
0,130 ) and an exchange gate between the basis states |Ψ1〉 = |Ψ1,0,0,0〉 and |Ψ131〉 = |Ψ3,0,0,2〉 (i.e.,

E0,0
0,131), we will write:

H(2,2,5)
I Ia−−−−−−−−−→

H0,0,+
0,130⊕E0,0

0,131

. (41)

Although other operations can be defined between the remaining basis states, if they are not
specified, it is because some operations are repeated for other certain groups of scripts (e.g., for
|Ψ20〉 = |Ψ0,1,1,0〉 and |Ψ150〉 = |Ψ2,1,1,2〉, H0,0,+ is also being applied) or because the concrete operation
being developed does not require such specification (e.g., there is no specification for the operation
between |Ψ67〉 = |Ψ3,0,0,1〉 and |Ψ193〉 = |Ψ1,0,0,3〉). In some cases, complex families of subsequent
operations are required, and then one family is specified by a group of indexes defining it.

6.4.1. Generating 2−Separable Superposition

By using the general block operations SUI ,I ′ ∈ U(1)× SU(2) (29), it is possible to arrive at a state
exhibiting complete superposition through all of the basis elements. Thus, for example, departing from
the simple state |Ψ0〉2d = |Ψ0〉1|Ψ0〉2...|Ψ0〉d (easily obtained from |00...0〉), a couple of local operations

H(i,k)
I on each correspondent pair k are sufficient to generate a state containing representatives from

each basis element:

|Ψ0〉2d

H(1,k)
I

k=1,2,...,d
−−−−−−−−−→⊕

s,s′ SU s,s′

s′−s=4k−1,
sd

4,k=0

d⊗
k=1

1

∑
i=0

αk
i,0 |Ψi〉k ,

H(3,k)
I

k=1,2,...,d
−−−−−−−−−→⊕

s,s′ SU s,s′⊕
⊕

s′′ ,s′′′ SU s′′ ,s′′′

s′−s=3·4k−1,s′′′−s′′=4k−1

sd
4,k=0,s′′d4,k=1

d⊗
k=1

1

∑
i=0

1

∑
j(i)∈{i,3−i}

αk
i,0βk

j(i),i

∣∣∣Ψj(i)

〉
k
≡

4d−1

∑
I=0

γI |ΨI 〉 ,

with :γI =
d

∏
k=1

αk
j−1(Id

4,k),0
βk
Id

4,k ,j−1(Id
4,k)

,

(42)

where j−1(i) is the inverse of j(i) and directions i = 1, 3 were used as examples. In addition, αk
i,j are

the components of SUs,s′ in the first operations, and βk
j(i),i are the components of SUs,s′ , SUs′′ ,s′′′ for the

second operations with i = 0, 1, respectively. Figure 7 depicts each step of the process, using the local
operations (alternatively, crossed interactions in HI I I could be considered).

Figure 7. Processes to build 2−separable states with complete superposition.

The last process is a particular case of more general operations by considering O(i,{s})
J = SUI ,I ′

to mix the states through the momentary associated blocks changing the indexes {s} with some
interaction HJ , J ∈ {I, I Ia, I Ib, I I I} in the associated direction i. We coin the term k−local operation
when SUI ,I ′ generates entanglement at the most in k parts. In our basic interactions scheme,
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there are only 2−local and 4−local operations, as was discussed previously. Thus, following the
previously-introduced notation, we set a family of procedures to develop superposition including
the previous procedure. Departing from the |Ψ0〉2d, it is possible to apply several alternate 2−local
operations to generate superposition involving all GBS basis states. By defining a sequence of paired
directions for the HI evolution involving all pairs s = 1, 2, ..., d (this process can alternatively be
achieved by HI I I): {{is, ks(is)}|{1, 2, 3} 3 is 6= ks(is) ∈ {1, 2, 3} \ {is}; s = 1, 2, ..., d}. Additionally,
js(is) ∈ {1, 2, 3}, is 6= js(is) 6= ks(is). Then, following the evolution process:

|Ψ0〉2d H
(i1,1)
I−−−−→

O
(i1,{1})
I

∑
t∈{0,i1}

α1
t,0 |Ψt,0,...,0〉

H
(k1(i1),1)
I−−−−→

O
(k1(i1),{1})
I

3

∑
ε1=0

α1
p1(ε1),0

β1
ε1,p1(ε1)

∣∣Ψε1,0,...,0
〉

,

H(i2,2)
I−−−−→

O(i2,{2})
I

. . .
H

(kd(id),d)
I−−−−→

O
(kd(id),{d})
I

3

∑
ε1,...,εd=0

( d

∏
s=1

αs
ps(εs),0βs

εs ,ps(εs)

) ∣∣Ψε1,ε2,...,εd

〉
≡
∣∣∣Ψ fsep

〉
,

(43)

where ps(εs) are the inverses of the association rules for the one index exchanges depicted in Figure 5a
(or 5d for HI I I): ps(is) = is = ps(js(is)), ps(0) = 0 = ps(ks(is)). Additionally, |αs

0,0|2 + |αs
is ,0|2 = 1,

|βs
0,0|2 + |βs

ks(is),0
|2 = 1, |βs

is ,is |
2 + |βs

js(is),is
|2 = 1. TrS(ρIJ ) represents the partial trace with respect to

the entire system except the s ∈ S parts. As expected,
∣∣∣Ψ fsep

〉
is 2−separable:

Tr{k
′}(
∣∣∣Ψ fsep

〉 〈
Ψ fsep

∣∣∣) = ( 3

∑
εk′=0

αk′
pk′ (εk′ ),0

βk′
εk′ ,pk′ (εk′ )

∣∣Ψεk′
〉 )( 3

∑
εk′=0

αk′
pk′ (εk′ ),0

βk′
εk′ ,pk′ (εk′ )

∣∣Ψεk′
〉 )† (44)

due to the limited nature of operations involved, which cannot be able to generate more extended
entanglement. In addition, superposition can be limited to the SU(2) blocks coverage through the
number of parameters introduced, αs

ps(εs),0
, βs

εs ,ps(εs)
, and their physical scope. As shown in [11], a

richer superposition coverage on SU(22d) can be achieved with additional 2−local operations on each
part, introducing extra parameters and probability mixing. As in [11], n in (29) is limited to take the
two forms (nx, 0, nz) or (0, ny, nz) (for the time-independent case), but by combining both forms we
arrive at two general forms with arbitrary n = (nx, ny, nz) (this also fulfills the time-dependent case
with adequate hij(t)).

Although this procedure can include a general full 2−separable state together with entangled
segments between correspondent pairs, it cannot exhibit states with more extended entanglement,
requiring more extended entangling operations such as HI Ia and HI Ib. The quest is to obtain general
states departing from a simple resource, which is still an open challenge—particularly for the possible
entanglement degree there (a more ambitious challenge is the transformation between two general
states [35], but it can always be reduced in two steps of this kind). We discuss this issue in the remaining
subsection, and we develop some procedures to generate some maximal entangled states of arbitrary size.

6.4.2. Entanglement Dynamics under Interactions

Now, we analyze the entanglement generation under the interactions being considered.
We employ the partial trace criterion [19] for pure states by considering a single SU(2) combination
of two GBS basis states |φIJ 〉 = αI |ΨI 〉+ αJ |ΨJ 〉. In addition, the explicit form for coefficients
will be written as αI = cos θ/2, αJ = eiφ sin θ/2. Then, we construct their associated density matrix
ρIJ = |φIJ 〉 〈φIJ | to conveniently take partial traces in order to analyze the entanglement of specific
subsystems in this quantum state under concrete interactions. Because the rules in the exchange scripts
(in the GBS basis states to form the SU(2) blocks) are basically the same for the three interactions
HI , HI Ia,b, HI I I , the analysis is reduced to only two cases. The first is for a pair of GBS basis elements
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|ΨI 〉 , |ΨJ 〉 differing in only one subscript between I and J : is = js∀s ∈ {1, . . . , d}, s 6= k′ (in HI , HI I I
interactions). Thus, in this case (omitting the base b and the size d for simplicity in the scripts):

∣∣∣φ1
IJ

〉
=

1√
2d

2d−1

∑
E ,D=0

( d⊗
k′ 6=s=1

σ̃is ⊗ (αI σ̃ik′ + αJ σ̃jk′ )
)
E ,D |E〉 ⊗ |D〉 . (45)

The second case is for a pair of elements in the GBS basis differing in two subscripts of I
and J : is = js∀s = 1, . . . , d, s 6= k′, k′′ (in HI Ia,b interactions):

∣∣∣φ2
IJ

〉
=

1√
2d

2d−1

∑
E ,D=0

( d⊗
k′ ,k′′ 6=s=1

σ̃is ⊗ (αI σ̃ik′ ⊗ σ̃ik′′ + αJ σ̃jk′ ⊗ σ̃jk′′ )
)
E ,D |E〉 ⊗ |D〉 . (46)

Then, we analyze the entanglement of several subsystems in each case by taking the partial trace
with respect to its complement. Calculations are direct. At the end, the association rules 0 ↔ i and
j↔ k should be applied to explicitly denote the viable relations between I and J , and to reduce some
traces on parts k′, k′′ in (45) and (46). In Table 4 we report the generalized bipartite concurrence for
pure states [36]:

C2(TrS(ρIJ )) = 2(1− TrS(ρ2
IJ )), (47)

where, j is assumed as the direction label of the interaction involved. If m = min(m1, m2), where
m1, m2 are the Hilbert space dimensions of each subsystem, then this measure changes smoothly from
0 for separable states to 2(m− 1)/m for maximally entangled states. Note that we take σ̃i ≡ eiφi σi,
although it is only relevant for σ2. With this distinction, we introduce φ′ = φ + φi′k

− φj′k
.

Table 4. Bipartite concurrence C2(TrS(ρIJ )) for several subsystems in the SU(2) mixing of some pairs
of GBS basis states.

Case S C2(TrS(ρIJ ))

(a)
∣∣∣φ1
IJ

〉
[s /∈ {k′, k′ + d}] 1

(b)
∣∣∣φ1
IJ

〉
[s ∈ {k′, k′ + d}] 1− sin2 θ(cos φ′δ0,ik′ ·jk′ + (−1)εik′ jk′ j (1− δ0,ik′ ·jk′ ) sin φ′)2

(c)
∣∣∣φ1
IJ

〉
[k′, k′ + d] 0

(d)
∣∣∣φ2
IJ

〉
[k′, k′ + d] sin2 θ

(e)
∣∣∣φ2
IJ

〉
[k′, k′′] 3

2 −
1
2 sin2 θ(cos2 φ′δik′ jk′ δik′′ jk′′ + sin2 φ′(1− δik′ jk′ δik′′ jk′′ ))

Table 4 includes some obvious results for “local” interactions on single parts (HI) or on
correspondent pairs (HI I I): (a) any part is maximally entangled with respect to the remaining system
(through its correspondent pair) if there are currently no active local or non-local crossed interactions
in HI and HI I I , respectively, so C2(TrS(ρIJ )) = 1; (b) nevertheless, if these local or non-local crossed
interactions act on the correspondent pair, each part of it can become separable or partially entangled
to the remaining system; and (c) any correspondent pair (as a subsystem) is separable from the
remaining system in any GBS basis state, so C2(TrS(ρIJ )) = 0. Note that in the cases (b) and (c) that
the subsystem comprises two parts [k′, k′ + d] being compared with the remaining system, so the
Hilbert space dimension is four (m = 4). Similarly, the most important results here: (d) shows how
interactions between non-correspondent parts (crossed or non-crossed) affect the original separability
of each correspondent pair with respect to the remaining system, letting it become entangled with the
remaining system. Finally, (e) exhibits the change of entanglement between non-correspondent parts.
They are clearly originally entangled with their respective pair outside of the subsystem, but that
entanglement becomes reduced (C2(TrS(ρIJ )) ≤ 3/2) due to the non-local interactions.
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6.4.3. Generating Larger Maximal Entangled Systems

The generation of extended entanglement can be shown with a couple of introductory
examples [27]. If

∣∣βij
〉
=
∣∣Ψ2i+i⊕j

〉
are the GBS basis elements for d = 1 corresponding to the

Bell states [22], then considering the |GHZ〉 and |W〉 states of size 2d expressed in the GBS basis:

|GHZ〉2d =
1√
2

1

∑
i=0

d⊗
j=1
|i, i〉j =

1

2
d+1

2

1

∑
i=0

d⊗
j=1

(
|Ψ0〉j + (−1)i |Ψ3〉j

)
, (48)

|W〉2d =
1√
2d

2d

∑
i=1

d⊗
j=1

∣∣δi,2j−1, δi,2j
〉

j =
d−

1
2

2
d−1

2

d

∑
i=1

d⊗
j=1
j 6=i

(|Ψ0〉j + |Ψ3〉j)⊗ |Ψ1〉i , (49)

where j sums over correspondent pairs. Note that we are alternating the notation in the kets by
convenience: |Ψk〉j is the Bell state |Ψk〉 on the jth correspondent pair, while

∣∣Ψi1,i2,...,id
〉
= |ΨI 〉 is the

I = 4d−1id + . . . + 4i2 + i1 element in the GBS basis. For d = 2, they are simply:

|GHZ〉4 =
1√
2
(|Ψ0,0〉+ |Ψ3,3〉) =

1√
2

∑
I∈{0,15}

|ΨI 〉 , (50)

|W〉4 =
1
2
(
|Ψ1,0〉+ |Ψ0,1〉+ |Ψ3,1〉+ |Ψ1,3〉) =

1
2 ∑
I∈{1,4,7,13}

|ΨI 〉 . (51)

Then, we can depart from the basic state |0000〉 = 1
2 (|Ψ0〉1 + |Ψ3〉1)⊗ (|Ψ0〉2 + |Ψ3〉2) for d = 2.

We arrive at the |GHZ〉 by applying the following operations (as before, the interaction Hamiltonian is
indicated in the upper position, while the operation is written below):

|0000〉
H(3,1)

I−−−−−−−→
H0,0,+

0,3 ⊕H0,0,+
12,15

1√
2
|Ψ0〉1 ⊗ (|Ψ0〉2 + |Ψ3〉2),

H(3,2)
I−−−−−−−→

H0,0,+
0,12

|Ψ0〉1 ⊗ |Ψ0〉2 = |Ψ0,0〉 ,

H(3,1,2)
I Ia−−−−−−−→

H0,0,+
0,15

1√
2
(|Ψ0,0〉+ |Ψ3,3〉) =

1√
2
(|Ψ0〉+ |Ψ15〉) = |GHZ〉4 .

(52)

The first operation requires action on two sets of GBS basis states. They are of the same form,
so they are easily achieved in terms of prescriptions for Hm,c,sε

I ,I ′ . Note that no more specifications are
needed in complementary blocks. They are free because their effect will work on states that are not
included. Similarly, for example:

|GHZ〉4
H(2,1,2)

I Ia−−−−−−−→
I0
0,10⊕E0,0

5,15

1√
2
(|Ψ0,0〉+ |Ψ1,1〉),

H(1,2)
I−−−−−−−→

E0,0
0,4⊕E0,0

1,5

1√
2
(|Ψ0〉1 ⊗ |Ψ1〉2 + |Ψ1〉1 ⊗ |Ψ0〉2),

H(3,1)
I−−−−−−−→

H0,0,+
4,7 ⊕I2p

1,2

1√
2
(

1√
2
(|Ψ0〉1 + |Ψ3〉1)⊗ |Ψ1〉2 + |Ψ1〉1 ⊗ |Ψ0〉2),

H(3,2)
I−−−−−−−→

I2q
4,8⊕I2r

7,11⊕H0,0,+
1,13

1
2
((|Ψ0〉1 + |Ψ3〉1)⊗ |Ψ1〉2 + |Ψ1〉1 ⊗ (|Ψ0〉2 + |Ψ3〉2))

=
1
2
(|Ψ4〉+ |Ψ7〉+ |Ψ1〉+ |Ψ13〉) = |W〉4 ,

(53)
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where p, q, r ∈ Z. In the last operations, the block independence discussed in the previous section was
applied to justify the construction of some simultaneous operations.

6.4.4. Recursive Generation of Larger Maximal Entangled Systems

In the previous subsection, we obtained the larger maximal entangled states |GHZ〉4 and |W〉4

departing from the more basic states such as |0000〉. The enlargement of entangled states can be stated
in a more impressive way as recursive processes. In each case, these processes are based on the control
of the parameters involved and the independence among block types generated in each interaction.

Thus, the process shown in Figure 8 combines some of the operations depicted previously to
develop |GHZ〉2(d+1) departing from |GHZ〉2d, stating a procedure to get larger versions of these
maximal entangled states. The first step begins by using the state |Ψ0〉d+1 ⊗ |GHZ〉2d. Then, a local
operation is applied on each pair in the original state k = 1, 2, ..., d to reduce the factors (|Ψ0〉k + |Ψ3〉k)
and (|Ψ0〉j − |Ψ3〉j) in (48) into |Ψ0〉j and |Ψ3〉j, respectively. Then, we exchange the indexes 30↔ 21
for the non-correspondent pairs k′ and d + 1 with a non-local operation. This transformation is
followed by a couple of local operations changing the indexes 2 ↔ 3 for the pair k′ and 1 ↔ 3 for
the pair d + 1 (which adds a factor i). In this last case, we transform the index 0 by itself, but adding
the factor i . Finally, we revert for k = 1, 2, ..., d + 1 the initial transformation between |Ψ0〉k , |Ψ3〉k
and (|Ψ0〉k ± |Ψ3〉k), respectively. All additional index transformations are settled as the identity. The
state obtained will be i |GHZ〉2(d+1). It is notable that only one 4-entangling operation between the
added pair with another arbitrary pair from the original 2d-partite system has become necessary in
this case. This reflects the low robustness of the genuine entanglement for these states. Considering
the expression for |GHZ〉2d in (48), the precise prescriptions are:

|Ψ0〉d+1 ⊗ |GHZ〉2d

H(3,k)
I

k=1,2,...,d
−−−−−−−−−→⊕

s,s′ H0,0,+
s,s′

s′−s=3·4k−1,
s,s′∈{3p≤N|p∈N}

1√
2

(
|Ψ0〉d+1 + |Ψ0〉d+1 ⊗ |ΨN〉d

)
,

H(1,k′ ,d+1)
I Ia−−−−−−−−−→

I0
0,u⊕E0,0

N,u′

u=4k′−1+4d

u′=N−4k′−1+4d

1√
2

(
|Ψ0〉d+1 + |Ψu′〉d+1

)
,

H(1,k′)
I−−−−−−−−−→

I0
0,4k′−1

⊕E0,0
u′ ,u′′

u′′=u′+4k′−1

1√
2

(
|Ψ0〉d+1 + |Ψu′′〉d+1

)
,

H(2,d+1)
I−−−−−−−−−→

I
1
2

0,2·4d⊕E0,1
u′′ ,N′

i√
2

(
|Ψ0〉d+1 + |ΨN′〉d+1

)
,

H(3,k)
I

k=1,2,...,d+1
−−−−−−−−−→⊕

s,s′ H0,0,+
s,s′

s′−s=3·4k−1,
s,s′∈{3p≤N′ |p∈N}

i |GHZ〉2(d+1) ,

(54)

where |ΨI 〉n =
∣∣Ψi1

〉
1 ⊗

∣∣Ψi2
〉

2 ⊗ ...⊗ |Ψin〉n. In addition, N = 4d − 1 and N′ = 4d+1 − 1. Note that
the first and last operations are actually a set of operations for k = 1, 2, ..., d and k = 1, 2, ..., d + 1
through several correspondent pairs. They exploit the Hadamard-like block operations for H(3,k)

I to
switch first the |GHZ〉2d into versions where only the states |Ψ0〉 and |Ψ3〉 appear. Thus, operations

generated with H(1,k′ ,d+1)
I Ia between two different correspondent pairs are used as exchange operations

entangling the added state |Ψ0〉d+1. Then, the additional operations H(1,k′)
I and H(2,d+1)

I generate a
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state expressed only in terms of |Ψ0〉 and |Ψ3〉, to finally be transformed into |GHZ〉2(d+1) with the
same kind of initial operations.

Figure 8. Processes to build recursive enlargement of |GHZ〉 entangled states.

To obtain the |W〉2(d+1) state, we begin with |Ψ0〉d+1 ⊗ |W〉
2d, then we use the same local

transformation to reduce the factors (|Ψ0〉k + |Ψ3〉k) in (48) into |Ψ0〉k for each k = 1, 2, ..., d.
Then, we apply a sequence of non-local transformations between the pairs k, d + 1 for k = 1, 2, ..., d to
transfer probability between states with indexes 01↔ 10 there, in such a way as to reach the coefficient

1√
d+1

in each term. Finally, we revert the initial transformation for k = 1, 2, ..., d + 1, changing |Ψ0〉k
into (|Ψ0〉k + |Ψ3〉k). The final result is |W〉2(d+1), as is shown in Figure 9. Note how the entangling
operations need to go through the overall pairs. It reflects the robustness of genuine entanglement
in these states. By considering the expression for |W〉2d in (48), the following process gives the
prescriptions to reach |W〉2(d+1) from |W〉2d:

|Ψ0〉d+1 ⊗ |W〉
2d

H(3,k)
I

k=1,2,...,d
−−−−−−−−−→⊕

s,s′ I0
s,s′⊕

⊕
s′′ ,s′′′ H0,0,+

s′′ ,s′′′

s′−s=4k−1,
s−4k−1,s′−2·4k−1∈{3p≤N|p∈N}

s′′′−s′′=3·4k−1,
s′′−4i−1,s′′′−4i−1∈{3p≤N|p∈N},

k 6=i∈{1,2,...,d}

|Ψ0〉d+1√
d
⊗

d

∑
i=1
|Ψ4i−1〉d ,

H(1,k,d+1)
I Ia

k=1,2,...,d
−−−−−−−−−→⊕

u,u′ I0
u,u′⊕H

0
0(δk ,εk)4k−1,4d

u=4i−1,u′=u+4k−1+4d

k 6=i∈{1,2,...,d}

1√
d + 1

d+1

∑
i=1

d+1⊗
j=1
j 6=i

|Ψ0〉j ⊗ |Ψ1〉i ,

H(3,k)
I

k=1,2,...,d,d+1
−−−−−−−−−→⊕

s,s′ I0
s,s′⊕

⊕
s′′ ,s′′′ H0,0,+

s′′ ,s′′′

s′−s=4k−1,
s−4k−1,s′−2·4k−1∈{3p≤N′ |p∈N}

s′′′−s′′=3·4k−1,
s′′−4i−1,s′′′−4i−1∈{3p≤N′ |p∈N},

k 6=i∈{1,2,...,d+1}

|W〉2(d+1) .

(55)

As before, Hadamard-like block operations for H(3,k)
I allow the states |W〉2d and |W〉2(d+1) to be

switched, at the beginning and at the end, in terms of |Ψ0〉 and |Ψ1〉. The remarkable set of operations
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are obtained with H(1,k,d+1)
I Ia to entangle the added state |Ψ0〉d+1 through the operations (38), which

progressively transfer the probability to the state |Ψ4d〉, completing a state easily transformed into
|W〉2(d+1) with the final set of operations. Additional exchange in the indexes is settled in the identity.
The adequate set of εk values for each step of operations should fulfill the d + 1 equations:

g0 ≡ 0,
√

d =
√

d + 1(εj + δjgj−1), j = 1, 2, ..., d,

gj = δj − εjgj−1, j = 1, 2, ..., d− 1,
√

d =
√

d + 1(δd − εdgd−1).

(56)

These equations can be solved numerically for any d. Figure 10 shows the − log10 εi solutions for
d = 1, 2, ..., 60 by taking εi, δi > 0. Note that εi drops rapidly to zero when d and i grow.

Figure 9. Processes to build recursive enlargement of |W〉 entangled states.

Figure 10. Solutions for εi in H0
0(δi, εi)I ,I ′ involved in the enlargement of |W〉d into |W〉d+1 for values

of d ∈ {2, ..., 60}.

6.5. Multipartite Entanglement and General States

In a previous subsection we described how to generate extended superposition using type I
interactions. However, that process does not reach genuine entangled states. The use of type I Ia, I Ib
interactions is mandatory to extend the entanglement as a set of operations involving elements of two
pairs. Nevertheless, it is clear that many operations and combinations are necessary and possible.

For instance, by considering the permutation i, j, k from 1, 2, 3 and departing from the state |Ψ0〉2d,
the process to reach an entangled state based on a complete combination from the basis elements for
two correspondent pairs is as follows (note that the process is not unique). First, we apply a 2−local
operation on the pair s and direction i followed by another on the pair s′ in the direction j. A linear
combination from four basis elements is obtained. Then, we apply a 4−local operation in the direction
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k and for pairs s, s′, obtaining a state of eight terms. Finally, we again apply a 2−local operation on
pair s in the direction j. At the end, we obtain the desired state of sixteen terms with the pairs s, s′,
genuinely entangled as it was seen in Table 4.

|Ψ0〉2d H(i,s)
I−−−−→

O(i,{s})
I

∑
t∈{0,i}

αs
t,0 |Ψ0,...,t,...,0,...,0〉

H(j,s′)
I−−−−→

O(j,{s′})
I

∑
t∈{0,i}
t′∈{0,j}

αs
t,0αs′

t′ ,0
∣∣Ψ0,...,t,...,t′ ,...,0

〉
,

H(k,s,s′)
I Ia−−−−→

O(k,{s,s′})
I Ia

∑
ε,ε′∈C4
t∈{0,i}
t′∈{0,j}

αs
t,0αs′

t′ ,0βs,s′
ε,ε′ ;t,t′δt,pt,ε

s,k
δ

t′ ,pt′ ,ε′
s′ ,k

∣∣Ψ0,...,ε,...,ε′ ,...,0
〉

,

H(j,s)
I−−−−→

O(j,{s})
I

∑
χ,ε,ε′∈C4

t∈{0,i}
t′∈{0,j}

αs
t,0αs′

t′ ,0βs,s′
ε,ε′ ;t,t′α

s
χ,εδt,pt,ε

s,k
δ

t′ ,pt′ ,ε′
s′ ,k

δ
ε,pt,χ

s,j

∣∣Ψ0,...,χ,...,ε′ ,...,0
〉

,

(57)

where C4 = {0, 1, 2, 3} and pt,ε
s,j is the extension of the inverse exchange rule presented before ps(ε),

but specifying the rule j as a function of the direction of the interaction involved. The script t ∈ {0, i}
is a label specifying each possible inverse. This means that if j is the characteristic direction of the
interaction, then: p0,i

s,j = k = p0,k
s,j , p0,0

s,j = 0 = p0,j
s,j and pi,i

s,j = i = pi,k
s,j , pi,0

s,j = j = pi,j
s,j. This single process

could be improved using additional interactions to grow the spectrum of coefficients αs
β,α, βs,s′

β,β′ ;α,α′ in
order to have a wider coverage of SU(4). In addition, it is clear the last process (or another alternative)
should be repeated, varying one or two pairs in order to generate more complex entanglement.
The question about how to generate a specific state under this procedure or to generate certain kind or
level of entanglement is clearly open, mainly due to the poorly understood complexity to measure this
property for large states in general.

7. Conclusions

Quantum gate array computation is based on the transformation of quantum states under certain
universal operations. These operations are used to manipulate the information settled on quantum
systems to simulate or reproduce computer processing, and normally use separable states as primary
resources. Quantum systems involved—light or matter—are manipulated around entanglement
generation in this kind of processing. Then, commonly involved interactions are non-local, implying
that their parts become entangled when they are being manipulated. In the process, several slightly
differentiated interactions are applied, each one with a different set of eigenvalues. This does not allow
a common grammar to be set through the entire quantum information processing problem.

SU(2) decomposition provides a procedure not only to reduce control in the quantum
manipulation states. Together, it provides a common language to address the evolution through
several kinds of similar interactions in order to manage a wider processing. Upon the selection of a
compatible basis, it allows the recovery of two-state processing despite the inclusion of the necessary
entangling interactions. Although we developed the procedure for certain types of well-known
interactions (i.e., Heisenberg–Ising and Dzyaloshinskii–Moriya), the process can be extended to other
interactions and architectures (the arrangement of qubits under interaction) by the adequate selection
of the basis on which dynamics should be expressed conveniently. In addition, it is advised that other
configurations based on qudits are possible using alternative group decompositions to SU(22d) and
SU(2). Finally, the development only proposes the change of quantum information grammar being
used as function of the physical system in the deployment, preserving their applicability for most
quantum information proposals in the literature.

Some applications of SU(2) decomposition are foreseen. It can be exploited in the quantum control
of larger systems in which control schemes are not as well-developed as those of SU(2) dynamics.
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The previously established decomposition allows the establishment of exact control when blocks are
reduced to the standard forms I, NOT, H, etc. The success of such strategy for exact control depends on
the number of free parameters involved, which can be reached using a sequence of pulses instead of a
single one, or otherwise time-dependent controlled parameters in the Hamiltonian, although the block
structure is conserved. Similarly, optimal control in terms of energy or time can be achieved when
procedures such as those in [9,10] are adapted to each block in the depicted structure. More ambitious
ideas about the control of quantum processing such as the use of traveling waves, ion traps, resonant
cavities, or superconducting circuits [37–40] could be adapted to the architectures presented here.

Note that the selectivity of pairing in the blocks is related to the arisen non-diagonal elements (i.e.,
with the interactions generating diagonal-off entries in all cases). This approach to quantum evolution
will allow analytical control of the flow of quantum information in different adaptive geometrical
arrangements. The use of more feasible external fields (other than stepwise fields) is compulsory,
which is completely compatible with the current SU(2) reduction scheme [41].

In a related but not necessarily equivalent direction, selective block decomposition could be
useful for unitary factorization in quantum gate design (e.g., that developed for the SU(4) case [26]),
particularly for large dedicated gates involving the processing of several qubits. A current challenge
in the mathematical arena is solving how to express certain SU(22d) matrices as a finite product in
U(1)22d−1−1 × SU(2)22d−1

, such as those developed here.
Finally, other applications in quantum processing could be engineered for multichannel quantum

information storage, using certain subspaces to store differentiated information which could be
processed simultaneously in other subspaces (e.g., in quantum image processing or quantum machine
learning). Additional research should be developed to adapt this procedure to specific gate operations,
and the translation of the most common algorithms into equivalent ones based on entangled resources
like those shown here.
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Appendix A

The Appendix is divided into four parts to develop a more detailed understanding of some critical
aspects in the paper. The first is the motivation of the Hamiltonian used here, which is expressed in
terms of Pauli operators (or Pauli matrices) together with the identity. Because another central aspect
is the terminology around the group theory, the second Appendix brielfy explains some terms and
developments used in the paper, always centered in the special unitary groups, SU(n). Special attention
is given to the concept of the groups product, which is central in the paper. The third Appendix explains
the GBS basis developed by Sych and Leuchs [22]—a set of quantum states with partial entanglement
setting a basis that is useful for our development. Because this paper contains sections which may
make it difficult to understand the generality of the proposal for larger values of d, the fourth Appendix
presents the two more basic examples: d = 1, which has already been indirectly presented in the
literature [11]; and d = 2, which comprises aspects not encountered with d = 1, while they are present
for the d > 1 cases.

Appendix A.1. Generic Hamiltonian Expressed in Terms of Pauli Operators

The Hamiltonian for the interaction between a magnetic object and an external magnetic field
is −−→µ · −→B , where −→µ is the dipole moment of the object. For quantum particles, this dipole moment
is precisely the spin, commonly expressed in terms of the Pauli operators −→σ = (σx, σy, σz) as
−→µ = ge

2m
−→s = geh̄

4m
−→σ . Thus, the interaction reads H = −−→σ · −→B by absorbing the physical constants h̄

2

in
−→
B .
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For quantum magnetic systems, the most common interaction between two level systems is the
Heisenberg–Ising interaction. This interaction is a low-order approximation for the far-field interaction
between two magnetic dipoles in terms of the spin particles: −→s1 · J · −→s2 or −→σ1 · J · −→σ2 , when the spins
−→si = h̄

2
−→σi are expressed in terms of Pauli operators by absorbing the factors h̄

2 in J, which is generally
a tensor. When J becomes diagonal, we get the anisotropic Heisenberg–Ising interaction. Moreover,
if those diagonal elements become equal, the interaction becomes isotropic.

In the context of this work, another kind of interaction appears—the Dzyaloshinskii–Moriya
interaction, which is a contribution to the total magnetic exchange interaction between two neighboring
magnetic spins [24,25]: H =

−→
D · (−→σ1 ×−→σ2 ).

−→
D is a vector expressed in terms of the sources’ orientation.

Clearly, this Hamiltonian will contain terms such as D1σ1y ⊗ σ2z , D2σ1z ⊗ σ2x , D3σ1x ⊗ σ2y , where
the script denotes the part and the subscript denotes the component (tensor product symbol ⊗ is
introduced to remark that the product is between the spins of different quantum objects).

It is clear from the previous examples that the interactions contain terms involving one or two
Pauli operators from the different physical parts. Although most terms with two spins appear there
because interactions directly occur between a pair of physical objects, the motivation to include all
classes of products of Pauli operators in the Hamiltonian (1) is to consider the most extensive types of
interaction Notably, in the development of this work, precisely the previous interactions set a special kind
of interactions, making the SU(2) decomposition possible Particularly we should note that each term
in the Heisenberg–Ising and Dzyaloshinskii–Moriya interactions are only able to generate entangling
operations between the pair of objects involved. However, extended entanglement could be generated by
including many of those interactions between other pairs, as in the case of Ising chains. A conclusion
from this paper is that non-physical terms containing more than two spin factors in the interaction could
automatically generate more extended and inclusively genuine entanglement. For instance, for 2d qubits,
one term containing 2d factors in one term of the Hamiltonian σ1z ⊗ σ2z ⊗ ...σ2dz , which can generate
genuine entanglement in fewer steps than are necessary in Section 6. Note also that powers or additional
factors for each operator are not necessary because of their algebraic properties (any product of them for
each part can be reduced to only one operator until unitary factors).

Although these examples are for magnetic systems, these kinds of Hamiltonians are not exclusive to
those systems. Thus, for instance, the dipole interaction for a two-level system (an atom or ion restricted
to excitation between two energy levels) in a radiation trap, particles in a double-well potential, etc.,
also have Hamiltonians expressed in terms of the Pauli matrices because they are the basis of SU(2)
dynamics, common for all two-level systems (see A.2). Finally, there is a mathematical reason for the form
of Hamiltonian (1). For all two-level quantum systems, dynamics are ruled by transformations given
by elements of the unitary group of order 2, U(2) (see Appendix A.2), as solutions from the Schödinger
equation for the evolution operator. In group theory, those elements can be depicted as the exponential of
the generators of the group, which are precisely the Pauli operators defining an associated Lie algebra:
exp(i∑k∈0,1,2,3 αkσk) (see Appendix A.2). For composed systems, the set of generators (see Appendix A.2)
and the basis elements (see Appendix A.3) for their dynamics are precisely the different products between
the generators for each part: {⊗d

j=1 σjk |k ∈ 0, 1, 2, 3}. Thus, through the Schrödinger equation, we can
identify the exponent with the Hamiltonian in (1), thus representing the most general Hamiltonian for the
current system composed of 2d two-level quantum systems.

Appendix A.2. Group Theory Basics in the Context of the SU(2) Decomposition

In the current Appendix we deliver a minimum of the group theory context to understand some
aspects in this work. For a deeper treatment, [42,43] is a modern introductory resource. We begin by
remarking on the notion of a group. It is a set G of elements gi ∈ G together with a defined product
operation · fulfilling the properties: (a) Closure: g1 · g2 ∈ G for all g1, g2 ∈ G (otherwise with a defined
map: G×G → G); (b) Associativity: g1 · (g2 · g3) = (g1 · g2) · g3 for all g1, g2, g3 ∈ G; (c) Identity element:
there is a unique e ∈ G such that g · e = e · g = g for all g ∈ G; (d) Inverse: for each g ∈ G there exist
g−1 ∈ G such that g · g−1 = g−1 · g = e. If G′ ⊂ G is itself a group, then we say G′ is a subgroup of G.
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In two-level quantum systems we are interested in states defined in terms of a superposition of two
orthonormal states |ψ0〉 , |ψ1〉: |ψ〉 = α0 |ψ0〉+ α1 |ψ1〉. Equivalently, we can use the matrix notation:

ψ =

(
α0

α1

)
(A1)

to depict such states. Those states have a time evolution |ψ(t)〉 via the evolution operator U(t) obeying
the Schrödinger Equation (2) in terms of the Hamiltonian operator, H. U(t) is an operator acting on
the original state to evolve it: |ψ(t)〉 = U(t) |ψ〉. It fulfills: (a) the outcome |ψ(t)〉 belongs to the set
depicted by a superposition of |ψ0〉 , |ψ1〉; and (b) the norm of the new state is preserved: 〈ψ(t)|ψ(t)〉 =〈
ψ|U(t)†U(t)|ψ

〉
= 〈ψ|ψ〉, then U(t)† = U(t)−1. In the context of the Dirac notation, the dual U(t)†

is another operator related with U(t). The evolution operator should clearly fulfill: (i) U(0) = I, the
identity operator which leaves |ψ〉without change; and (ii) U(t2)U(t1) = U(t1 + t2). Then, the reader can
easily note that the set of operators U(t) for different values of t should form a group with the property
U(t)† = U(t)−1. This group is said the unitary group of order 2, U(2). Similarly, we can define a n−level
system, where the evolution operators define the unitary group of order n, U(n).

For U(2), because the action of U(t) on |ψ〉 is again a linear combination of |ψ0〉 , |ψ1〉, then we
know that:

U(t) =
1

∑
i,j=0

ui,j |ψi〉
〈
ψj
∣∣ or : U(t) =

(
u00 u01

u10 u11

)
(A2)

(in the following, for simplicity, we will adopt both representations as equivalent). Because of the
norm definition for quantum states, we know that:

U(t)† =
1

∑
i,j=0

u∗i,j
∣∣ψj
〉
〈ψi| or : U(t)† =

(
u∗00 u∗10
u∗01 u∗11

)
=

1
|U(t)|

(
u11 −u01

−u10 u00

)
= U(t)−1, (A3)

which clearly shows that entries for U(t) should fulfill the restrictions:
u11 = u∗00e2iφ, u10 = − u∗01e2iφ, |u00|2 + |u01|2 = 1 (then, |U(t)| = e2iφ, with φ ∈ R arbitrary):

U(t) =

(
u00 u01

−e2iφu∗01 e2iφu∗00

)
= eiφ

(
e−iφu00 e−iφu01

−(e−iφu01)
∗ (e−iφu00)

∗

)
≡ eiφŨ(t). (A4)

We advise in the last structure that both eiφ and Ũ(t) form groups separately. The set of numbers
eiφ are clearly the U(1) group under the standard multiplication of complex numbers. We skip the
demonstration that Ũ(t) with the standard matrix multiplication forms a group, which is trivial for the
associativity, identity element, and inverse properties. Demonstration for the closure property is direct.
We note that elements in this group fulfill the property |Ũ(t)| = 1. This group is said to be the special
unitary group, SU(2). Normally, in quantum mechanics we select U(t) ∈ SU(2) because the phase eiφ

is non-physical. For this reason we drop the tilde indistinctly. Because (A4), we say that U(2) is the
direct product of U(1) and SU(2): U(2) = U(1)× SU(2) (the reader is advised that the term product
is not due to the scalar product underlying in (A4), but instead to a pairing in terms of the Cartesian
product of the elements of each group. For a formal definition, consult [42,43]; this concept will be
relevant later). SU(2) is clearly a subgroup of U(2).

Another important property of the SU(2) group is that any element of it can be written as a linear
combination of the Pauli matrices (this aspect is widely used in the text). This means that they are a
basis for matrices in SU(2) (then also for U(2)). In fact:
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Ũ(t) = <(e−iφu00)σ0 + i=(e−iφu01)σ1 + i<(e−iφu01)σ2 +=(e−iφu00)σ3, (A5)

where < and = are the real and imaginary part functions (in addition, note we are using here
indistinctly the notation σ0 = I, σ1 = σx = X, σ2 = σy = Y, σ3 = σz = Z, although in the text
they have several meanings as the basis of the different SU(2) elements appearing there). Moreover, in
several parts of the text, the following property is used, derived from the algebra fulfilled by Pauli
matrices (obtained from the fact: (n · −→σ )2s = 1, s ∈ Z):

eiαn·−→σ = cos α σ0 + i sin α n · −→σ =

(
cos α + in3 sin α i sin α(n1 − in2)

i sin α(n1 + in2) cos α− in3 sin α

)
, (A6)

where n is a unitary vector with real components. From the last expression, it is easy to demonstrate
that |eiαn·−→σ | = 1, so by comparing with (A4), it is advisable that (A6) is a parametrization for the
elements in SU(2). Moreover, from the Baker–Campbell–Hausdorff formula [42,43]:

ei(φσ0+αn·−→σ ) = eiφeiαn·−→σ . (A7)

Then, it is said that σ1, σ2, σ3 are the generators of SU(2), while σ0, σ1, σ2, σ3 are the generators of
U(2). This fact was mentioned in Appendix A.1 to suggest the generality of Hamiltonian (1), although
some steps remain to arrive at the SU(22d) group.

The reader can note that (13) and (29) adjust to those structures, and thus the blocks
in the decomposition belong to U(1) × SU(2). Similar arguments in group theory show that
U(n) = U(1) × SU(n), where SU(n) is the special unitary group of order n, the group of unitary
matrices U† = U−1 with determinant equal to 1, |U| = 1. Although there are generators for
such groups, the development of the article shows that the combination of 2d two-level quantum
systems requires evolution matrices in U(22d) (or in SU(22d)). As a result of the decomposition,
we show that the evolution matrices belonging to such groups form the product group U(2)22d−1

(while the Hilbert space of the quantum states is decomposed into the direct sum of 22d−1 two-level
subspaces of dimension 2). Precisely, the elimination of the term h{00...0} in the Hamiltonian induces
directly in (14) that U ∈ SU(22d). In addition, the SU(2) decomposition shows in this case that
U ∈ U(1)22d−1−1 × SU(2)22d−1

) (due to the dependence of one U(1)-term from the remaining). The
reader should consult the formal definition of a direct product in [42,43].

Appendix A.3. Generalized Bell States Basis in Context

GBS states (generalized Bell states) as introduced by Sych and Leuchs [22] (16) were expressed
in terms of Pauli operators. That original expression is highly convenient for the development of the
current work because it allows it to be easily connected with the form of the Hamiltonian (1) in the
same terms, allowing the important result to be easily obtained (18). Nevertheless, a more simple
expression could be given for the understanding of such states. In fact, it is easy to note that each
element in the GBS basis for 2d qubits can be written as:

∣∣∣ΨId
4

〉
=

d⊗
j=1

∣∣∣∣ΨId
4,j

〉
=
∣∣Ψi1

〉
⊗
∣∣Ψi2

〉
⊗ ...⊗

∣∣Ψid
〉

, (A8)

where Id
4,j = ij, and

∣∣∣Ψ2γ+(γ⊕δ)

〉
=
∣∣βγ,δ

〉
or |Ψi〉 =

∣∣∣β( i
2 mod2),(i−2( i

2 mod2))⊕( i
2 mod2)

〉
, the well-known

single Bell states (in the last expressions, ⊕ represents the module-2 sum). Thus, each element of
the GBS basis is in reality a tensor product of d Bell states identified through their scripts in base-4.
These states are 2−separable (meaning the smallest separable subsystems still contains two entangled
parts). Thus, when we apply a Hadamard-like operation involving only one script (Type I or III
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interactions), we are consequently able to convert the involved Bell state into a separable state. When
we look at this version of the GBS basis, it is clearer why Type I and III interactions become in
entangling or unentagling operations on only one correspondent pair. Both types of operations actually
resemble the effect on two-qubits processing with SU(4) operations such as those developed in [11],
while the remaining system is not involved. Only the Type II operations provide more extended
entangling properties.

Appendix A.4. Illustrative Examples of SU(2) Decomposition

In the following two subsections, we develop examples of the aspect of the evolution operators
for the specific cases d = 1 and d = 2. The latter case is of special importance because it depicts how
Type II interactions extend the entanglement, as shown in Section 6.

Appendix A.4.1. Case d = 1

This case has been developed in the literature [11,13]. In the current context, only Type I and Type
III interactions are possible (because there is only one correspondent pair). The corresponding GBS
basis has four elements: |Ψ0〉 , |Ψ1〉 , |Ψ2〉 , |Ψ3〉, the Bell states precisely. In the next expressions, we
assume a lexicographic order in the components of the basis, so any arrangement of them is supposed
(in contrast to how it was considered in (14)). The Hamiltonian HI contains at the most five terms:

HI =
3

∑
m=1

hm,mσ1m ⊗ σ2m + hk,0σ1k + h0,kσ2k , (A9)

where k is the direction of the local interaction. Te Hamiltonian HI I I (with the crossed interaction in
the direction k) also contains utmost five terms. If i, j, k is an even permutation of 1, 2, 3:

HI I I =
3

∑
m=1

hm,mσ1m ⊗ σ2m + hi,jσ1i ⊗ σ2j + hj,iσ1j ⊗ σ2i . (A10)

Although it is an special case accepting the combination of the two Hamiltonians (Table 1), we set
them separately. Because of the space and complexity, we do not express Uk(t) in terms of the original
coefficients in (A9) and (A10). In any case, formulas (31)–(37) are sufficiently efficient to reproduce
the entries of each Hamiltonian. Instead, after expressing both Hamiltonians in the GBS basis, they
become (as in (28)):

H1 =


h1

11 h1
12 0 0

h1∗
12 h1

22 0 0
0 0 h2

11 h2
12

0 0 h2∗
12 h2

22

 = SH0,1 ⊕ SH2,3 =⇒ U1(t) = SU0,1 ⊕ SU2,3 ,

H2 =


h1

11 0 h1
12 0

0 h2
11 0 h2

12
h1∗

12 0 h1
22 0

0 h2∗
12 0 h2

22

 = SH0,2 ⊕ SH1,3 =⇒ U2(t) = SU0,2 ⊕ SU1,3 ,

H3 =


h1

11 0 0 h1
12

0 h2
11 h2

12 0
0 h2∗

12 h2
22 0

h1∗
12 0 0 h1

22

 = SH0,3 ⊕ SH1,2 =⇒ U3(t) = SU0,3 ⊕ SU1,2 ,

(A11)
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where the superscript i in hi
mn points out the consecutive number of blocks and SHI ,I′

fulfills the
syntactic notation followed in (28) and (29). We will exploit this notation in the following section for
simplicity, where the matrix notation will become hardly extensive.

Appendix A.4.2. Case d = 2

We develop two cases for the case d = 2. The first considers the Type I interaction and the second
pertains to the Type IIa interaction. The last case involves a different situation not appearing in d = 1:
the possibility of generating extended entanglement among the four qubits involved in this case.

By considering the four qubits under the Type I interaction with the local interaction terms on the
pair k′ = 2 in the direction j in (30), the Hamiltonian has the form:

HI =
3

∑
m=1

hm,0,m,0σ1m ⊗ σ3m +
3

∑
m=1

h0,m,0,mσ2m ⊗ σ4m + h0,j,0,0σ2j + h0,0,0,jσ4j . (A12)

There are 16 GBS elements in the basis: |Ψ0,0〉 , |Ψ0,1〉 , ..., |Ψ0,3〉 , |Ψ1,0〉 , |Ψ1,1〉 , ..., |Ψ3,3〉.
Interaction generates exchanges between the GBS basis elements as follows (forming eight blocks but
only two types of them). If i, j, k is a permutation of 1, 2, 3 with i < k, then: (a) |Ψm,0〉 ←→

∣∣Ψm,j
〉
;

(b) |Ψm,i〉 ←→
∣∣Ψm,k

〉
, with m = 0, ..., 3. Due to the extension, we do not write matrix expressions

as in the case d = 1 (which already settled an illustrative orientation to the reader). Instead, we use
the notation of direct sum for block matrices as before. Thus, remembering the scripts are numbers
becoming from the base-4 scripts in the GBS basis,

∣∣Ψa,b
〉
= |ΨI 〉 with I = a + 4b ∈ 0, 1, ..., 15,

the decomposition for the evolution operator will become for Uj(t):

Uj(t) =

(
3⊕

m=0
SUm,m+4j

)
⊕
(

3⊕
m=0

SUm+4i,m+4k

)
,

then :

U1(t) = SU0,4 ⊕ SU1,5 ⊕ SU2,6 ⊕ SU3,7 ⊕ SU8,12 ⊕ SU9,13 ⊕ SU10,14 ⊕ SU11,15 ,

U2(t) = SU0,8 ⊕ SU1,9 ⊕ SU2,10 ⊕ SU3,11 ⊕ SU4,12 ⊕ SU5,13 ⊕ SU6,14 ⊕ SU7,15 ,

U3(t) = SU0,12 ⊕ SU1,13 ⊕ SU2,14 ⊕ SU3,15 ⊕ SU4,8 ⊕ SU5,9 ⊕ SU6,10 ⊕ SU7,11 .

(A13)

These exchanges only involve qubits in the same correspondent pair, so they cannot extend the
entanglement beyond this pair. Additionally, we remark that the first four blocks have the same form,
as do the last four. Here, only two different types of blocks exist.

We develop the case d = 2 for a Type IIa interaction involving additional non-local and
non-crossed interactions between the pairs k′ = 1 and k′′ = 2 (note that the situation will be similar for
the cases with d > 2). Assuming the interaction in the direction j and in (30), the Hamiltonian becomes:

HI Ia =
3

∑
m=1

hm,0,m,0σ1m ⊗ σ3m +
3

∑
m=1

h0,m,0,mσ2m ⊗ σ4m+

hj,j,0,0σ1j ⊗ σ2j + hj,0,0,jσ1j ⊗ σ4j + h0,j,j,0σ2j ⊗ σ3j + h0,0,j,jσ3j ⊗ σ4j .

(A14)

Then, there exist eight types of exchanges and blocks (i, j, k is a permutation of 1, 2, 3): (a)

|Ψ0,0〉 ←→
∣∣Ψj,j

〉
; (b) |Ψ0,i〉 ←→

∣∣∣Ψj,k

〉
; (c)

∣∣Ψ0,j
〉
←→

∣∣Ψj,0
〉
; (d)

∣∣Ψ0,k
〉
←→

∣∣Ψj,i
〉
; (e) |Ψi,0〉 ←→∣∣∣Ψk,j

〉
; (f) |Ψi,i〉 ←→

∣∣Ψk,k
〉
; (g)

∣∣Ψi,j
〉
←→

∣∣Ψk,0
〉
; (h)

∣∣Ψi,k
〉
←→

∣∣Ψk,i
〉
. In this case, all blocks

will become different, but it is not a general situation when d grows. As before
∣∣Ψa,b

〉
= |ΨI 〉,

with I = a + 4b ∈ 0, 1, ..., 15. Then, the evolution operator can be written as:

Uj(t) = SU0,j+4j ⊕ SU4i,j+4k ⊕ SU4j,j ⊕ SU4k,j+4i ⊕ SUi,k+4j ⊕ SUi+4i,k+4k ⊕ SUi+4j,k ⊕ SUi+4k,k+4i , (A15)
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noting that the exchange involving two scripts implies the generation of entanglement between the
two correspondent pairs (i.e., among the four qubits as a whole). In this case, eight blocks are different
(but not necessarily independent,—because there are only 11 parameters free, including time t).

These two examples show in detail how the SU(2) decomposition is established. For cases d > 2,
the situation becomes similar and they are easily understood using the last synthetic notation in terms
of direct sums of blocks. It should finally be remarked that formulas (30) and (37) are computationally
useful and efficient to connect the original Hamiltonian coefficients with the entries for each block.
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