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Abstract: We report the time-evolution of Probability Density Functions (PDFs) in a toy model of
self-organised shear flows, where the formation of shear flows is induced by a finite memory time of
a stochastic forcing, manifested by the emergence of a bimodal PDF with the two peaks representing
non-zero mean values of a shear flow. Using theoretical analyses of limiting cases, as well as numerical
solutions of the full Fokker–Planck equation, we present a thorough parameter study of PDFs for
different values of the correlation time and amplitude of stochastic forcing. From time-dependent
PDFs, we calculate the information length (L), which is the total number of statistically different
states that a system passes through in time and utilise it to understand the information geometry
associated with the formation of bimodal or unimodal PDFs. We identify the difference between
the relaxation and build-up of the shear gradient in view of information change and discuss the
total information length (L∞ = L(t → ∞)) which maps out the underlying attractor structures,
highlighting a unique property of L∞ which depends on the trajectory/history of a PDF’s evolution.

Keywords: self-organisation; shear flows; coherent structures; turbulence; stochastic processes;
Langevin equation; Fokker-Planck equation; information length

1. Introduction

Many systems in nature and laboratories are far from equilibrium, constantly changing in time
and space and exhibiting very complex behaviour. Examples include turbulence in astrophysical and
laboratory plasmas, the stock market, and biological ecosystems. Despite having apparently different
manifestations of complexity, these systems have much in common and are often governed by similar
nonlinear dynamics. In particular, an ‘ordered’ collective behaviour (e.g., in the form of coherent
structures) emerges on the macroscale out of complexity as a novel consequence of self-organisation.
For example, in the laboratory, in geophysical and astrophysical systems, coherent structures such as
large-scale shear flows (such as zonal flows and streamers in laboratory plasmas, in the atmosphere
and oceans, and in giant planets) and differential rotations in the Sun and other stars emerge from
small-scale turbulence. There is overwhelming evidence from laboratory experiments, observations,
and computational studies that these coherent structures play an absolutely critical role in determining
the level of transport in the flow.

In particular, one crucial effect of shear flows is the suppression of transport in the direction
orthogonal to the flow (the shear direction) by shear-induced enhanced dissipation [1–11]. This occurs
as a shear flow distorts fluid eddies, accelerates the formation of small scales, and dissipates them
when molecular diffusion becomes effective on small scales. This turbulence regulation leads to the
formation of a transport barrier where transport is significantly reduced locally, providing one of
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the crucial mechanisms for controlling the mixing and transport in a variety of systems. Important
examples include (i) the low-to-high (L-H) transition (or internal transport barrier formation), during
which a system undergoes a remarkable, spontaneous transition to a more ordered state, despite
the increase in free energy (e.g., [3–5]); (ii) equatorial winds and polar vortices [12] (azimuthal flows
in the east–west direction) which have long been known to reduce transport, acting as a transport
barrier in the latitudinal direction [13]; (iii) transport barrier due to shear layers [14] in oceans which is
called shear sheltering; and (iv) the solar tachocline—the boundary layer between the stable radiative
interior and unstable convective layer which has a strong radial differential rotation—which can also
act as a transport barrier, leading to weak anisotropic turbulence and mixing [5,7]. Our theoretical
predictions of turbulent quenching in different systems have been confirmed by various numerical
simulations (e.g., refs. [15,16]).

The foregoing statements underscore the importance of self-regulation between small-scale
fluctuations and large-scale shear flows. We proposed a one-dimensional (1D) continuous model
of self-organised shear flow [17] by extending a prototypical sand-pile model which evolves in
discrete time. Specifically, we considered the formation of a shear flow driven by a short-correlated
(white-noise) random forcing, where the shear gradient increases until it becomes unstable according
to the stability criterion. For instance, in a strongly stratified medium, the stability is determined by the
Richardson criterion: fluctuations on small scales (or internal gravity waves) amplify a shear gradient
and thus, act as a forcing until the gradient exceeds the critical value given by the Richardson criterion,
R = (A/N)2 > Rc = (Ac/N)2 = 1/4. Here, N is the buoyancy frequency due to the restoring force
(buoyancy) in a stably stratified medium, and A is the shear gradient with the critical value Ac.
When unstable, the shear flow then relaxes its gradient and generates small-scale fluctuations, and this
relaxation was modelled by nonlinear (cubic) diffusion; the shear gradient then grows again when
small-scale turbulence becomes sufficiently strong to drive a shear flow. The same cycle repeats
itself, exhibiting continuous growth and damping. This highlights that a self-organised state is never
stationary in time, but involves persistent fluctuations.

The extension of refs. [17,18] solved a stochastic differential equation with a fourth-order stochastic
Runga–Kutta method for Gaussian coloured noise in 1D and showed the transition from an unimodal
stationary Probability Density Function (PDF) to a bimodal stationary PDF when the correlation time
of a random forcing exceeds a critical value. The mean shear gradient is zero for a unimodal PDF, while
its non-zero value represents the critical shear gradient around which a shear gradient continuously
grows and damps through the interaction with fluctuations. The transition from a unimodal to bimodal
PDF represents the formation of a non-zero mean shear gradient, or the formation of jets. Interestingly,
In ref. [18], we found similar results in a 0D model and 2D hydrodynamic turbulence. In particular,
the 2D results showed that a shear flow evolves through the competition between its growth and
damping due to a localized instability, maintaining a stationary PDF, and that the bimodal PDF results
from a self-organising shear flow with a linear profile.

The purpose of this paper is to investigate the evolution of a time-dependent PDF to understand
how a given initial (global) shear gradient modelled by a narrow PDF relaxes into a bimodal or
unimodal stationary PDF. We are particularly interested in understanding the information geometry
associated with this process. Our information geometry theory is based on the Fisher metric [19]
extended to time-dependent problems. (Note that we use information about statistically different
states, refraining from the debate on the exact definition of information [19,20]). We recall that for a
Gaussian PDF whose evolution is described by the movement of a peak and the change in its width,
the uncertainty measuring the mean value of x is set by the standard deviation. Two PDFs with the
same standard deviation would differ by one statistical state when their mean values differ by the
standard deviation (e.g., see ref. [21]). To formalise this idea to quantify the information change
associated with the time evolution of PDFs [22–32], we define an infinitesimal distance at any time by
comparing two PDFs at adjacent times and sum these distances. The total distance gives us the number
of statistically different states that a system passes through in time and is called the information
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length (L). While the detailed derivation of L and its applications are given in refs. [22–32], it is
useful to highlight that L is a measure of the total elapsed time in units of a dynamical timescale for
information change. To show this, we define the dynamical time (τ(t)) [22–30] as follows:

E ≡ 1
[τ(t)]2

=
∫ 1

p(x, t)

[
∂p(x, t)

∂t

]2

dx. (1)

Here, τ(t) is the characteristic timescale over which the information changes. Having units of time,
τ(t) quantifies the correlation time of a PDF. Alternatively, 1/τ quantifies the (average) rate of change of
information in time. L(t) is then defined by measuring the total elapsed time (t) in units of τ as

L(t) =
∫ t

0

dt1

τ(t1)
=
∫ t

0

√∫
dx

1
p(x, t1)

[
∂p(x, t1)

∂t1

]2

dt1. (2)

L(t) measures the cumulative change in p(x, t), and depends on the intermediate states that a system
evolves through between times 0 and t. Thus, it is a Lagrangian quantity (unlike entropy or relative
entropy) which depends on the time history of p(x, t), uniquely defined as a function of time t for a
given initial PDF. L represents the total number of statistically distinguishable states that a system
evolves through, providing a very convenient methodology for measuring the distance between
p(x, t) and p(x, 0) continuously in time for a given p(x, 0). References [22–32] showed that L∞ is a
new diagnostic for understanding a dynamical system and for mapping out an attractor structure.
In particular, L∞ captures the effect of different deterministic forces through the scaling of L∞ against
the peak position of a narrow initial PDF. For a stable equilibrium, the minimum value of L∞ occurs
at the equilibrium point. In comparison, in the case of a chaotic attractor, L∞ exhibits a sensitive
dependence on initial conditions like a Lyapunov exponent.

In this paper, we investigate the evolution of a shear gradient (x) starting from a relatively narrow
PDF (p(x, 0)) with an initial mean value of x0 which represents the mean value of an initial shear
gradient. For a unimodal stationary PDF, the mean shear gradient decreases to zero in the long time
limit, while for a bimodal stationary PDF with a peak of ±x∗, the case of x0 > x∗ models the relaxation
of an initial super-critical gradient (x0) to the critical value (x∗), and the case of x0 < x∗ models the
build-up of the gradient from a subcritical initial value to the critical value (x∗). We are interested in the
information changes in these processes and in identifying the differences between the relaxation and
build-up of the shear gradient in view of these information changes and in mapping out an attractor
structure by using L.

The remainder of this paper is organised as follows. We introduce our model and provide
analytical solutions of time-dependent PDFs in limiting cases in Section 2. In order to systematically
undertake a numerical study, in Section 3, we first provide a detailed discussion on stationary PDFs
for different parameter values to determine the parameter space for unimodal versus bimodal PDFs.
Section 4 provides numerical solutions for time-dependent PDFs andL. The discussion and conclusions
are found in Section 5.

2. Model

In this section, we introduce our model and provide analytical solutions for time-dependent PDFs
in limiting cases. As noted in Section 1, given the universality of self-organisation in 0D, 1D, and 2D
models and the challenge of the computation of time-dependent PDFs, we utilised a 0D model to
facilitate the calculation of PDFs. Our 0D model is based on the cubic process for a stochastic variable
(x) (e.g., representing a shear gradient). Specifically, we considered x driven by a finite correlated
forcing ( f ), governed by the following Langevin equations

∂tx = −(ax + bx3) + f ≡ −g(x) + f , (3)

∂t f = −γ f + ξ. (4)
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Here, g(x) = ax + bx3; a, b ≥ 0 are constants; ξ is a stochastic noise with a short correlation time
with the correlation function

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′). (5)

The highest cubic nonlinearity in our 0D model mimics a nonlinear cubic diffusion in the 1D
model in refs. [17,18]. Equation (3) is the Ornstein–Uhlenbeck process [33] with the solution

f (t) = f (0)e−γt +
∫ t

0
dt1e−γ(t−t1)ξ(t1). (6)

For f (0) = 0, the correlation time of f (t) is approximately 1/γ, as follows:

〈 f (t) f (t′)〉 =
∫ t

0 dt1
∫ t′

0 dt2e−γ(t−t1)e−γ(t′−t2)〈ξ(t1)ξ(t2)〉

= D
γ

[
e−γ(t′−t) − e−γ(t+t′)

]
≈ D

γ e−γ|t′−t|,
(7)

where we assumed t′ > t and used Equation (5). Thus, x in Equation (3) is driven by the Gaussian noise
with the correlation time γ−1. While the set of Equations (3) and (4) give a PDF in two dimensions
(x, f ), it is useful to obtain an approximate PDF in the x dimension only. To this end, we combine
Equations (3) and (4) to obtain the equation for x as

∂ttx + (γ + ∂xg)∂tx = −γg + ξ, (8)

and consider the overdamped limit where ∂ttx is negligible compared with the damping term. This is
the so-called unified-colored noise approximation [34], and turns Equation (8) into

(γ + ∂xg)∂tx ' −γg + ξ. (9)

We observe that for sufficiently small γ, to O(γ) Equation (9) is, again, an Ornstein–Uhlenbeck
process [33] for Q = g + γx:

∂tQ = −γQ + γ2x + ξ ≈ −γQ + ξ. (10)

Thus, the mean value of 〈Q(t)〉 = Q0e−γt, where Q0 = 〈Q(t = 0)〉, decays exponentially in time
while the variance, 〈(Q− 〈Q〉)2〉 = 1

2β , evolves according to

1
2β

=
e−2γt

2β0
+

D(1− e−2γt)

γ
, (11)

where β and β0 = β(t = 0) are the inverse temperatures of p(Q, t) and its initial value, respectively.
Therefore, the time-dependent PDF of Q is a Gaussian process and is given by

p(Q, t) =

√
β

π
e−β(Q−〈Q〉)2

, (12)

where β is the inverse temperature that satisfies Equation (11).
Since E in Equation (1) and L in Equation (2) are invariant under the change of variables,

the Gaussian PDF of Q in Equation (12) provides us with a convenient way of calculating them
by utilising the property of the Gaussian PDF. Specifically, for the Gaussian PDF of Q, E is given by

E =
(∂tβ)2

2β2 + 2β(∂t〈Q〉)2, (13)

where the first and second terms on the right-hand side are due to the temporal changes in the width
and peak position of the PDF. For sufficiently small D (large β) and/or large 〈Q〉, E in Equation (13)
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is dominated by the second term. Furthermore, with a small D, Equation (11) becomes 2β ∼ 2β0e2γt.
Thus, by substituting 2β ∼ 2β0e2γt, ∂t〈Q〉 = −γQ0e−γt into Equation (13), we obtain

E ∼ 2γ2β0Q2
0, (14)

where Q0 = (a + γ)x0 + bx3
0, and x0 = 〈x(t = 0)〉 is the mean position of x at t = 0. To relate

Equation (14) to what is observed in the PDF of x, we need to find the initial inverse temperature,
βx

0 = 1/2〈(x(0)− x0)
2〉, for p(x, t = 0) that corresponds to β0 = 1/2〈(Q(0)−Q0)

2〉 (which is the
inverse temperature of the PDF of Q at t = 0). To this end, we use Q− 〈Q〉 = (a + γ)x + bx3 − 〈(a +
γ)x + bx3〉 ∼ (x− 〈x〉)(a + γ + 3b〈x〉2) to leading order for |〈x〉| � |x− 〈x〉| and obtain

〈(Q− 〈Q〉)2〉 ∼ 〈(x− 〈x〉)2〉(a + γ + 3b〈x〉2)2. (15)

For x0 � γ, a, Equation (15) evaluated at t = 0 gives us

β0 ∼
βx

0

9b2x4
0

. (16)

Equations (14) and (16) give us

E ∼
2βx

0γ2x2
0

9b2 , L(t) ∼
√

2βx
0

9b2 γx0t. (17)

Thus, L(t) increases linearly with time with a slope that is proportional to γ and x0 (for small
time, small D, small γ, and large x0). The numerical simulations in Section 4 examine this behaviour
in more detail.

Then, by using the conservation of the probability, the time-dependent PDF of x is obtained as

p(x, t) =
∣∣∣∣dQ

dx

∣∣∣∣ p(Q, t) =

√
β

π
|∂xg + γ| exp

(
−β(Q− 〈Q〉)2

)
. (18)

It is interesting to note that p(x, t → ∞) in Equation (18) can be either unimodal or bimodal
depending on the values of the parameters. This is discussed in detail in Section 3.

Having gained some insight into the leading order behaviour of p(x, t) for small γ, we investigate
a more general case of Equation (9). To this end, it is convenient to recast Equation (9) as

∂tx = −γg
G

+
1
G

ξ, (19)

where G = ∂xg + γ. The corresponding Fokker–Planck equation for p(x, t) is

∂

∂t
p(x, t) =

∂

∂x

[
γg
G

p(x, t)

]
+ D

∂

∂x

[
1
G

∂

∂x

(
1
G

p(x, t)
)]

. (20)

In Equation (20), we used the Stratonovich calculus [33,35–37], which recovers the limit of a
short correlated forcing from the finite correlated forcing [37]. Although a time-dependent solution to
Equation (20) is not easily obtained analytically, a stationary solution can be found and is discussed in
detail in Section 3.
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3. Stationary PDFs

In order to undertake a systematic numerical study in Section 4, we here provide a detailed
discussion of stationary PDFs for different parameter values, and determine the parameter space for
unimodal versus bimodal PDFs. A stationary PDF found from Equation (18) is

p(x) ∝ |G(x)| exp
(
− γ

D

∫ x
g(x1)G(x1)dx1

)
= |∂xg + γ| exp

(
− γ

2D
[g(x)2 + 2γ

∫ x
g(x1)dx1]

)
. (21)

To O(γ), Equation (21) reproduces Equation (18). To determine the location of the local maxima
and minima of p(x) in Equation (21), we calculate

∂x p(x) = 0 =⇒ − γ

D
(∂xg + γ)2g + ∂xxg = 0. (22)

For g = ax + bx3, Equation (22) can be rewritten as

x
[
− γ

D
(a + γ + 3bx2)2(a + bx2) + 6b

]
= 0. (23)

Equation (23) gives the solution x = 0 and x 6= 0, indicating the possibility of the bimodal PDF.
We then find the non-zero solution by solving

− γ

D
(a + γ + 3bx2)2(a + bx2) + 6b = 0. (24)

To this end, it is convenient to make the following three successive changes in variables:{
X = a + bx2,

α = (Ω + 3X)2X,
→

{
Y = 1 + 3X

Ω ,
3α
Ω3 = Y2(Y− 1),

→
{

Z = 1/Y,

Z3 + δZ− δ = 0,
(25)

with Ω, α, δ defined as

Ω = γ− 2a, α =
6Db

γ
, δ =

γ(γ− 2a)3

18Db
. (26)

In order to solve the equation for Z in Equation (25), we use the Cardano formula and find the
following three roots:

Z =


3
√

δ
2 (S + T),

3
√

δ
2 (jS + j2T),

3
√

δ
2 (j2S + jT).

(27)

Here, j = − 1
2 + i

√
3
2 and

S =
3

√
1 +

√
1 +

4δ

27
, T =

3

√
1−

√
1 +

4δ

27
. (28)

Equation (27) gives the non-zero solutions of Equation (24):

x2
∗ =

3

√
4D

3γb2 Ψ− γ + a
3b

, (29)

where

1
Ψ

=


S + T,

jS + j2T,

j2S + jT.

(30)
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To find real solutions, we check the discriminant (∆) of the last equation of Equation (25),

∆ = −27(−δ)2 − 4(δ)3 = −4δ2
[

27
4

+ δ

]
, (31)

as the sign of ∆ determines the number of the real root as follows:

• If ∆ < 0, then one root is real, and two are complex conjugates,
• If ∆ = 0, then all roots are real, and at least two are equal,
• If ∆ > 0, then all roots are real and unequal.

From a detailed analysis of different cases provided in Appendix A, we conclude that the existence
of a bimodal PDF requires ∆ ≤ 0 in Equation (31), and that the peak position of a bimodal PDF is
given by

x∗ = ±

√√√√ 3

√
4D

3γb2
1

S + T
− γ + a

3b
, (32)

where

δ =
γ(γ− 2a)3

18Db
, S =

3

√
1 +

√
1 +

4δ

27
, T =

3

√
1−

√
1 +

4δ

27
.

Finally, a convenient method of identifying parameter values for unimodal versus bimodal PDFs
is to check the sign of ∂xx p(x) at x = 0:

∂xx p
∣∣∣∣
x=0

=
[
6b− γ

D
(a + γ)2a

]
. (33)

Since a unimodal PDF takes a local maximum at x = 0 when ∂xx p < 0 and a local minimum at
x = 0 when ∂xx p > 0, we can see from Equation (33) that a unimodal PDF with ∂xx p(x = 0) < 0 is
more likely for larger γ and smaller D. Alternatively, a finite correlation time of f (small γ) and a large
diffusion (D) facilitate the formation of a bimodal PDF.

To illustrate these results, Figures 1 and 2 show how the peak position x∗ and peak amplitude
p(x∗), respectively, vary with γ for a range of D values. Figure 3 shows the boundary between the
unimodal and bimodal PDFs in the {γ, D} parameter space. These results are for a = b = 1, but other
values yield the same general boundary shapes, and in particular, the same agreement occurs between
the two different evaluation methods, R = 0 and (33). The condition ∂xx p(x = 0) > 0 is therefore a
necessary and sufficient condition to have a bimodal PDF. Figure 4 shows what the PDFs look like and
how the transition between unimodal and bimodal PDFs comes about.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

γ

0

0.5

1

1.5

2

x
∗

D = 0.02

D = 0.05

D = 0.1

D = 0.2

D = 0.3

D = 0.5

D = 0.7

D = 1

Figure 1. The peak positions (x∗) as functions of γ, for different values of D, as indicated, and a = b = 1.
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0 0.2 0.4 0.6 0.8 1 1.2 1.4

γ

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
D
F

a
t
x
∗

D = 0.02

D = 0.05

D = 0.1

D = 0.2

D = 0.3

D = 0.5

D = 0.7

D = 1

Figure 2. The peak amplitudes (p(x∗)) as functions of γ, for different values of D, as indicated,
and a = b = 1. The small diamonds indicate the transition points between unimodal and
bimodal Probability Density Functions (PDFs).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

γ

0

0.5

1

1.5

2

2.5

3

D

D solution of 3

√

4D
3γb2

1
S+T

= γ+a
3b

D = γ

6b(a+ γ)2a

Bimodal region

Unimodal region

Figure 3. The boundary between unimodal and bimodal PDFs in the parameter space {γ, D},
for a = b = 1. The red curve is the solution of ∂xx p(x = 0) = 0, whereas the blue diamonds are
the result of setting R = 0.

-4 -3 -2 -1 0 1 2 3 4

x

0

0.5

1

1.5

P
D
F

γ = 1.10
−3

γ = 5.10
−3

γ = 1.10
−2

γ = 5.10
−2

γ = 1.10
−1

γ = 5.10
−1

γ = 1

γ = 1.5

γ = 2

γ = 2.5

Figure 4. The stationary PDFs for D = 0.7, a = b = 1, and γ, as indicated. Note the transition between
unimodal PDFs for large γ and bimodal PDFs for small γ, in agreement with the boundary shown
in Figure 3.
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4. Numerical Results

We provided analytical solutions for a time-dependent PDF in certain limiting cases, such as
small γ (e.g., Equation (12)), large x0 and small time (e.g., Equation (17)) in Section 2, and in the
limit of large time, where the PDF settles into a stationary solution, in Section 3. To obtain exact
time-dependent solutions to the Fokker–Planck equation (22) for any parameter values, we now
use numerical methods in this section and utilise results from Section 3 to perform our numerical
simulation systematically. As shown in Appendix B, we can set a = b = 1 without any real loss of
generality by rescaling the other quantities appropriately. The effective parameter space is therefore
reduced to {γ, D}, together with whatever parameters define the initial condition, which we take
to be p(x, t = 0) ∝ exp

[
−(x− x0)

2/10−3]. That is, βx
0 = 103 remains fixed, corresponding to a

relatively narrow PDF, and the initial peak position (x0) is the one additional parameter. The initial
condition (p(x, t = 0)) represents the PDF for an initial shear gradient. When the final stationary PDF
is unimodal, the mean shear will decrease to zero in the long time limit; when the stationary PDF is
bimodal with a peak of ±x∗, x0 > x∗ models the relaxation of an initial super-critical gradient (x0)
to the critical value (x∗) while x0 < x∗ models the build-up of the gradient from an initial subcritical
value to the critical value (x∗). We are interested in the information change in this relaxation problem
and in identifying the difference between the relaxation and build-up of the shear gradient in view of
the information change. The numerical implementation of Equation (22) is based on second-order
accurate finite-differencing in both x and t, with up to 104 grid points in x, and timesteps as small as
10−4. The domain in x is truncated to the interval [−10, 10] rather than the original unbounded interval
for which the analytic theory applies. As seen in Figure 4, for example, for the parameter values of
interest here, the PDFs are well-confined to the interval |x| ≤ 10, making a numerical solution of (22)
with boundary conditions of p = 0 at x = ±10 an excellent equivalent to an infinite interval.

4.1. Time Evolution of PDFs

Figure 5 shows examples of how different values of x0 ultimately all relax to the same final PDF.
Panels (a–d) correspond to x0 = 0, 0.32, 0.6, 1, respectively. γ = D = 1, according to Figure 3,
is slightly in the bimodal regime, consistent with the final PDF seen here. Figure 6 focuses specifically
on how the positions of the peaks evolve in time. Important observations that we can make from
Figures 5 and 6 are as follows:

(a) An initial PDF with a peak at x0 = 0 remains unimodal before becoming a bimodal PDF;
(b) An initial PDF with a peak at x0 = x∗ (0.32 for this case) does not maintain the same peak position

at x∗, but moves outward first to x > x∗ and then inwards to x∗. This initial outward movement
explains why the minimum L∞ = L(t→ ∞) does not occur for x0 = x∗ in Section 4.2;

(c) An initial PDF with a peak at x = xL (where xL is the x0 value which minimises L∞, as defined
in Section 4.2) constitutes the border line between different PDF evolutions (an initial PDF with a
peak at x0 < xL goes outwards and then inwards, while an initial PDF with a peak at x0 > xL
monotonically moves inwards to x∗);

(d) An initial PDF with a peak at x0 = 1 > xL monotonically moves inwards.
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Figure 5. Time evolution of the PDFs for the following initial conditions: (a) x0 = 0; (b) x0 = 0.32;
(c) x0 = 0.6; (d) x0 = 1. γ = D = 1 for all four.
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Figure 6. The peak positions of the solutions in Figure 5 as functions of time.

4.2. Information Length: Attractor Structure

Since L(t) represents the cumulative change in information, it is zero at t = 0 and increases
with time. As a PDF settles into a stationary PDF in the limits of a large time, the temporal change
in PDFs becomes smaller and then becomes zero, L(t) settling to a constant value of L∞(x0, D, γ).
A typical evolution of L(t) is shown in Figure 7 for D = 0.5, x0 = 3, and 4, and a range of γ values.
The logarithmic scale on the right makes it especially clear that for small times, L grows linearly in
time, before eventually equilibrating to its final value, L∞. In order to make more precise comparisons
with the analytic prediction (17), Figure 8 shows the results of extracting a numerically computed slope,
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call it µ = d
dtL(t), and compares with the analytic expectation

√
2βx

0/9b2 γx0 in Equation (17). That µ

is expected to scale linearly with γ and x0 and be independent of D, is reasonably well reproduced by
the numerical data with less than a 10% difference between the theoretical prediction and simulation
results (note the small range of the y-axis).
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Figure 7. L(t) as a function of t, with a linear scale on the left and a logarithmic scale on the right.
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Figure 8. Letting µ denote the numerically computed slope L(t)/t (for small t), the left panel shows
µ/γ as a function of γ, for x0 = 4, and the right panel shows µ/x0 as a function of x0 for γ = 0.5.
The agreement with the expectations from Equation (17) is seen to be reasonably good.

L∞(x0, D, γ) is a unique representation of the total number of statistically different states
that a PDF evolves through to reach a final unimodal or bimodal PDF. The smaller L∞ is,
the smaller the number of states that the initial PDF passes through to reach the final equilibrium.
Therefore, L∞ provides us with a path-dependent Lagrangian measure of the distance between a given
initial and final PDF. Thus, by choosing a narrow initial PDF at different peak positions (x0), we can
map out the attractor structure (the proximity of x0 to an equilibrium) by measuring L∞ as a function
of x0. We were particularly interested in how differently L∞ would behave for the final unimodal and
bimodal PDFs, which have different stable equilibrium points: x = 0 and x = x∗ 6= 0, respectively. To
this end, Figure 9 shows L∞ as a function (x0) for a range of D values. For final bimodal PDFs, the
location of the final peak position (x∗) is shown by a little vertical line.

We note first in Figure 9 that the overall shapes of the curves are drastically different depending
on whether the final PDF is unimodal or bimodal. For a unimodal final PDF, the minimum value of L∞

occurs for x0 = 0. This is because x0 = 0 is a stable equilibrium for a unimodal PDF and thus, an initial
PDF with the peak (x0) closer to x = 0 undergoes less change during the evolution of time and is more
similar to the final PDF. Therefore, the absolute minimum of L∞ occurs at xL = argminx0

L∞(x0) = 0,
as can be seen in the orange and yellow curves in Figure 9.
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Figure 9. L∞ as a function of x0 for D, as indicated, and γ = 0.5.

In comparison, x = 0 is an unstable equilibrium point for a final bimodal PDF, while x∗ 6= 0,
given by Equation (32), is a stable equilibrium point. Therefore, L∞ has a local maximum around
x0 = 0 (unstable point). Naively, the minimum value of L∞ would be expected to occur for an initial
PDF with x0 = x∗, that is, when the peak position of an initial PDF (x0) coincides with that of the final
PDF (x∗). However, the blue and green curves in Figure 9 reveal the very interesting fact that L∞ is
actually minimised for x0 = xL > x∗. As noted from Figures 5 and 6, this is because the initial peaks
that are sufficiently far away move inwards monotonically, but the initial peaks near x∗ actually have a
more complicated evolution (moving outwards and then inwards).

These observations confirm that L∞ is a good Lagrangian measure that captures the attractor
structure and dynamics. It is, thus, of particular interest to compare L∞ with the Kullback–Leibler
divergence [19] (that is commonly used in comparing PDFs), defined as

D(p||q) =
∫

p(x) ln
[

p(x)
q(x)

]
dx, (34)

where p(x) is the initial PDF and q(x) is the final one. Obviously, unlike L∞, D(p||q) depends only on
the initial and final PDFs, and thus, does not provide any information on dynamics (e.g., what different
states an initial PDF passes through in the time evolution, or how the locations and the shapes of
the PDFs evolve in time between initial and final PDFs). Since we have an analytic expression for
the stationary PDFs, we computed D(p||q) by numerical integration with the initial PDF used above.
Figure 10 shows these results, where the little vertical lines represent the positions of x∗.

We can see that the absolute minimum relative entropy always occurs when x0 = 0 or x∗ for
unimodal and bimodal PDFs, respectively, unlike L∞. In retrospect, this is not particularly surprising,
since the relative entropy only measures the difference between the two PDFs, and an initial PDF
located at the final peak position is most similar to the final PDF. Specifically, for a bimodal PDF,
the initial PDF at the peak position of the final PDF has the strongest resemblance to the final PDF,
with the minimum D(p||q) occurring for x0 = x∗.

For completeness, we also show D(q||p) in Figure 11. Unlike Figure 10, the absolute minimum
value occurs at x0 = 0, even when the final PDF is bimodal, failing to capture the attractor structure
associated with a bimodal PDF. Furthermore, the values of D(q||p) are much larger than those of
D(p||q), and thus, a symmetric version ([D(p||q) + D(q||p)]/2) would be dominated by D(q||p).
This drastic difference between D(p||q) and D(q||p) calls for care in using symmetric versions.
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Figure 10. Relative entropy (D(p||q)) as a function of x0 for D, as indicated, and γ = 0.5.
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Figure 11. D(q||p) as a function of x0 for D, as indicated, and γ = 0.5.

5. Discussion and Conclusions

We investigated the time evolution of PDFs in a toy model of self-organised shear flows using
a unified coloured approximation, and utilised the information length to understand information
changes and attractor structures. In our model, the formation of shear flows was induced by a finite
memory time of a stochastic forcing and was manifested by the emergence of a bimodal PDF, with the
two peaks representing non-zero mean values of a shear flow (gradient). We presented a thorough
study of PDFs for different correlation time and amplitude values for the stochastic forcing. By solving
the Fokker–Planck equation numerically, we investigated the time evolution of PDFs starting with
a narrow PDF at different peak positions (x0) at time t = 0. The cumulative change in information
(L∞) beautifully maps out the underlying attractor structures. Specifically, for a unimodal PDF,
the minimum value of L∞ occurs for x0 = 0, since x0 = 0 is a stable equilibrium for a unimodal
PDF and thus, an initial PDF with a peak (x0) closer to x = 0 undergoes less change during the time
evolution and is more similar to the final PDF; for a bimodal PDF, L is minimised for x0 = xL > x∗,
where x∗ is the peak position of a bimodal PDF. Recalling that x0 represents the mean shear gradient
at t = 0 while x∗ is a critical shear gradient, x0 = xL > x∗ implies that an initial narrow PDF with a
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super-critical shear gradient is, in fact, more similar to a final stationary state, while an initial narrow
PDF with a mean critical shear gradient undergoes a complicated evolution through the interaction
with fluctuations. This is likely to be due to the rapid relaxation of instability at the super-critical state,
similar to what was observed in the forward process in the phase transition in [27] (e.g., compare
Figures 6b and 7b). That is, a process triggered by instability involves a smaller change in information
and thus, a larger change in entropy (as might be expected as a consequence of instability). This reflects
a unique property of L∞ which depends on a trajectory/history of a PDF evolution. In comparison,
the relative entropy, which only measures the difference between the initial and final PDFs, does
not provide any information on the dynamics between the initial and final times. In summary, we
demonstrated the importance of studying the dynamics and the merit of the information length in
understanding the dynamics and the evolution of PDFs in a toy model of self-organised shear flow.
Further work will include the extension of this work to the analysis of our model without unified
colored-noise approximation and to other turbulence models, in particular, to quantify the information
change associated with intermittency and self-organisation.
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Visualization, Q.J.; Supervision, E.K and R.H; Writing—original draft, E.K, Q.J. and R.H.; Writing—review
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Appendix A. Derivation of Equation (32)

Appendix A.1. Case δ = − 27
4 ⇐⇒ ∆ = 0

According to the definitions of S and T in Equation (28), S = T = 1. So, by using 1 + j + j2 = 0,
we calculated Equation (30):

1
Ψ

=


S + T = 2,

jS + j2T = j + j2 = −1,

j2S + jT = j2 + j = −1.

(A1)

Consistent with the statement above, we obtained three real solutions. The last two solutions

with the same value of
1
Ψ

= −1 in Equation (A1) make Equation (29):

x2
∗ = −

[
3

√
4D

3γb2 +
γ + a

3b

]
< 0, (A2)

which is inconsistent, since x∗ is a real number. On the other hand, the solution
1
Ψ

= S + T = 2 can

give a consistent solution if x2
∗ in Equation (29) is positive, that is

R ≡ 3

√
4D

3γb2
1

S + T
− γ + a

3b
> 0. (A3)

If not, the PDF is unimodal.

Appendix A.2. Case δ > − 27
4 ⇐⇒ ∆ < 0

∆ < 0 gives a unique real solution and two complex solutions which are complex conjugates. It is

easy to see that the real solution of our interest corresponds to 1
Ψ = S + T because

√
1 + 4δ

27 is real.
Therefore, as long as Equation (A3) holds, we have a bimodal PDF.
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Appendix A.3. Case δ < − 27
4 ⇐⇒ ∆ > 0

We can take γ < 2a, because if γ > 2a, then δ > 0 (see the last equation in Equation (26)). We thus
take a root (Z∗) of the last equation of Equation (25) with δ < − 27

4 .

Appendix A.3.1. Subcase Z∗ > 0

Obviously, in this case,

Y∗ =
1

Z∗
> 0. (A4)

We recall that
X∗ =

γ− 2a
3

(Y∗ − 1). (A5)

Using γ− 2a < 0 and Equation (A4), we have

X∗ =
2a− γ

3
(1−Y∗) <

2a− γ

3
<

2
3

a, (A6)

which is in contradiction to X∗ = a + bx2
0 > a. Thus, there is no consistent non-zero solution in this case.

Appendix A.3.2. Subcase Z∗ < 0

Because δ < − 27
4 < 0, δZ∗ > 0. Using the last equation in Equation (25), we then have

Z3
∗ − δ = −δZ∗ < 0, (A7)

and thus,

Z3
∗ < δ <

−27
4
⇒ Z∗ < −

3
3
√

4
. (A8)

Using Equation (A7) in Equation (A8) then gives us

Z3
∗ − δ = δ(−Z∗) <

27
4

Z∗ < −
27
4

3
3
√

4
. (A9)

Therefore,

Z3
∗ < δ− 27

4
3

3
√

4
< −27

4
(1 +

3
3
√

4
), (A10)

and
Y∗ =

1
Z∗

> − 1
3
√

27
4 (1 + 3

3√4
)

. (A11)

So, using Equation (A11) in Equation (A5) gives us

X∗ =
2a− γ

3
(1−Y∗) <

2a− γ

3

1 +
1

3
√

27
4 (1 + 3

3√4
)

 <
2
3

1 +
1

3
√

27
4 (1 + 3

3√4
)

 a ' 0.91a. (A12)

Equation (A12) is in contradiction with X∗ = a + bx2
∗ > a. Therefore, there is no consistent

solution in this case. This proves that in the case ∆ > 0, there is no consistent non-zero solution (x∗)
for a bimodal PDF.
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Appendix A.4. Summary

From the analyses above, we can conclude that the existence of a bimodal PDF requires ∆ ≤ 0 and

R ≡ 3

√
4D

3γb2
1

S + T
− γ + a

3b
> 0. (A13)

To make sure that this solution in Equation (29) corresponds to a local maximum, we need to
show ∂xx p(x = x∗) < 0. To this end, we recall that x∗ satisfies Equation (23)

− γ

D
(∂xg(x∗) + γ)2 g(x∗)

x∗
+ 6b = 0. (A14)

We then find the second derivative of the stationary PDF at x∗, as follows:

∂xx p(x∗) exp
( γ

2D
[
g(x∗)2 + 2γ

∫ x∗
g(x1)dx1

])
=

[
−2γ

D
(∂xg + γ)g∂xxg

− γ

D
(∂xg + γ)2∂xg + 6b +

[
− γ

D
g∂xg

] [
− γ

D
(∂xg + γ)2g + ∂xxg

]]
x=x∗

. (A15)

By using Equation (23), we see that the last term in Equation (A15) is identically zero. Furthermore,
using Equation (A14), we simplify Equation (A15) as

∂xx p(x∗) exp
( γ

2D
[
g(x∗)2 + 2γ

∫ x∗
g(x1)dx1

])
=
[ γ

D
(∂xg + γ)

[
−2g∂xxg + (∂xg + γ)(

g
x
− ∂xg)

]]
|x=x∗

= − γ

D
(a + γ + 3bx2

∗)
[
12b(ax2

∗ + bx4
∗) + 2x2

∗(a + γ + 3bx2
∗)
]

. (A16)

Since the exponential is positive, ∂xx p(x∗) < 0 in Equation (A16), confirming a local maximum of
a PDF at x = x∗.

Appendix B. Rescaling

We show, in detail, how we rescale Equations (3) and (4) to make a = b = 1. We first rescale x by

using x =
√

a
b x̃ in Equations (3) and (4) to recast them as∂t x̃ =

√
b
a

[
− a
√

ax̃√
b
− a
√

ax̃3
√

b
+ f

]
,

∂t f = −γ f + ξ,
(A17)

and thus, ∂t x̃ = −a(x̃ + x̃3) +
√

b
a f ,

∂t f = −γ f + ξ.
(A18)

Next, we rescale t by using t = t̃
a∂t̃ x̃ = −x̃− x̃3 + 1

a

√
b
a f ,

∂t̃ f = − γ
a f + ξ

a .
(A19)
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We let f̃ = 1
a

√
b
a f ∂t̃ x̃ = −x̃− x̃3 + f̃ ,

∂t̃ f̃ = − 1
a γ f̃ + 1

a2

√
b
a ξ.

(A20)

We then let γ̃ = 1
a γ and ξ̃ = 1

a2

√
b
a ξ

{
∂t̃ x̃ = −x̃− x̃3 + f̃ ,

∂t̃ f̃ = −γ̃ f̃ + ξ̃.
(A21)

Finally, we rescale 〈ξ̃(t)ξ̃(t′)〉 = b
a5 〈ξ(t)ξ(t′)〉 = b

a5 Dδ(t′ − t) = b
a4 Dδ(t̃′ − t̃) = D̃δ(t̃′ − t̃).
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