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Abstract: Bayesian network structure learning from data has been proved to be a NP-hard
(Non-deterministic Polynomial-hard) problem. An effective method of improving the accuracy
of Bayesian network structure is using experts’ knowledge instead of only using data. Some experts’
knowledge (named here explicit knowledge) can make the causal relationship between nodes in
Bayesian Networks (BN) structure clear, while the others (named here vague knowledge) cannot.
In the previous algorithms for BN structure learning, only the explicit knowledge was used, but the
vague knowledge, which was ignored, is also valuable and often exists in the real world. Therefore we
propose a new method of using more comprehensive experts’ knowledge based on hybrid structure
learning algorithm, a kind of two-stage algorithm. Two types of experts’ knowledge are defined
and incorporated into the hybrid algorithm. We formulate rules to generate better initial network
structure and improve the scoring function. Furthermore, we take expert level difference and opinion
conflict into account. Experimental results show that our proposed method can improve the structure
learning performance.

Keywords: Bayesian network; structure learning; explicit knowledge; vague knowledge;
hybrid algorithm

1. Introduction

Bayesian networks (BN) is one of the most effective theoretical models for decision making,
especially for uncertain knowledge reasoning [1]. In recent years, Bayesian networks have been
widely used in a variety of domains such as medical diagnosis [2], device fault diagnosis [3],
and system modeling in multiple situations [4–6]. Bayesian network learning is the fundamental topic
in Bayesian network research. Generally, Bayesian network learning consists of two parts, structure
learning and parameter learning. Of these two parts, structure learning is the core part for Bayesian
network learning.

Bayesian network structure learning is to determine every edge in the BN, including judging the
existence of edges and the direction of edges. Generally, there are three main algorithms in Bayesian
network structure learning: independence-based structure learning algorithms (independence-based
algorithms) [7,8], score-based structure learning algorithms (score-based algorithms) [9,10], and hybrid
structure learning algorithms (hybrid algorithms) [11–13]. The first group of algorithms use conditional
independence (CI) tests to identify conditional independent relationships among variables. The major
weakness of these algorithms is high complexity and sensitivity to the CI tests [14]. The second
group of algorithms consider structure learning as a structural optimization problem, using a search
strategy to select the structure with the highest score of a scoring function which measures the fitting
degree of network and data. The major weakness of these algorithms is that they easily to fall into
local optima. Both groups of algorithms have drawbacks. Recently, the third group of algorithms,
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hybrid algorithms, has become widely used because they combine the advantages of the previous two
algorithms. One popular strategy is to use independence-based algorithms (the first stage learning
algorithms) to determine the initial network structure and use score-based algorithms (the second
stage learning algorithms) to find the highest-scoring network structure.

Bayesian network structure learning from data has been proved to be a NP-hard problem [15],
and it faces great challenges when using structural learning algorithms. Firstly, the generation of the
initial network structure is very sensitive to CI tests. If the data is insufficient or noisy, the algorithms
may work incorrectly. Secondly, the number of the candidate structures grows exponentially with the
increase in the number of variables. Finding the highest score network structure through the search
strategy is very hard and the search strategy is easy to fall into local optimum. Thirdly, the scoring
functions can’t work accurately with noisy or insufficient data. Finally, many network structures may
have Markov equivalent graph structures that have same joint probability distributions and can’t be
distinguished by data alone. The effective way to eliminate those limitations is to incorporate experts’
knowledge into Bayesian network structure learning.

During the last two decades, a lot of studies have been devoted to incorporating experts’
knowledge into Bayesian network structure learning [16–19]. The weakness in the majority of the
proposed algorithms is that they assume that the knowledge given by experts can make the causal
relationship between nodes in BN structure clear (explicit knowledge), but knowledge provided
by experts that cannot make the causal relationship between nodes in BN structure clear (vague
knowledge) also exists in the real world. For example, the experts may deem that there is a link
between node A and node B. This expert knowledge can’t determine the orientation of this pair of
nodes in BN. In other words, this expert knowledge is not explicit. We consider it necessary to take
this kind of knowledge into consideration in the process of Bayesian network structure learning, rather
than just using explicit knowledge alone. Therefore, how to incorporate these two types of experts’
knowledge into Bayesian network structure learning is a core problem. We propose a new hybrid
algorithm with two types of experts’ knowledge to solve the core problem of the use of more extensive
experts’ knowledge. Using multiple experts, we may also encounter problems of expert level difference
and opinion conflict on the same group of node pairs. We incorporate the accuracy of expert into the
proposed algorithm and use the principle of the obedience of minority to majority based on credibility
to solve those two problems.

In this paper, we propose a new method of using more comprehensive experts’ knowledge
based on hybrid structure learning algorithm for Bayesian network. We define three kinds of vague
knowledge {8,9,−}, and three kinds of explicit knowledge {→,←,=} in this new method.
Moreover, we take the accuracy of each expert into account by using six parameters, which we extend
the accuracy of an expert in the field of explicit knowledge [17] to the field of both explicit and vague
knowledge. The two types of experts’ knowledge and the accuracy of each expert are incorporated
with training data in hybrid algorithm. In order to improve the utilization of knowledge, this paper
applies knowledge to a two-stage hybrid algorithm. In the first stage, firstly, the credibility of experts’
knowledge is determined by six accuracy parameters. Then, we fuse the different experts’ knowledge
of the same node pair based on credibility. Finally, we formulate rules to add and delete edges based on
different types of experts’ knowledge in the process of generating the initial network structure. In the
second stage, we propose an explicit-vague-Bayesian Information Criterion (EVBIC) scoring function
which built upon the explicit-accuracy-based score function proposed by [17]. The main advantage of
our score function is that it can use vague knowledge. Experimental results reveal that the proposed
method can make good use of vague knowledge and explicit knowledge given by experts and can
learn a better BN structure than hybrid algorithms.

The remainder of this paper is structured as follows: Section 2 introduces the notations and
preliminaries that are used in subsequent sections. Section 3 describes the proposed method. Section 4
details our experimental procedures and presents the experimental evaluation of the algorithm. Finally,
Section 5 concludes the work.
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2. Preliminaries

In this section, a brief summary of the Bayesian networks and the hybrid structure learning
algorithm is introduced. What’s more, we present two types of experts’ knowledge and they are
subdivided into six kinds of experts’ knowledge, along with some further notations that will be used
throughout the remainder of this paper.

2.1. Bayesian Network

A Bayesian network is a probabilistic graphical model based on probability theory and graph
theory. A Bayesian network is a directed acyclic graph that describes the joint probability distribution
over a set of random variables, with defining a series of probability independences and conditional
independences [20]. A Bayesian network can be represented as a tuple BN = (G, ρ) where
G = (V, E). G represents a structure known as a directed acyclic graph (DAG), with a set of
nodes V = {X1, X2, . . . Xn} and a set of directed edges E =

{
< X1, X2 >,< X1,X3 >, . . .< Xi, Xj >

}
.

Xi is a random variable. < Xi, Xj > ∈ E represents the directed connect between Xi, Xj, noted as
Xi → Xj , with node Xi known as the parent of node Xj, and node Xj known as the child of node Xi.
ρ = {ρ1, ρ2, . . . , ρn} represents a set of conditional probability distributions of nodes. ρi ∈ ρ represents
the conditional probability distribution of node Xi. According the chain rule of Bayesian network,
the Bayesian network represents the joint probability of all nodes that can be written as the product of
the conditional probability distribution of each node:

P(X1, X2, . . . , Xn) =
n

∏
i=1

P(Xi|X1, X2, . . . , Xi−1) (1)

where n represents the number of nodes in Bayesian network, i = 1, 2, . . . , n.
Assuming that the conditional probability distribution of the node Xi is only affected by its parent

set π(Xi) ⊆ {X1, X2, . . . , Xi−1}, the Equation (1) can be written as:

P(X1, X2, . . . , Xn) =
n

∏
i=1

P(Xi| π(Xi)) (2)

where n represents the number of nodes in Bayesian network, i = 1, 2, . . . , n.

2.2. Hybrid Structure Learning Algorithms

As mentioned above, one category of Bayesian network structure learning algorithms is the hybrid
structure learning algorithms. They aggregate both independence-based and score-based structure
learning algorithms to give full play to the advantages of them and has been widely used at present.
One popular strategy is using independence-based algorithms (the first stage learning algorithms) to
determine the initial network structure and use it as a seed of score-based algorithms (the second stage
learning algorithms) which include search strategies and scoring functions to find the highest score
network structure.

2.2.1. The First Stage Structure Learning Algorithms

The first stage structure learning algorithms generally use independence-based structure learning
algorithms. The independence-based algorithms determine all the independence and dependence
relationships among variables via conditional independence (CI) tests and construct networks that
characterize these relationships. The independence-based algorithms can be divided into two processes.
The first process is to determine whether the edges exist so that we can obtain the undirected network
structure. The second process is to direct the edge orientations, especially to direct edges to form
head-to-head patterns (triplets of nodes x, y, z such that x and y aren’t adjacent and the arcs x −→ z
and y −→ z exist). In this paper, we use the Maximum Information Coefficient (MIC) and conditional
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independence tests to generate an initial network structure [21]. The initial network structure may still
contain some undirected edges which will be used as an initial solution to the second stage structure
learning algorithms.

2.2.2. The Second Stage Structure Learning Algorithms

The second stage structure learning algorithms generally use score-based structure learning
algorithms. The score-based algorithms have two main components: a search strategy and a scoring
function. The number of possible DAGs is super-exponential in the number of random variables,
given by the following function [22]:

f (n) = f (x) =

 1, n = 1
n
∑

i=1
(−1)i+1 n!

(n−i)!·i! 2
i(n−i) f (n− i), n > 1 (3)

It is obvious that the search space is huge. Therefore, heuristic search methods have been used to
build the network structure, such as Genetic Algorithms, Ant Colony Optimization, Binary version
of Particle Swarm Optimization (BPSO) [23]. In this paper, we use the BPSO as our search method.
The BPSO utilizes a cooperative swarm of particles, where each particle represents a candidate solution
to the problem (the possible DAGs), to explore the space of possible solutions (the searching space) to
optimization of interest.

Scoring functions are usually used to measure the quality of the constructed BNs. There are
variety of scoring functions such as the Bayesian Dirichlet equivalent uniform (BDeu) scoring function,
the Minimum Description Length (MDL) scoring function and the Bayesian Information Criterion
(BIC) scoring function, to mention a few. The detail of BIC scoring function is introduced blew since it
is used in this study. BIC scoring function is in the form of a penalized log-likelihood (LL) function.
Given a training dataset D, the log-likelihood function for a structure can written as:

LL(D) =
n

∑
i=1

ri

∑
k=1

qi

∑
j=1

mijkln
mijk

mij
(4)

where mijk is the number of samples in the dataset that Xi = k and its parents are in their j-th
configuration, and likewise, mij is the number of samples in the dataset that variable is i-th and its
parents are in their j-th configuration. n is the number of random variables in Bayesian network, ri is
the number of different states of i-th random variable, and qi is the number of possible configurations
for parents of i-th random variable. A penalization is used and BIC scoring function can be written
as follows:

BIC(D) =
n

∑
i=1

ri

∑
k=1

qi

∑
j=1

mijkln
mijk

mij
− 1

2
(lnN)

n

∑
i=1

qi(ri − 1) (5)

2.3. Edge Types, Kinds and Types of the Experts’ Knowledge, and Experts’ Accuracies

2.3.1. Edge Types

Given the number of random variables in Bayesian network n, there exists n(n−1)
2 different node

pairs. From Figure 1, since there are four nodes in this simple Bayesian network structure, the number
of node pairs is N = 4×(4−1)

2 = 6.
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Figure 1. A simple Bayesian network structure.

If the i-th node pair is (X, Y), the state of the edge between node X and node Y is defined as ei, where:

• ei =→ represents< X, Y > ∈ E ,
• ei =← represents< Y, X > ∈ E ,
• ei == represents< ∅ > ∈ E.

(X, Y) represents an unordered pair, and < X, Y > represents an ordered pair that node
X is the starting point and node Y is the ending point. We can clearly see that there are three
types of each edge in the structure: {→,←,=}. As shown in Figure 1, the Bayesian network
structure has 6 node pairs that are ordered as (A, B), (A, C), (A, D), (B, C), (B, D), (C, D),
and there are e1 =→, e2 ==, e3 ==, e4 =→, e5 =→, e6 == , which can also represent
{< A, B >, < B, C >, < B, D >} ∈ E.

2.3.2. Kinds and Types of The Experts’ Knowledge, and Experts’ Accuracies

(1) The types of the experts’ knowledge and representation

In this paper, experts’ knowledge can be divided into two types: explicit knowledge and
vague knowledge:

Definition 1. Explicit knowledge is the knowledge that can make the causal relationship between nodes in BN
structure clear.

Definition 2. Vague knowledge is the knowledge that cannot make the causal relationship between nodes in BN
structure clear.

We define the i-th expert’s knowledge of j-th node pair Vi
j taking values in the domain

{→,←,=,−,9,8}, which builds upon the restrictions originally proposed by [24]. The main
advantages of our kinds of experts’ knowledge are that we simplify kinds of experts’ knowledge to be
easier to achieve and consider uncertainty of experts’ knowledge. Now let us formally define the six
kinds of experts’ knowledge. Assuming that the j-th node pair is (X, Y):

Definition 3. Vi
j =→ is that the i-th expert deems that node X is the parent of node Y in the j-th node pair.

Definition 4. Vi
j =← is that the i-th expert deems that node Y is the parent of node X in the j-th node pair.

Definition 5. Vi
j == is that the i-th expert deems that node X isn’t associated with node Y in the j-th node pair.

Definition 6. Vi
j = − is that the i-th expert deems that node X is associated with node Y in the j-th node pair.

However, it is uncertain whether the relationship between node X and node Y is→ or←.

Definition 7. Vi
j =9 is that the i-th expert deems that node X isn’t the parent of node Y in the j-th node pair.

This means that it is uncertain whether the relationship between node X and node Y is← or =.
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Definition 8. Vi
j =8 is that the i-th expert deems that Y node isn’t the parent of node X in the j-th node pair.

This means that it is uncertain whether the relationship between node X and node Y is→ or =.

According to the above definitions, there exists six kinds of experts’ knowledge in BN:
{→,←,=,−,9,8}. For convenience, we number the six kinds of experts’ knowledge with 1–6.

Obviously, explicit knowledge includes three kinds of experts’ knowledge: {→,←,=}, and vague
knowledge includes three kinds of experts’ knowledge: {8,9,−}.

In this paper, experts’ knowledge can be represented by sets. Explicit knowledge can be
represented by a set C which consists of subsets of each expert’s explicit knowledge. The set of
the i-th expert’s explicit knowledge Ci consists of two subsets of node pairs: Ci

E and Ci
A. Ci

E is the
set of knowledge which indicate the existence edge between the node pair, including {→,←}. Ci

A
is the set of knowledge which indicate the absent edge between the node pair, including {=}. Each
element < x, y > ∈ Ci

E is associated with the corresponding Vi
j =→ , and each element (x, y) ∈ Ci

A is

associated with the corresponding Vi
j ==. C′ represents the set of explicit knowledge after fusion and

the form is the same as Ci including C′E and C′A.
Vague knowledge can also be represented by an another set I which consists of subsets of each

expert’s vague knowledge. The set of the i-th expert’s vague knowledge Ii consists of two subsets of
node pairs: Ii

E and Ii
A. Vi

E is the set of knowledge which indicate the existence edge between the node
pair, including {−}. Ii

A is the set of knowledge which indicate the absent edge between the node pair,
including {8,9}. Each element (x, y) ∈ Ii

E is associated with the corresponding Vi
j = −, and each

element < x, y > ∈ Ii
A is associated with the corresponding Vi

j =9. I′ represents the set of vague

knowledge after fusion and the form is the same as Ii including I′E and I′A.

(2) Experts’ accuracies

Considering the actual situation that the experts are heterogeneous. In this paper, the accuracy of
an expert is represented by six parameters, which we extend the accuracy of an expert in the field of
explicit knowledge [17] to the accuracy of an expert in the field of vague knowledge:

• γ1: The probability of the correct orientation in the actual network in the field of
explicit knowledge;

• γ2: The probability of the reverse orientation in the actual network in the field of
explicit knowledge;

• γ3: The probability of correctly detecting the absent edges in the actual network in the field of
explicit knowledge;

• β1: The probability of the correct orientation in the actual network in the field of vague knowledge;
• β2: The probability of the reverse orientation in the actual network in the field of vague knowledge;
• β3: The probability of correctly detecting the absent edges in the actual network in the field of

vague knowledge.

From the above, there are two types of accuracy of an expert: the accuracy of an expert in the field
of explicit knowledge and the accuracy of an expert in the field of vague knowledge. In this paper,
we use a superscript such as γi

1, γi
2, γi

3, βi
1, βi

2, βi
3 to represent six accuracy parameters of the i-th expert.

3. Using Different Types of Experts’ Knowledge within the Hybrid Structure Learning Algorithm

In order to improve the learning performance and utilization of knowledge, this paper applies
knowledge to two stage algorithm of hybrid algorithms respectively.

3.1. Using Different Types of Experts’ Knowledge with the First Stage Structure Learning Algorithm

In order to guide the search of the second stage structure learning algorithms better, we need
to determine a better initial network structure in the first stage structure learning algorithms. In this
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paper, we formulate rules for adding and deleting edges of different types of experts’ knowledge to
modify the initial network structure in order to improve the accuracy of the initial network structure
and improve the overall performance of the algorithm. Firstly, the credibility of experts’ knowledge
is determined according to the accuracy parameters of experts. In addition, the different experts’
knowledge is fused based on the credibility of experts’ knowledge. The purpose of these two steps is to
fuse different experts’ knowledge on the same set of nodes based on credibility. Finally, by formulating
rules for adding and deleting edges of different types of experts’ knowledge, the fusion of experts’
knowledge is modified the initial network structure based on credibility. It can be divided into the
following three steps.

(1) To determine the credibility of experts’ knowledge

The credibility of experts’ knowledge is the probability that experts’ knowledge is true. Different
kinds of experts’ knowledge have different credibility. The credibility θ of experts’ knowledge is
determined according to the accuracy parameters of experts.

θi
l represents the credibility that the experts’ knowledge is the l-th kind and the expert is the i-th.

Take the i-th expert as an example to explain the credibility of different kinds of expert knowledge
θi

l , l ∈ {1, 2, 3, 4, 5, 6}.
The i-th expert’ explicit knowledge which indicates the existence edge between the node pair

includes {→,←}. The two kinds of knowledge don’t essentially differ and the credibility is the same,
and credibility of two kinds of knowledge can be written as θi

1 = θi
2 = γi

1.
The i-th expert’ explicit knowledge which indicates the absent edge between the node pair

includes {=}, and credibility of this kind of knowledge can be written as θi
3 = γi

3.
The i-th expert’ vague knowledge which indicates the existence edge between the node pair

includes {−}, and credibility of this kind of knowledge can be written as θi
4 = βi

1 + βi
2.

The i-th expert’ vague knowledge which indicates the absent edge between the node pair includes
{9,8}. The two kinds of knowledge don’t essentially differ and the credibility is the same, and
credibility of two kinds of knowledge can be written as θi

5 = θi
6 = 1− βi

2.

(2) The different experts’ knowledge fusion based on the credibility of experts’ knowledge

As mentioned earlier, the i-th expert’s knowledge of j-th node pair Vi
j takes values in the domain

{→,←,=,8,9,−}. For a specific node pair, the experts’ knowledge may not be inconsistent. We take
the following four steps to fuse different experts’ knowledge for the j-th node pair:

(a) Divide the experts for the j-th node pair into six sets including Gj
1, Gj

2, Gj
3, Gj

4, Gj
5 and Gj

6 (Define

Gj
l as a set of experts for the j-th node pair with the same kind lth of knowledge).

(b) Sum and normalize the credibility of the six kinds of knowledge for the j-th node pair:

Pj
l =

∑i∈Gj
l

θi
l

∑l∈{1,2,3,4,5,6} ∑i∈Gj
l

θi
l

(6)

(c) Divide the close interval [0, 1] into six subintervals including [0, Pj
1),

[P1, Pj
1 + Pj

2), [Pj
1 + Pj

2, Pj
1 + Pj

2 + Pj
3), [Pj

1 + Pj
2 + Pj

3, Pj
1 + Pj

2 + Pj
3 + Pj

4),

[Pj
1 + Pj

2 + Pj
3 + Pj

4, Pj
1 + Pj

2 + Pj
3 + Pj

4 + Pj
5) and [Pj

1 + Pj
2 + Pj

3 + Pj
4 + Pj

5, 1]. For a rand(1)
which is a random number [0,1], if rand(1) ∈ Ik where k is the k-th subinterval as previously
described, choose the l-th kind of experts’ knowledge where l = k as the result of knowledge
fusion for j-th node pair. These six kinds of knowledge are not mutually exclusive, so we
cannot simply choose the knowledge with higher Pj

i . We divide the close interval [0,1] into six

subintervals whose length are Pj
1, Pj

2, Pj
3, Pj

4, Pj
5 and Pj

6, which is the same with roulette. And we
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use a random number located in [0,1] which trends to choose the knowledge with higher Pj
i .

Put the result into the set of C′ or I′.
(d) Calculate the credibility θ

j
k of the result of knowledge fusion for the j-th node pair:

θ
j
k =

∑i∈Gj
k

θi
k

card
(

Gj
k

) (7)

where card(Gj
k) is a function that returns the number of elements in the set Gj

k. Put the θ
j
k into the

set of credibility B. The experts’ knowledge set C′ and I′ and the corresponding credibility set B
after fusion will be used as inputs to the following rule.

(3) Modify the process of generating the initial network structure by rules for adding and deleting
edges of different types of experts’ knowledge

In this paper, we use the rule-based method to formulate the rules for adding and deleting edges
of different types of experts’ knowledge. Based on the rules, we modify the undirected network
structure that is determined by the first process in the first stage structure learning and the partial
directed network structure that is determined by the second process in the first stage structure learning.
The rules for adding and deleting edges of different types of experts’ knowledge are described below.

Rules for adding and deleting edges of vague knowledge include the rule for adding the
edge in the undirected network structure and the rule for deleting the edge in the partial directed
network structure.

Rule 1. (The rule for adding the edge in the undirected network structure)

H′ = (V, E′H) represents the undirected network structure after adding the edge, and H = (V, EH) represents
the undirected network structure before adding the edge. For (X, Y) ∈ I′E, including {−}, the credibility of
knowledge is θ

j
4, if rand(1) ∈ (0, θ

j
4), E′H = EH ∪ (X, Y).

Rule 2. (The rule for deleting the edge in the partial network structure)

H′ = (V, E′H) represents the partial network structure after deleting the edge, and H = (V, EH) represents
the partial network structure before deleting the edge. For X, Y ∈ I′A, including {8,9}, the credibility of
knowledge is θ

j
l , with l = 5 or 6, if rand(1) ∈ (0, θ

j
l ), E′H = EH\〈X, Y〉.

Rules for adding and deleting edges of explicit knowledge include the rule for deleting the edge in the
undirected network structure and the rule for adding the edge in the partial directed network structure.

Rule 3. (The rule for deleting the edge in the undirected network structure)

H′ = (V, E′H) represents the undirected network structure after deleting the edge, and H = (V, EH) represents
the undirected network structure before deleting the edge. For (X, Y) ∈ C′A, including {=}, the credibility of
knowledge is θ

j
3, if rand(1) ∈ (0, θ

j
3), E′H = EH\(X, Y).

Rule 4. (The rule for adding the edge in the partial network structure)

H′ = (V, E′H) represents the partial network structure after adding the edge, and H = (V, EH) represents
the partial network structure before adding the edge. For X, Y ∈ C′E, including {→,←}, the credibility of
knowledge is θ

j
l , with l = 1 or 2, if rand(1) ∈ (0, θ

j
l ), E′H = EH ∪ 〈X, Y〉.

The schematic diagram of using different types of experts’ knowledge with the first stage structure
learning algorithm is shown in Figure 2.
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3.2. Using Different Types of Experts’ Knowledge with the Second Stage Structure Learning Algorithm

The second stage structure learning algorithms use a search strategy to select the structure with
the highest score of a scoring function. The key to select the “optimal” structure is the scoring function.

Explicit-accuracy-based scoring function is proposed by [17]. First, [17] sets up three various
problem models. Then, [17] derives some independence statements from three models using the
principle of d-separation. Last, scoring function is derived with simplification of independence
statements derived above. And this scoring function is given as:

Scoreexplicit = logP(D|G) +
R

∑
j=1

N

∑
i=1

logP(V j
i |ei, γj) (8)

This scoring function is composed of two parts: logP(D|G) and ∑R
j=1 ∑N

i=1 logP(V j
i |ei, γj). The first

part is the marginal likelihood part of BDeu scoring function [18]. P(V j
i |ei, γj) in the second part

indicates the probability of V j
i given eiandγj and is computed using the decision tree shown in

Figure 3.
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We can comprehend this scoring function in this way. The first part of Explicit-accuracy-based
scoring function means the scoring function which measures the goodness of network to data.
The second part of Explicit-accuracy-based scoring function means a penalization which measures
the difference between experts’ knowledge with network. Experts’ knowledge here only refers to the
explicit knowledge. Based on this, in this paper, the Explicit-Vague-BIC (EVBIC) scoring function is
proposed and given as:

ScoreEVBIC = BIC(D) +
R

∑
j=1

N_explicit

∑
i=1

logP(Vexplicit
j
i |ei, γj) + k

R

∑
j=1

N_vague

∑
i=1

logP(Vvague
j
i |ei, βj), (9)

where N_explicit is the number of node pairs with explicit knowledge, and N_vague is the number of
node pairs with vague knowledge. Vexplicit

j
i is the three kinds of explicit knowledge and Vvague

j
i is the

three kinds of vague knowledge. The EVBIC scoring function is composed of three parts. In the first
part, we use the BIC scoring function as the scoring function which measures the goodness of network
to data. The second and third part represent penalizations which measure the difference between
experts’ knowledge with network. The second part represents the penalization which measures
the difference between explicit knowledge and network. The third part represent the penalization
which measures the difference between vague knowledge and network. In the same case, the vague
knowledge is more ambiguous and weaker for building network structure than explicit knowledge.
Therefore, we consider using a coefficient k ∈ (0, 1) to weigh the contribution of explicit knowledge
and vague knowledge. Considering each vague knowledge corresponds to two kinds of relationship
between nodes in BN structure, in this paper, we take k = 0.5.

The term P(Vexplicit
j
i |ei, γj) in the second part in Equation (9) is calculated as the decision tree

shown in Figure 3. The calculation of the term P(Vvague
j
i |ei, βj) in the third part in Equation (9) is same

as Figure 3, as shown in Figure 4.
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4. Experiments

4.1. Experimental Setup

All the simulation work is implemented and executed in MATLAB 2016b, using the Bayesian
network toolbox FullBNT-1.0.7, the maximum information coefficient toolbox minepy-1.2.1 and the
graph toolbox matgraph-2.0. The PC has a CPU of Intel 3.40 GHz, an 8 GB memory and Windows
10 operating system.

We use the well-known benchmarks of BN: Alarm and Asia as the experimental network.
The Alarm network is a medical diagnostic system for patient monitoring, with 37 nodes and 46 arcs.
Because of the complexity of the network structure, it is considered as a standard network to measure
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the quality of BN structure learning. The Asia network is a small Bayesian network for virtual medical
cases, with 8 nodes and 8 arcs. Figures 5 and 6 shows the structure of the Alarm network and Asia
network. The experiment network mainly uses Alarm network, the default network.Entropy 2018, 20, x  11 of 20 
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We measure the operators to reconstruct the original network from the learned network, including
the number of deleted arcs (D), the number of added arcs (A) and the number of inverted arcs (I).
The total number of the three operators is called Structural Hamming Distance (SHD). Measuring
the same edges between the learned network and the original network is called Correct Edges (C).
The smaller A, D, I and SHD are, the better the structure learning is. The bigger C is, the better the
structure learning is. The measures of performance are: (1) BIC scoring function, which also guides the
score-based structure learning algorithms. The higher the BIC score is, the better the structure learning
is. (2) The measures of the structural difference between the learned and original networks such as A,
D, I, SHD and C. In the experiments, we consider E = 10 and corresponding ten groups of experts’
accuracies. Table 1 lists the details of ten group parameters of experts’ accuracies.
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Table 1. The accuracy parameters assigned to experts.

E

γ
j
i , β

j
i γ

j
1, β

j
1 γ

j
2, β

j
2 γ

j
3, β

j
3

1 0.65 0.15 0.7
2 0.65 0.16 0.75
3 0.67 0.15 0.78
4 0.7 0.17 0.77
5 0.75 0.14 0.8
6 0.78 0.11 0.81
7 0.8 0.12 0.82
8 0.72 0.2 0.79
9 0.79 0.18 0.8
10 0.8 0.13 0.8

In this paper, we use a parameter v ∈ [0, 1] as the percentage of experts’ knowledge. In this
paper, the value of the parameter v is selected from {0.4, 0.5, 0.6}. We use the hybrid structure learning
algorithm of MIC-BPSO with BIC scoring function to learn the network structure by the data and three
different cases of experts’ knowledge. Our experiments are divided into three cases for the Results and
Discussion. For the first case, we use three different cases of experts’ knowledge in the first stage of the
hybrid algorithm in order to verify the validity of using the different types of experts’ knowledge in
the first stage algorithm. For the second case, we use three different cases of experts’ knowledge in
the second stage of the hybrid algorithm in order to verify the validity of using the different types of
experts’ knowledge in the second stage algorithm. For the third case, we use three different cases of
experts’ knowledge in two stage of the hybrid algorithm in order to verify the validity of using the
different types of experts’ knowledge in the hybrid algorithm.

In the experiments, we have three cases of experts’ knowledge:

(1) Explicit knowledge: this case of experts’ knowledge only uses explicit knowledge in BN.
(2) Vague knowledge: this case of experts’ knowledge only uses vague knowledge in BN.
(3) EV knowledge: this case of experts’ knowledge uses the mixed knowledge including explicit

knowledge and vague knowledge in BN.

In our experiments, we use 10 different datasets with 2000 samples and 10 different datasets with
5000 samples in the Alarm network and we use 10 different datasets with 500 samples and 10 different
datasets with 2000 samples in the Asia network. For each tuple {case of experts’ knowledge, v},
we generate 10 different experts’ knowledge sets. In each experiment, we use one dataset and one
experts’ knowledge set to learn the BN structure.

4.2. Results and Discussion

4.2.1. Results and Discussion Using the Different Types of Experts’ Knowledge in the First
Stage Algorithm

We calculate the A, D, I and SHD of the learned network. MR is the initial Mean Result,
representing 10 runs of the average results. BR is the initial Best Result, representing 10 runs of
the optimal value. The term data means using the hybrid algorithm to learn structure without experts’
knowledge and is equivalent to v = 0. Table 2 shows the results of this experiment.

The smaller A, D, I and SHD are, the better the structure learning is. The SHD shows the total
difference between the learned and original networks and A, D, I represent the details of different kinds
of difference between the learned and original networks. From Table 2, we can easily find that the
results of learning with each case of experts’ knowledge are better than the results of learning without
experts’ knowledge, which proves that the proposed rules using different types of experts’ knowledge
in the first algorithm is effective. Compared with three cases of experts’ knowledge, the experimental
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results indicate that learning with explicit knowledge and vague knowledge is better than learning
with explicit knowledge alone.

Table 2. A, D, I and SHD values of learned networks in the first Results and Discussion case.

The Case of Knowledge
Measures of
Performance

2000 5000

0.4 0.5 0.6 Data 0.4 0.5 0.6 Data

Vague knowledge MR

SHD 7.5 6.9 7 8.6 5.4 5.3 5.2 6.7
D 2.9 2.6 2.4 3.1 1.9 1.7 2.1 2.1
A 1 0.9 0.7 1.2 1 1 1.1 1.6
R 3.6 3.4 3.9 4.3 2.5 2.6 2.2 3

BR SHD 5 5 5 7 2 2 3 6

Explicit knowledge MR

SHD 7.3 6.4 5.6 8.6 5.1 4.6 4.5 6.7
D 2.9 2.6 2.6 3.1 1.9 1.6 1.8 2.1
A 1 0.9 0.6 1.2 1.1 0.9 0.8 1.6
R 3.4 2.9 2.4 4.3 2.1 2.1 1.9 3

BR SHD 5 4 4 7 2 2 2 6

EV knowledge MR

SHD 6.7 6 5.4 8.6 4.8 4.6 4.1 6.7
D 2.8 2.7 2.6 3.1 1.7 1.4 1.2 2.1
A 0.8 0.6 0.6 1.2 1 0.7 0.7 1.6
R 3.1 2.7 2.2 4.3 2.1 2.5 2.2 3

BR SHD 5 3 3 7 3 2 2 6

Because the proposed method in the first stage structure learning algorithm takes no account
of BIC scoring function, we can compare the learned network with experts’ knowledge with the
learned network with data by calculating BIC scoring function. Tables 3 and 4 show the results of
this experiment.

The higher BIC score is, the better the structure learned is. From Tables 3 and 4, we can see that the
BIC scores of learning with each case of experts’ knowledge are higher than the BIC scores of learning
without experts’ knowledge. It is shown that the proposed rules using different types of experts’
knowledge in the first algorithm is effective. Comparing with three cases of experts’ knowledge, we
can easily find that learning with explicit knowledge and vague knowledge is better than learning
with explicit knowledge alone.

Table 3. BIC score of learned networks with 2000 samples in the first Results and Discussion case.

The Case of Knowledge Measures of Performance
2000

0.4 0.5 0.6 Data

Vague knowledge MR BIC score −20,206.9 −20,202.5 −20,108.5 −20,288.4
BR BIC score −19,900.5 −19,870.6 −19,472 −19,929

Explicit knowledge MR BIC score −20,013.2 −19,904.8 −19829.2 −20,288.4
BR BIC score −18,925.7 −18,903.8 −18,212.9 −19,929

EV knowledge MR BIC score −19,813.5 −19,776.23 −19,738.14 −20,288.4
BR BIC score −18,212.94 −18,212.94 −17,893.82 −19,929

Table 4. BIC score of learned networks with 5000 samples in the first Results and Discussion case.

The Case of Knowledge Measures of Performance
5000

0.4 0.5 0.6 Data

Vague knowledge MR BIC score −48,571.2 −48,544 −48,467.7 −48,689.4
BR BIC score −48,044.4 −47,932.4 −47,581.1 −48,200.4

Explicit knowledge MR BIC score −48,390 −48,095.6 −48,083.5 −48,689.4
BR BIC score −47,886.6 −46,305 −47,000.3 −48,200.4

EV knowledge MR BIC score −47,923.74 −47,823.73 −47,813.43 −48,689.4
BR BIC score −46,682.75 −46,305 −45,768.92 −48,200.4



Entropy 2018, 20, 620 14 of 20

4.2.2. Results and Discussion Using the Different Types of Experts’ Knowledge in the Second
Stage Algorithm

We calculate the A, D, I and SHD of learned networks. Table 5 shows the results of this experiment.
From Table 5, we can easily find that the results of learning with each case of experts’ knowledge

are better than the results of learning without experts’ knowledge. It is shown that the proposed
the EVBIC scoring function using different types of experts’ knowledge in the second algorithm is
effective. Comparing with three cases of experts’ knowledge, we can easily find that learning with
explicit knowledge and vague knowledge is better than learning with explicit knowledge alone.

Table 5. A, D, I and SHD values of learned networks in the second Results and Discussion case.

The Case of Knowledge
Measures of
Performance

2000 5000

0.4 0.5 0.6 Data 0.4 0.5 0.6 Data

Vague knowledge MR

SHD 7.7 7.6 7.1 8.6 6.1 5.8 5.5 6.7
D 2.8 2.9 3 3.1 2.2 2.1 2 2.1
A 1 1 1 1.2 1.5 1.5 1.4 1.6
R 3.9 3.7 3.1 4.3 2.4 2.2 2.1 3

BR SHD 7 7 6 7 5 5 5 6

Explicit knowledge MR

SHD 7.4 6.8 6.4 8.6 5.8 5.4 5 6.7
D 3.1 2.8 2.7 3.1 2.2 2.2 2.1 2.1
A 0.9 0.9 0.9 1.2 1.3 1.2 1.2 1.6
R 3.4 3.1 2.8 4.3 2.3 2 1.7 3

BR SHD 5 4 3 7 3 4 3 6

EV knowledge MR

SHD 6.7 6 5.9 8.6 5.4 5.2 4.7 6.7
D 2.7 2.9 2.8 3.1 2.1 2.4 2.1 2.1
A 0.8 0.9 0.9 1.2 1.2 1 1 1.6
R 3.2 2.2 2.2 4.3 2.1 1.8 1.6 3

BR SHD 3 4 3 7 4 3 2 6

We calculate the correct edges of learned networks. Figure 7 shows the results of this experiment.
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In Figure 7, the horizontal coordinate represents the percentage of experts’ knowledge and
the vertical coordinate represents average SHD. Compared to learning with three cases of experts’
knowledge and learning with data alone in different datasets, the experimental results indicate that
the proposed the EVBIC scoring function using different types of experts’ knowledge in the second
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algorithm is effective and learning with explicit knowledge and vague knowledge is better than
learning with explicit knowledge alone.

4.2.3. Results and Discussion Using the Different Types of Experts’ Knowledge in the Hybrid Algorithm

In order to ensure the robustness of the results, we calculate the A, D, I and SHD of learned networks
for the Asia network and the Alarm network. Tables 6 and 7 show the results of this experiment.

Table 6. A, D, I and SHD values of learned network for the Alarm network in the third Results and
Discussion case.

The Case of
Knowledge

Measures of
Performance

2000 5000

0.4 0.5 0.6 Data 0.4 0.5 0.6 Data

Vague knowledge MR

SHD 7.3 6.8 6.1 8.6 4.8 4.6 3.5 6.7
D 3 2.7 2.1 3.1 1.7 1.7 1.4 2.1
A 1 0.8 0.5 1.2 1 0.9 0.8 1.6
R 3.3 3.3 3.5 4.3 2.1 2 1.3 3

BR SHD 6 3 3 7 1 2 1 6

Explicit
knowledge

MR

SHD 6.2 5.2 4.7 8.6 4.5 3.9 3.4 6.7
D 2.6 2.4 2.4 3.1 2 1.7 1.5 2.1
A 0.8 0.5 0.4 1.2 0.8 0.9 0.9 1.6
R 2.8 2.3 1.9 4.3 1.7 1.3 1 3

BR SHD 3 3 3 7 1 1 1 6

EV knowledge MR

SHD 6 5 4 8.6 4.1 3.4 3.3 6.7
D 2.6 2.4 2.1 3.1 1.9 1.7 1.5 2.1
A 0.7 0.4 0.1 1.2 1 0.8 0.9 1.6
R 2.7 2.2 1.8 4.3 1.2 0.9 0.9 3

BR SHD 3 3 3 7 1 1 0 6

Table 7. A, D, I and SHD values of learned network for the Asia network in the third Results and
Discussion case.

The Case of
Knowledge

Measures of
Performance

2000 5000

0.4 0.5 0.6 Data 0.4 0.5 0.6 Data

Vague knowledge MR

SHD 2.1 1.9 1.6 3.2 0.9 0.6 0.4 1.7
D 1.2 1.1 0.9 1.6 0.6 0.5 0.2 0.5
A 0.8 0.5 0.3 1.2 0.3 0.1 0.1 0.7
R 0.1 0.3 0.4 0.4 0.1 0 0.1 0.5

BR SHD 1 1 0 2 0 0 0 0

Explicit
knowledge

MR

SHD 1.6 1.3 1 3.2 0.7 0.4 0.2 1.7
D 0.9 1.0 0.6 1.6 0.4 0.2 0.1 0.5
A 0.5 0.2 0.2 1.2 0.1 0.1 0 0.7
R 0.2 0.1 0.2 0.4 0.2 0.1 0.1 0.5

BR SHD 1 0 0 2 0 0 0 0

EV knowledge MR

SHD 1.2 0.9 0.6 3.2 0.4 0.2 0 1.7
D 0.8 0.5 0.4 1.6 0.3 0.1 0 0.5
A 0.3 0.2 0.1 1.2 0.1 0 0 0.7
R 0.1 0.2 0.1 0.4 0 0.1 0 0.5

BR SHD 1 0 0 2 0 0 0 0

The smaller A, D, I and SHD are, the better the structure learning is. The SHD shows the total
difference between the learned and original networks and A, D, I represent the details of different
kinds of difference between the learned and original networks. From Table 6, we can easily find that
the results of learning with each case of experts’ knowledge in the Alarm network are better than the
results of learning without experts’ knowledge in the Alarm network. It is shown that the hybrid
algorithm using different types of experts’ knowledge are effective. Comparing with three cases
ofexperts’ knowledge, we can easily see that learning with explicit knowledge and vague knowledge
is better than learning with explicit knowledge alone. From Table 7, according to the Asia network,
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we can also find that the hybrid algorithm using different types of experts’ knowledge are effective.
It is thus proved that the result is robust.

From Table 7, according to the Asia network, we can also find that the hybrid algorithm using
different types of experts’ knowledge are effective. It is thus proved that the result is robust.

In order to ensure the robustness of the results, we use the Asia network and Alarm network as
our standard networks. Compared to learning with three cases of experts’ knowledge and learning
with data alone by calculating the single SHD, the experimental results can directly the effect of
structure learning. Because the results of using the samples = 5000 is the same as the samples = 2000
for the Alarm network and the results of using the samples = 500 is the same as the samples = 2000
for the Asia network, we use samples = 5000 for the Alarm network and samples = 500 for the Asia
network as examples. Figures 8 and 9 show the results of this experiments.

The red circles mark the best result. The smaller SHD is, the better the structure learning is.
From Figures 8 and 9, we can easily see that the best results appear in learning BN structure with
knowledge and the learned BN structure is more similar to the original network structure through
using knowledge than through using data alone. From Figure 8, according to the Alarm network,
the results indicate that our proposed method using the experts’ knowledge in the hybrid algorithm is
effective. From Figure 9, according to the Asia network, we can also get same result. It is proved that
the results are robust.
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Figure 8. The single SHD of learned networks using different case of experts’ knowledge and using
data alone for the Alarm network in the third Results and Discussion case. (a) The single SHD of
learned networks using vague knowledge and using data alone in 5000 samples; (b) the single SHD of
learned networks using explicit knowledge and using data alone in 5000 samples; (c) the single SHD of
learned networks using EV knowledge and using data alone in 5000 samples.
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Figure 9. The single SHD of learned networks using different case of experts’ knowledge and using
data alone for the Asia network in the third Results and Discussion case. (a) The single SHD of learned
networks using Vague knowledge and using data alone in 500 samples; (b) the single SHD of learned
networks using Explicit knowledge and using data alone in 500 samples; (c) the single SHD of learned
networks using EV knowledge and using data alone in 500 samples.

Compared learning with experts’ knowledge in different stage of the hybrid algorithm and
learning with data alone by calculating average SHD, the experimental results are shown in Figure 10,
where we can see that learning with experts’ knowledge can get a better structure than learning
with data alone, which proved that our proposed method using the experts’ knowledge in the hybrid
algorithm is effective. Moreover, learning with experts’ knowledge in two stage of the hybrid algorithm
can get a better structure than learning with experts’ knowledge in each stage of the hybrid algorithm.
It is indicated that using experts’ knowledge in each stage of the hybrid algorithm is not redundant.
It is shown that our proposed method using experts’ knowledge is effective.

To expose the effectiveness of proposed method, we compare our method with the method in [17]
by calculating average SHD in the Alarm network and Asia network. the experimental results are
shown Figures 11 and 12.

The smaller SHD values are, the better the structure learning is. From Figures 11 and 12, we can
easily find that the learned network using our proposed method is better than the learned network
using the method in [17] in the Asia network and Alarm network. The results show that our proposed
method in this paper has better learning performance and better learning effect.
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5. Conclusions

We introduce a new method of using explicit knowledge and vague knowledge based on a hybrid
structure learning algorithm for Bayesian network. The simulation experiment results show that our
method achieves a higher BIC score and a smaller structure difference than previous algorithms by
taking two types of experts’ knowledge into account. It is acknowledged that the introduction of
explicit knowledge can improve the accuracy of Bayesian network structure based on data learning
algorithm. Furthermore, we point out that the experts can give not only explicit knowledge but also
vague knowledge in the real world and it is effective to improve the accuracy of Bayesian network
structure by using vague knowledge. The main novelty of our proposed algorithm is that we consider
these two types of experts’ knowledge in the process of learning Bayesian network structure but
not explicit knowledge alone. Our proposed algorithm can also solve the problems of expert level
difference and opinion conflict on the same group of node pairs.
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