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Abstract: This work demonstrates a formal connection between density estimation with a data-rate
constraint and the joint objective of fixed-rate universal lossy source coding and model identification
introduced by Raginsky in 2008 (IEEE TIT, 2008, 54, 3059–3077). Using an equivalent learning formulation,
we derive a necessary and sufficient condition over the class of densities for the achievability of the
joint objective. The learning framework used here is the skeleton estimator, a rate-constrained learning
scheme that offers achievable results for the joint coding and modeling problem by optimally adapting
its learning parameters to the specific conditions of the problem. The results obtained with the skeleton
estimator significantly extend the context where universal lossy source coding and model identification
can be achieved, allowing for applications that move from the known case of parametric collection of
densities with some smoothness and learnability conditions to the rich family of non-parametric L1-totally
bounded densities. In addition, in the parametric case we are able to remove one of the assumptions that
constrain the applicability of the original result obtaining similar performances in terms of the distortion
redundancy and per-letter rate overhead.

Keywords: fixed-rate lossy source coding; joint coding and modeling; universal source coding;
learning with rate constraints; the skeleton estimator; L1-totally bounded classes

1. Introduction

Universal source coding (USC) has a long history in information theory and statistics [1–5]. Davisson’s
seminal work [4] formalized the variable-length lossless coding problem and introduced important
information quantities for performance analysis [1,2]. In this lossless setting, it is well-understood that
the Shannon entropy provides the minimum achievable rate (in bits per sample) [2] to code a stationary
and memoryless source when the probability (model) of the source is available. When the probability of
the source is not known but belongs to a family of distributions F (the so called universal source coding
problem), the focus of the problem is to characterize the penalty (or redundancy in bits per sample) that an
encoder and decoder pair will experience due to the lack of knowledge about the samples’ probability [1].
In the lossless case, a seminal result states that the least worst-case redundancy over F (or the minimax
solution of the USC problem for F) is determined by the information radius of F [1].

Building on this connection between least worse-case redundancy and information radius of F ,
there are numerous important results developed for lossless USC [1,6–9]. In particular, it is known
that the information radius grows sub-linearly (with the block-length) for the family of finite alphabet
stationary and memoryless sources [1], which implies the existence of a universal source code that
achieves Shannon entropy as the block length goes to a large value for every distribution in F .
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However universality is not possible for the family of alphabet stationary and memoryless sources
because the information radius of this family is unbounded [3,5,7]. More recent results on lossless
USC over countable infinite alphabets have looked at restricting the analysis to specific collections
of distributions (with some tail bounded conditions) to achieve minimax universality [7–9] and also
looked at weak variations of the lossless source coding setting [10–12].

In the fixed-rate lossy source coding problem, assuming first that the probability µ of a memoryless
source is known, the performance limit of the coding problem is given by the Shannon distortion-rate
function Dµ(R) [2,13]. Consequently, the universal lossy source coding problem reduces to compare
the distortion of a coding scheme (satisfying a fixed-rate constraint) with the Shannon distortion-rate
function assuming that the designer only knows that µ ∈ F . The literature on this problem is
rich [3,5,14–18] with a first result dating back to Ziv [17] who showed the existence of weakly minimax
fixed-rate universal lossy source code for the class of stationary sources under certain assumptions
about the source, the alphabet, and the distortion measure. More refined results were presented
in [5,16] one of which established necessary and sufficient conditions to achieve weakly minimax
universality for the class of stationary and ergodic sources. To provide a more specific analysis of
universal lossy source coding, Linder et al. [14] presented a lossy USC scheme with a distortion

redundancy that goes to zero as O(
√

log log n
log n ) for the case of independent and identically distributed

(i.i.d.) bound sources. Later Linder et al. [15] improved previous results showing a fixed-rate lossy
construction with a distortion redundancy that vanishes as O(n−1log n) and O(

√
n−1 log n) with n

for finite alphabet i.i.d. sources and bounded infinite alphabet i.i.d. sources, respectively. Similar
convergence results were obtained using a nearest-neighbor vector quantization approach in [19].

It is also understood that universal variable length lossless-source coding is connected with the
problem of distribution estimation [3,6,20] as there is a one-to-one correspondence between prefix-free
codes and finite-entropy discrete distributions in the finite and countable alphabet case [1,2,21].
Building on this one-to-one correspondence in the lossless case, Györfi et al. ([3], Theorem 1) showed
that the redundancy (in bits per sample) of a given code upper bounds the expected divergence
between the true distribution of the source µ and the estimated distribution derived from the code.
Therefore, the existence of a universal (lossless) source code for F implies the existence of a universal
(distribution-free in F ) estimator of the distribution in expected (direct) information divergence [22].
This means that achieving lossless USC not only provides a lossless representation of the data, but it
offers a consistent (error-free) estimator of the distribution at the receiver.

The connection between coding and distribution estimation that is evident in the lossless case is
not, however, present in the (fixed-rate) lossy source coding problem. As argued in [18], a fixed-rate
lossy source code does not offer a direct map with a probability distribution (model) for the source.
In light of this gap between lossy codes and distributions (models) and motivated by some problems in
adaptive control, where it is relevant to both compress data in a lossy way and identify the distribution
of the source at the receiver [18,23], Raginsky explored the joint objective of fixed-rate universal lossy
source coding and model (i.e., distribution) identification in [18].

Inspired by Rissanen’s achievability construction in [6,20], Raginsky [18] proposed a new setting
for the problem of fixed-rate universal lossy compression of continuous memoryless sources based
on the idea of a two-stage joint coding and model or distribution identification framework. In this
context, he proposed a two-stage scheme to consider two objectives: fixed-rate universal lossy source
coding and source distribution (model) identification. The first objective of the scheme is to transmit
the data (optimally) in the classical distortion-rate sense [24], while the second objective is to learn
and transmit a description (quantized version) of the source distribution (model) [25,26]. Taking ideas
from statistical learning, Raginsky proposed [18] splitting the data into training and testing samples.
The training data is used in the first-stage of the encoding process to construct a quantized estimation
of the source distribution and encode it (the first stage bits). Then in a second stage of the encoding
process, the first-stage bits are used to pick a matched (with the estimated distribution) fixed-rate lossy
source code to encode the test data (the second stage bits). In this joint coding and modeling setting,
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the existence of a zero-rate consistent estimator of the density (in expected total variation) is sufficient to
show the existence of a weakly minimax universal fixed-rate source coding scheme [18] (Theorem 3.2),
achieving the Shannon distortion-rate function [2,24,27,28], for any given rate. This result is obtained
for a wide class of single-letter bounded distortion functions and for a family of source densities
F = {µθ : θ ∈ Θ} indexed over a bounded finite dimensional space Θ ⊂ ⊗k

i=1[−L, L] ⊂ Rk (i.e.,
a parametric collection) with some needed smoothness and learnability conditions [18] (Theorem 3.2).

It is important to highlight that the joint coding and modeling achievability results in [18] did
not degrade the performance of the source coding objective. In fact by restricting the analysis to
the source coding objective alone, the joint coding and modeling framework in [18] showed the
same state-of-the-art performance results as conventional two-stage universal source coding schemes
(or universal vector quantizers) [14,15,19] in terms of distortion redundancy and per-letter rate
overhead (O(

√
log(n)/n) and O(log(n)/n), respectively) as the block length n tends to a large

number. Importantly, the first-stage bits of this joint coding and modeling scheme are used to achieve
model identification at the receiver with arbitrary precision in total variation (with a rate of convergence
ofO(

√
log(n)/n) as n goes to infinity), with no extra cost in bits per-letter compared with conventional

fixed-rate lossy source coding methods.

Contributions of This Work

This work formally studies the interplay between density estimation under a data-rate constraint
and the joint fixed-rate universal lossy source coding and modeling problem with training data
or memory introduced in [18]. The first main result (Theorem 1) establishes a connection between
zero-rate density-estimation and a universal joint coding and modeling scheme that achieves optimal
lossy source coding (in a distortion-rate sense) and lossless model identification. This result is obtained
for the general family of bounded single-letter distortions [13]. Remarkably, this connection implies
that the construction of a joint coding and modeling scheme reduces to the construction of a zero-rate
density estimator. From this result, the second main result (Theorem 2) stipulates a necessary and
sufficient condition for the existence of a weakly minimax universal joint coding and modeling
scheme. For the achievability part of this result, we used the skeleton estimator as our learning
framework [29]. Using this learning framework we extend the parametric context explored in [18] to
the rich non-parametric scenario of L1-totally bounded densities [30].

Furthermore, revisiting the parametric case studied in [18], by using the skeleton estimator
we are able to remove some of the assumptions that limit the applicability of the original result.
We show that the skeleton estimator matches the best performance reported in [18] in terms of the
distortion redundancy and (per-letter) rate overhead, in particular obtaining rates of convergence to
zero of O(

√
log(n)/n) and O(log(n)/n), respectively, as the block-length tends to infinity. To obtain

this, our result relaxes the finite Vapnik and Chervonenkis (VC) dimension assumption considered
in [18]. On the other hand, when the finite VC dimension assumption is added in the analysis,
the skeleton learning scheme offers a convergence rate of O(1/

√
n) for the distortion redundancy as

the sample-length goes to infinity. Finally, the skeleton framework is implementable in the parametric
case as its minimum-distance decision is carried out on a finite number of candidates and the oracle
ε-skeleton (or the ε-covering in total variation of F ) [30] (Chapter 7) can be replaced by a practical
uniform covering of the compact index set Θ ⊂ Rk (Theorem 4). Finally, it is worth noting that a
preliminary version of this work (in the context of density estimation under a data-rate constraint) was
presented in [31].

The rest of the paper is organized as follows: Section 2 introduces the setting of the joint
coding and modeling with training data. Section 3 elaborates the connections with zero-rate density
estimation. Section 4 presents the main joint coding and modeling result (Theorem 2) and introduces
the skeleton estimator. Finally, Section 5 revisits a special case where the distributions are indexed by
finite dimensional bounded space (the parametric context). A summary of the results is presented in
Sections 6 and 7. Finally, the proofs are presented in Section 8.
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2. Preliminaries

The fixed-rate coding and modeling problem introduced in [18] is presented in this section.
This joint coding and modeling problem will be the main focus of this work. In addition, notations
and definitions used in the rest of the paper will be presented.

2.1. Basic Definitions

Let X ∈ B(Rd) be a separable and complete subset of Rd where B(Rd) is the Borel sigma field.
Let P(X) be the collection of probability measures on (X,B(X)), with B(X) denoting the Borel
sigma field restricted to X, and let AC(X) ⊂ P(X) denote the set of probability measures absolutely
continuous with respect to the Lebesgue measure λ [32]. For any µ ∈ AC(X), gµ(x) = dµ

dλ (x) denotes
its probability density function. The total variational distance [30] of v and µ in P(X) is given by (to
avoid any confusion, if S is a set then |S| denotes its cardinality).

V(µ, v) = sup
A∈B(X)

|µ(A)− v(A)| . (1)

For µ and v belonging to AC(X), if we define the Scheffé set for the pair (µ, v) by

Aµ,v ≡
{

x ∈ X : gµ(x) > gv(x)
}
∈ B(X), (2)

then V(µ, v) = µ(Aµ,v)− v(Aµ,v) [30,33].

2.2. Fixed-Rate Universal Lossy Source Coding with Memory or Training Data

Let {Xn : n ≥ 1} be an i.i.d. stochastic process (or stationary and memoryless source), where Xi
takes values in X ⊂ Rd and has a distribution µ in F = {µθ : θ ∈ Θ} ⊂ AC(X). Θ is in general an
index set for F . The problem of lossy source-coding of a finite block of the process Xn = (X1, ..., Xn)

reduces to find a mapping (or code) Cn(·) from Xn to Sn, where Sn is a finite set. Given a cardinality
constraint on Sn, the design objetive is to make Cn(Xn) as close as possible to Xn (in average) using for
that a distortion function. The standard coding problem assumes the knowledge of µ for finding the
optimal code (for any finite block n) [1,2,13], as well as for characterizing the fundamental performance
limits of this task as n goes to infinity [2,24,28,34–36].

A more realistic scenario is the universal source coding (USC) problem [2], where the source
distribution µ ∈ F is unknown and a coding scheme needs to be designed optimally for the family F .
Here we focus on a specific learning variation of this task introduced by Raginsky in [18], where in
addition to the data that needs to be compressed and recovered (with respect to a fidelity criterion),
we have a finite number of i.i.d samples following the same distribution µ and that can be used to
estimate µ in the encoding process (more details of this approach in Section 2.3). This additional data
can be interpreted as memory, training data, or side information about µ available at the encoder
because it is data that is not required to be compressed and recovered. The existence of this memory
departs from the standard zero-memory setting considered in universal source coding [1]. However,
this information can be seen as a realistic assumption in the context of a sequential block by block
coding of an infinite sequence, where the data is partitioned into blocks of the same finite length and
compressed sequentially block by block. Then in a given stage of this sequential process, the data
from previous blocks are available at the encoder (lossless) for the process compressing the current
block [18].

More specifically following the fixed-rate block coding and modeling setting introduced by
Raginsky in [18], we consider an n-block coding scheme with finite memory m, where there is a
distinction between the data Zm = (Z1, ..., Zm) that is available (as side information) to estimate the
source distribution (training data) and the data Xn that needs to be encoded and recovered (source
or test data), under the important assumption that both data sets are i.i.d. samples of the same
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unknown probability µ ∈ F . A systematic exposition of this coding setting and its connection with the
classical setting of zero-memory block coding is presented in [18] (Section II). Formally, let us define
an (m, n)-block code by the pair

Cm,n ≡
(

f : Xm ×Xn → Sn, φ : Sn → X̂n
)

. (3)

Then given a set of training samples zm ∈ Xm and a finite block of the source xn ∈ Xn, Cm,n is the
composition of: a encoding function f (zm, xn) that maps xn to an element in a finite set Sn conditioned
on the training data (or memory) represented by zm, and a decoding function φ(·) that maps a
symbol s ∈ Sn into the reproduction points ΓCm,n ≡ {φ(s) : s ∈ Sn} that we called the codebook
of Cm,n. In this context, X̂ denotes the reproduction space. As a short-hand, we denote by x̂n =

Cm,n(xn) = φ( f (zm, xn)) the reconstruction of xn obtained by Cm,n and its memory zm (for simplicity,
the dependency of x̂n or Cm,n(xn) on the memory zm will be implicit in the rest of the exposition.).
The rate of Cm,n in bits-per-letter is given by R(Cm,n) ≡ log2|Sn |

n . In general, it is not possible to
recover xn from x̂n given the cardinality constraint on Sn, and thus a single-letter distortion measure
ρ : X× X̂→ R+ is used to quantify the n-block discrepancy by [24]

ρn(xn, x̂n) ≡
n

∑
i=1

ρ(xi, x̂i). (4)

Finally considering Xn ∼ µn and Zm ∼ µm, the average distortion per-letter of Cm,n given Zm is

Dµ(Cm,n|Zm) ≡ 1
n
EXn∼µn

(
ρn(Xn, X̂n)

)
, (5)

which is a function of Zm and hence the average distortion per-letter of Cm,n is

Dµ(Cm,n) ≡ EZm∼µm
(

Dµ(Cm,n|Zm)
)

. (6)

In universal source coding the performance of a code Dµ(Cm,n) is evaluated over a collection of
distributions µ ∈ F and is compared (point-wise) with the best code that can be obtained assuming
that µ is known. For this analysis, we need the following definitions:

Definition 1 ([18]). For a finite block length n and distribution µ ∈ F , the n-order operational distortion-rate
function of µ at rate R is

Dn
µ(R) ≡ inf

m≥0
inf
Cm,n

with R(Cm,n)≤R

Dµ(Cm,n). (7)

In this context, the operational distortion-rate function (DRF) [2,28] is given by

Dµ(R) ≡ lim
n→∞

Dn
µ(R) = inf

n≥1
Dn

µ(R). (8)

The celebrated Shannon lossy source-coding theorem [27] provides a single letter theoretical
characterization for Dµ(R) in (8) (also known as the Shannon DRF). A nice exposition of this celebrated
result can be found in [2,24,28].

It is worth noting that the operational distortion-rate function in (7) is equivalent to the classical zero-
memory n-order operational distortion-rate function given by infC0,n

{
Dµ(C0,n) : such that R(C0,n) ≤ R

}
[18]

(Lemma 2.1). Then, allowing a nonzero memory (side information at the encoder) does not help in the
minimization of the distortion when µ is known.

For the rest of the exposition, we will concentrate on the simple case studied in [18] where
n = m (i.e., the block-length is equal to the memory of the code). To be precise about the meaning of
universality in this context, we resort to some standard definitions:
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Definition 2 ([16]). A coding scheme {Cn,n : n ≥ 1} is weakly minimax universal for the class F at rate R,
if ∀µ ∈ F

lim
n→∞

Dµ(Cn,n) = Dµ(R) (9)

and lim supn→∞ R(Cn,n) = lim supn→∞
log2|Sn |

n ≤ R. Alternatively, the scheme is said to be strongly
minimax universal for the class F at rate R if

lim
n→∞

sup
µ∈F

[
Dµ(Cn,n)− Dµ(R)

]
= 0 (10)

and lim supn→∞ R(Cn,n) ≤ R.

Decomposing the distortion redundancy in two terms,

Dµ(Cn,n)− Dµ(R) =
[

Dµ(Cn,n)− Dn
µ(R)

]
+
[

Dn
µ(R)− Dµ(R)

]
, (11)

the first term
[

Dµ(Cn,n)− Dn
µ(R)

]
is the n-order distortion redundancy, which is the discrepancy that

can be attributed exclusively to the goodness of the coding scheme. The second term in (11), i.e.,[
Dn

µ(R)− Dµ(R)
]
, has to do with how fast Dn

µ(R) converges to the Shannon DRF as the block length
tends to infinity (see further details in [14] (Section III) and references therein). From this observation,
we introduce the following definition:

Definition 3. A coding scheme {Cn,n : n ≥ 1} is strongly finite-block universal for the class F at rate R if

lim
n→∞

sup
µ∈F

[
Dµ(Cn,n)− Dn

µ(R)
]
= 0 (12)

and lim supn→∞ R(Cn,n) ≤ R.

Note that if {Cn,n : n ≥ 1} is strongly minimax universal then it is strongly finite-block universal,
but the converse result is not true in general. The missing condition to make these two criteria
equivalent is the uniform convergence of Dn

µ(R) to Dµ(R) in the class F . More discussion about this
point in Section 6.

2.3. Raginsky’s Two-Stage Joint Universal Coding and Modeling

Motivated by the work of Rissanen [6], Raginsky [18] proposed a two-stage block code with
finite memory (training data), with the objective of doing both fixed-rate lossy source coding, and
identification of the source distribution at the receiver. More precisely, given Zn ∼ µn

θ and Xn ∼ µn
θ

(the training and the source-data samples, respectively), an (n, n)-joint coding and modeling rule is
given by

Cn,n ≡
(

fn : Xn → S̃n, φn : S̃n → Θ,{
fn,s̃ : Xn → Sn, φn,s̃ : Sn → X̂n; s̃ ∈ S̃n

})
, (13)

where Sn and S̃n are finite-set functions of n. Cn,n processes (Zn, Xn) in two stages. In the first stage,
the pair ( fn, φn) in (13) uses Zn to do density estimation and finite-rate encoding (quantization) by
fn(Zn), and φn(·) decodes an estimated density in

{
φn(s) : s ∈ S̃n

}
⊂ Θ. At the end, the first stage

provides a quantized estimation of µθ ∈ F given by

θ̂n(Zn) ≡ φn( fn(Zn)) ∈ Θ. (14)
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Using the index s̃ = fn(Zn) ∈ S̃n, the second stage of Cn,n, represented by
{
( fn,s, φn,s); s ∈ S̃n

}
in (13),

encodes and decodes the source data Xn by

Cn,n(Xn) ≡ φn,s̃( fn,s̃(Xn)). (15)

In summary, the outcome of the whole encoding process is the concatenation of the bits that represent
fn(Zn) (first-stage bits), and the bits that represent fn, fn(Zn)(Xn) (second-stage bits). The decoding
process, on the other hand, reads the first-stage bits to recover θ̂n(Zn) and then reads the second-stage
bits to recover Cn,n(Xn

1 ). (see Figure 1 in which this process is illustrated). The rate (in bits per letter)
of Cn,n is

R(Cn,n) =
log2

∣∣S̃n
∣∣

n
+

log2 |Sn|
n

. (16)

fn
s̃ ∈ S̃n

(Zn, Xn)

Zn

Xn

(Zn, Xn) log |S̃n| + log |Sn|bits
fixed-rate
encoding

fn,s̃

0110011...

s ∈ S̃n

fixed-rate
decoding

s̃

s

φn

φn,s̃

θ̂n(Zn) = φn(fn(Zn))
(source-density estimation)

Cn,n(Xn) = φn,fn(Zn)(fn,fn(Zn)(X
n))

(source reconstruction)

0110011...

Encoding Process

Decoding Process

first stage second stage

Figure 1. Illustration of Raginsky’s two-stage joint source coding and modeling scheme. Top figure
illustrates the coding process and the bottom figure shows the respective decoding process.

Based on this two-stage scheme, we could simultaneously achieve source coding and density
estimation (modeling) at the decoder. This new joint coding and modeling objective motivates the
introduction of the following definition:

Definition 4. A joint coding and modeling scheme {Cn,n : n ≥ 1} in (13) is strongly minimax universal for a
class of distribution F = {µθ : θ ∈ Θ} ⊂ AC(X) at the rate R > 0, if

• limn→∞ supµ∈F
[

Dµ(Cn,n)− Dn
µ(R)

]
= 0,

• limn→∞ supµ∈F EZn∼µn(V(µθ̂n(Zn), µ)) = 0, and
• lim supn→∞ R(Cn,n) ≤ R.

Consequently, if {Cn,n : n ≥ 1} is strongly minimax universal for F , it follows that as n tends to
infinity, density estimation is achieved at the decoder (in expected total variations) and, from the source
coding perspective, {Cn,n : n ≥ 1} is strongly finite-block universal for F in the sense of Definition 3.
For the rest of the paper, the strongly minimax universality of Definition 4 will be the main coding and
modeling objective.
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3. Connections with Zero-Rate Density Estimation

This section formalizes a connection between the objective of joint coding and modeling (declared
in Definition 4) and a problem of zero-rate density estimation.

3.1. Density Estimation with a Rate Constraint

Let us first introduce the problem of rate constrained density estimation. Let F = {µθ : θ ∈ Θ} ⊂
AC(X) be an indexed collection of densities as introduced in Section 2.2.

Definition 5. An (n, 2nR) learning rule of length n and rate R for F is a pair of functions ( f , φ), with f :
Xn → S and φ : S→ Θ, where S is a finite set and

1
n

log2 |{ f (xn) : xn ∈ Xn}| = 1
n

log2 |S| = R. (17)

The composition of these two functions π = φ ◦ f : Xn → Θ defines the rate-constrained learning rule
for F taking values in the codebook {φ(s) : s ∈ S} ⊂ Θ, where R(π) = log2(|S|)/n denotes its description
complexity in bits per training sample.

Definition 6. The rate R ≥ 0 is achievable for F , if a learning scheme Π = {( fn, φn) : n ≥ 1} exists such that

lim
n→∞

sup
µ∈F

EZn∼µn(V(µπn(Zn), µ)) = 0 and lim sup
n→∞

R(πn) ≤ R, (18)

where Z1, Z2 . . . in the left hand side (LHS) of (18) corresponds to i.i.d. realizations driven by µ ∈ F . In this
case, we say that Π is an R-rate uniformly consistent scheme (or estimator) for the class F .

3.2. Main Results

Proposition 1. If for a given R > 0, {Cn,n : n ≥ 1} is strongly minimax universal for the class F at the rate
R (Definition 4), then its induced finite-description learning scheme obtained from the first stage in (13), i.e.,
Π = {( fn, φn) : n ≥ 1}, is a zero-rate uniformly consistent estimator for F (Definition 6).

The proof is presented in Section 8.1.
Interestingly, the existence of a zero-rate uniformly consistent scheme for F is also sufficient to

achieve the joint coding and modeling objetive (Definition 4) if some mild conditions are adopted from
the work in [18]. This is stated in the following result:

Theorem 1. Let us assume that

(i) ρ : X× X̂→ R+ can be expressed by ρ(x, x̂) = d(x, x̂)p where d(, ) is a bounded metric in X∪ X̂×X∪ X̂
with p > 0 and

(ii) for all µ ∈ F , for all n ≥ 1, and for all R > 0, there exists a (0, n)-block code, say C∗nµ , that achieves the
n-order operational DRF Dn

µ(R) in (7).

Then the existence of a learning scheme Π = {( fn, φn) : n ≥ 1} that is zero-rate uniformly consistent
for F implies that ∀R > 0 there exists a joint coding and modeling scheme {Cn,n : n ≥ 1} that is strongly
minimax universal for F at rate R (Definition 4).

The proof is presented in Section 8.2.

Remark 1. The construction proposed for {Cn,n : n ≥ 1} at any rate R > 0 (in Section 8.2) using the zero-rate
density estimation scheme Π = {πn = φn ◦ fn : n ≥ 1} satisfies that:
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sup
µ∈F

[
Dµ(Cn,n)− Dn

µ(R)
]
≤ C · sup

µ∈F
EZn∼µn(V(µπn(Zn), µ)) and (19)

R(Cn,n)− R ≤ R(πn), (20)

∀n ≥ 1, where C > 0 is a constant. It is worth noting that these two inequalities summarize the result in
Theorem 1 and, importantly, these two bounds are independent of R.

Remark 2. An important consequence of the bounds in (19) and (20) is the fact that constructing a learning
scheme Π = {πn : n ≥ 1} with specific rates of convergence for supµ∈F E(V(µπn(Zn), µ)) and R(πn) (as n
goes to infinity) produces a joint coding and modeling scheme that achieves a uniform rate of convergence to
zero (over F ) of the overhead in distortion by (19) and a uniform rate of convergence to zero of the overhead in
rate by (20). This observation will be used in all the achievable results presented in Sections 4 and 5, where,
consequently, the problem reduces to determine Π and expressions for supµ∈F E(V(µπn(Zn), µ)) and R(πn).

4. Joint Source Coding and Modeling Achievability Results

From the connection with zero-rate density estimation in Section 3, here we present a set of new
results for the joint coding and modeling problem of Section 2.3. In these results, the general conditions
(i) and (ii) stated in Theorem 1 are assumed.

4.1. Main Result: The Skeleton Density Estimator

Let us first introduce some notions from approximation theory [37].

Definition 7. Let F ⊂ AC(X) be a class of densities. We say that F is L1-totally bounded if for every ε > 0,
there is a finite set of elements {µi : i = 1, ..., N} in F such that,

F ⊂
N⋃

i=1

BV
ε (µi), (21)

where BV
ε (µ) ≡ {v ∈ AC(X) : V(µ, v) < ε}.

Definition 8. For F L1-totally bounded, let Nε denote the smallest positive integer that achieves the condition
in (21). Nε is called the ε-covering number of F and K(ε) ≡ log2(Nε) is called the Kolmogorov’s ε-entropy of
F [30].

Definition 9. An ε-covering Gε of F such that |Gε| = Nε is called an ε-skeleton of F [29].

Theorem 2. There is a strongly minimax universal joint coding and modeling scheme for F at rate R for any
rate R > 0 if, and only if, F is L1-totally bounded.

The proof is presented in Section 8.3.
The achievability part of the proof of Theorem 2 relies on the adoption of the skeleton

estimator [29] (with its minimum distance learning principle in (42)), which is a zero-rate uniformly
consistent density estimator for F (Definition 6). Furthermore, Theorem 2 can be complemented saying
that the proposed construction {Cn,n : n ≥ 1} derived from the skeleton estimator satisfies that (Pµ is a
short-hand for the process distribution of (Zn)n≥1 characterized by µ ∈ F under the i.i.d. assumption.)

lim
n→∞

Dµ(Cn,n|Zn) = Dµ(R), Pµ − almost surely, (22)

lim
n→∞

V(µπn(Zn), µ) = 0, Pµ − almost surely, (23)
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∀µ ∈ F . The argument is presented in Appendix A.

4.2. Examples of L1-Totally Bounded Clases

Knowing specific expressions for K(ε) = log2 Nε < ∞, the skeleton estimator can be optimized
selecting its design parameter appropriately. In particular, the sequence (εn)n≥1 (see details in Section 8.3)
is selected as the solution of the optimal balance between estimation and approximation errors (see (45)
in Section 8.3), which is given by ε∗n ≡ inf

{
ε > 0 : log(2N2

ε ) ≤
√

n
}

[30] (Chapter 7.2). The details of this
analysis are presented in Section 8.3 and [30] (Chapter 7). By doing so, an optimized zero-rate skeleton
scheme Π =

{
( fε∗n , φε∗n), n ≥ 1

}
, with concrete rate of convergence for supµ∈F EZn∼µn(V(µπε∗n (Z

n), µ)) and

R(πε∗n), can be obtained. From Remarks 1 and 2, these results imply specific performance results for the
induced joint coding and modeling scheme. To illustrate, we present three interesting examples below.

4.2.1. Finite Mixture Classes

Let F = {µθ : θ ∈ Θ} with Θ =
{

θ ∈ [0, 1]d : ∑d
k=1 θi = 1

}
be the class of measures which are a

convex combination of {µ1, ..., µd} ⊂ AC(X), i.e., ∀θ ∈ Θ, ∀A ∈ B(X), µθ(A) = ∑d
k=1 θk · µk(A). F is

L1-totally bounded with K(ε) being O(d log(1/ε)) [30] (Chapter 7.4). From (45) the optimal sequence
(ε∗n) is O(

√
d/n) [30], which implies the following finite-rate performance bound [30] (Chapter 7.4):

sup
θ∈Θ

E
{

V(µπε∗n (Zn), µθ)
}
≤
√

Cd log n
n

,

with C a universal non-negative constant. The rate in bits per-sample R(πε∗n) = K(ε∗n)/n is O(log n/n).

4.2.2. Monotone Densities in [0, 1]d

LetF be the collection of densities with support on [0, 1]d, monotonically decreasing per coordinate
and bounded by a constant L > 0. This class is known to be L1-totally bounded, and furthermore K(ε) ≤
CLd

εd [30] (Lemma 7.1), with the constant C depending only on d. From (45), (ε∗n) being O(Ld/d+2/n1/d+2)

is optimal (please see details in [26,30]) with the following performance bound,

sup
µ∈F

E
{

V(µπε∗n (Zn), µ)
}
≤ CLd/d+2

n1/d+2 .

In this case, the rate in bits per sample R(πε∗n) = K(ε∗n)/n is O(1/n2/d+2).

4.2.3. r-Moment Smooth Class in [0, 1]

Let F be the class of densities defined on the bounded support [0, 1], with r absolutely continuous
derivatives (with r an integer greater than zero) and satisfying that: ∀ f ∈ F

∫
[0,1]

∣∣∣ f (r+1)
∣∣∣ dx ≤ C

for a constant C > 0. This class is L1-totally bounded with K(ε) being O(1/εr+1) [30] (Chapter 7.6).
From (45), the optimal sequence (ε∗n) is O(1/n1/3+r), where supµ∈F E

{
V(µπε∗n (Zn), µ)

}
is O(1/n1/3+r)

and the rate in bits per sample R(πε∗n) = K(ε∗n)/n is O(1/n2/3+r).
Notably, the last two examples are fully non-parametric, where K(ε) is a polynomial function of

1/ε. Richer non-parametric examples of L1-totally bounded clases of densities, where K(ε) is even
exponentially in 1/ε, are presented in [30] (Chapters 7.6 and 7.8) and its references.

4.3. Yatracos Classes with Finite VC Dimension

Looking at the distortion redundancy bound in (19), when F is totally bounded the fastest rate of
convergence that could be achieved with the skeleton estimator proposed in Theorem 2 is O(

√
1/n)

(see Section 8.3 and the estimation error bound in (45)). In this section, more specific density collections
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are studied to achieve this best rate O(
√

1/n) for density estimation and distortion redundancy
from (19). We follow the path proposed by Yatracos in [38], who explored families of distributions
with a finite Vapnik and Chervonenkis (VC) dimension the so-called VC classes [39,40]. Let us first
introduce some definitions:

Definition 10 ([38]). Let F = {µθ : θ ∈ Θ} ⊂ AC(X) be an indexed collection of densities. The Yatracos
class for such a collection is given by

AΘ =
{

Aθ,θ̄ : θ, θ̄ ∈ Θ, θ 6= θ̄
}

, (24)

where Aθ,θ̄ ≡
{

x ∈ X : gµθ
(x) > gµθ̄

(x)
}
∈ B(X) is the Scheffé set of µθ with respect to µθ̄ , as defined in (2).

Theorem 3. Let us assume that

(i) F is L1-totally bounded,
(ii) the Yatracos class AΘ has a finite VC dimension (Definition A1 in Appendix B), and
(iii) the Kolmogorov’s entropy of F associated with the sequence εn = 1/

√
n grows strictly sub-linearly, i.e.,

log2(N1/
√

n) is o(n),

then there is a zero-rate density estimator scheme Π = {( fn, φn) : n ≥ 1} for F such that

sup
µ∈F

EZn∼µn

{
V(µπn(Zn), µ)

}
is O(1/

√
n),

where πn(Zn) = φn( fn(Zn)) is the skeleton estimator in (42) with εn = 1/
√

n. Furthermore, Π is also a
zero-rate strongly consistent density estimator where ∀µ ∈ F

V(µπn(Zn), µ) is O(
√

log n/n), Pµ − almost surely.

The proof is presented in Section 8.4.
From Definition 7, log2(Nε) is inversely proportional to ε. In fact, depending of how rich F is,

log2(Nε) can go from being O(log 1/ε), passing from being polynomial in 1/ε, to being O(e1/ε) (see a
number of examples in [30] (Chapter 7) and its references). Then the role of (iii) in the statement of
Theorem 3 is to bound how fast Nε should tend to infinity as ε goes to zero, to guarantee a zero-rate in
the skeleton learning scheme. It is simple to show that Nε being O(e(1/ε)q

) with q ∈ [0, 2) is sufficient to
achieve that log2(N1/

√
n) is o(n). This is a condition satisfied by a rich collection of L1-totally bounded

classes in AC(X). Concrete examples are presented in [30] (Chapter 7).

5. The Parametric Scenario

The results presented so far are of theoretical interest because they rely on the skeleton estimator
that is constructed from the skeleton covering of F (see Definition 9), which is unknown in practice.
Moving towards making the zero-rate skeleton learning scheme of practical interest, we revisit
the important parametric scenario in which Θ, the index set of F , is a compact set contained in
a finite-dimensional Euclidean space Rk. Interestingly, in this context we can consider a practical
covering of F induced by the uniform partition of the parameter space Θ, as used in [18]. Unlike [18],
where a minimum-distance estimate is first found and then quantized, here we first quantize the space
Θ and then find the minimum-distance estimate among a finite collection of candidates (i.e., over a
finte number of prototypes in Θ). Some assumptions will be needed.

Definition 11 ([18]). Let F = {µθ : θ ∈ Θ} with Θ ⊂ Rk. Let IF : Θ → F be the index function of F
that maps θ to µθ . IF is said to be locally uniformly Lipschitz, if there exists r > 0 and m > 0, such ∀θ ∈ Θ,
∀φ ∈ Br(θ),

V(µθ , µφ) ≤ m ||θ − φ|| , (25)



Entropy 2018, 20, 640 12 of 21

where Br(θ) ⊂ Θ denotes the ball of radius r (with respect to the Euclidean norm in Rk) centered at θ.

The following lemma shows that F is L1-totally bounded under some parametric assumptions.

Lemma 1. Let F = {µθ : θ ∈ Θ} ⊂ P(X) with Θ ⊂ Rk. If Θ is bounded (∃L > 0 such that Θ ⊂⊗k
i=1[−L, L]) and the mapping IF : Θ→ F is locally uniformly Lipschitz (Definition 11), then F is L1-totally

bounded. Furthermore, Nε is O(1/εk) for this family.

The proof is presented in Section 8.5.
It is important to note that the ε-covering of F used in the proof of Lemma 1 to derive an upper

bound for Nε is practical (see Appendix C). This offers the possibility of implementing a practical
skeleton estimator, which is the focus of the following result.

The Practical Skeleton Estimator

Under the assumptions of Lemma 1, let ( f̃n,ε, φ̃n,ε) denote the learning rule of length n associated
with the minimum-distance principle in (42) with parameter ε (see details in Section 8.3), where
instead of using the ε-skeleton Gε of F (in Definition 9), the implementable (see Appendix C)
ε-covering of Θ presented in the proof of Lemma 1 is used. This practical ε-covering is denoted
by G̃ε (by definition, Nε = |Gε| ≤

∣∣G̃ε

∣∣ = Ñε ∼ O(1/εk), this last part from Lemma 1.). With this,
let Π̃((εn)n≥1) ≡

{
( f̃n,εn , φ̃n,εn) : n ≥ 1

}
denote our practical learning scheme indexed by the precision

numbers (εn)n≥1 ∈ (R+)N. We are in a position to integrate Theorem 3 and Lemma 1 to state
the following:

Theorem 4. Under the assumptions of Lemma 1, the practical skeleton estimator Π̃((εn)n≥1) with ε∗n = 1/
√

n
satisfies that

sup
µθ∈F

EZn∼µn

{
V(µπ̃n,ε∗n (Zn), µθ)

}
is O(

√
log n/n), and R(π̃n,ε∗n) is O(log n/n), (26)

where π̃n,ε(Zn) ≡ φ̃n,ε( f̃n,ε(Zn)).
In addition, if the Yatracos collection AΘ =

{
Aθ,θ̄ : θ, θ̄ ∈ Θ, θ 6= θ̄

}
has a finite VC dimension equal to

J, then

sup
µθ∈F

EZn∼µn

{
V(µπ̃n,ε∗n (Zn), µθ)

}
is O(1/

√
n), and R(π̃n,ε∗n) is O(log n/n). (27)

The proof is presented in Section 8.6.
When X ⊂ Rd, Raginsky [18] showed that the finite VC dimension assumption of Theorem 4 is

satisfied by the class of mixture families presented in Section 4.2.1 and a rich collection of exponential
families of the form F = {µθ : θ ∈ Θ} ⊂ P(X) with dµθ

dλ (x) = f (x) · e∑k
i=1 θihi(x)−g(θ), ∀x ∈ X, where

f (x) is a reference density, {hi(·) : i = 1, ..., k} is a set of arbitrary real-valued functions, g(θ) is a
normalization constant (g(θ) = ln

∫
X e∑k

i=1 θihi(x) f (x)dx see details in [18] (Section V)), and Θ is a
compact subset of Rk (see details in [18] (Section V)).

6. Summary of the Results

We summarize the results of the proposed zero-rate density estimation approach adopted for the
problem of joint fixed-rate lossy source coding and modeling of continuous memoryless sources.

• Proposition 1 and Theorem 1 formalize the interplay between the two-stage joint fixed-rate coding
and modeling objective and the problem of zero-rate uniformly consistent (in expected total
variation) density estimation.
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• Theorem 2 establishes a necessary and sufficient condition on a family of densities for the existence
of a strongly minimax joint coding and modeling scheme achieving both source coding and model
identification objectives (Definition 4). The result is obtained for the rich non-parametric collection
of L1-totally bounded densities.

• For the modeling stage, we propose using the skeleton estimator, which first quantizes the data
and then finds the minimum-distance decision on this finite set of density candidates (42). This is
a practical solution in the sense that the inference (minimization) is carried out over a finite set.

• By introducing combinatorial regularity conditions on the family of distributionsF = {µθ : θ ∈ Θ},
the skeleton scheme achieves O(1/

√
n) rate of convergence in the n-order distortion redundancy,

and the same rate in the expected total variational distance for the modeling part (Theorem 3).
• Finally, for a relevant parametric setting, a practical skeleton-based joint coding and modeling

scheme is proposed that achieves a rate of O(1/
√

n) for the n-order distortion redundancy
(Theorem 4). This rate is slightly better than theO(

√
log n/n) achieved in [18] under the same rate

overhead of O(log(n)/n). Furthermore, Theorem 4 removes the finite-VC-dimension assumption
over the Yatracos classAΘ considered in [18] (Theorem 3.2), while achieving the same performance
rates in terms of n-order distortion redundancy O(

√
log n/n), uniform expected risk to learn the

density O(
√

log n/n), and rate overhead O(log n/n).

Concerning the last parametric result, we note that the result in [18] can be improved by the
adoption of Dudley’s entropy bound [41], which would yield the same asymptotic rate reported in
this work for the n-order distortion redundancy.

A final remark is that under the bounded distortion metric assumption of Theorem 1 condition (i),
Linder et al. [14] (Theorem 2) showed that ∀θ ∈ Θ, and for every R > 0 such that Dµθ

(R) > 0, there is
a constant Kθ(R) > 0 such that

Dn
µθ
(R)− Dµθ

(R) ≤ (Kθ(R) + rn)

√
log n

n
, (28)

where (rn) is a sequence that converges to zero (o(1)) uniformly in Θ. This result offers a rate of
convergence of the n-order operational distortion-rate function to the Shannon DRF as the block length
tends to infinity. In view of (11), we can adopt this result in Theorems 3 and 4, to say that the average
distortion of the respective joint coding and modeling schemes at rate R, i.e., Dµ(Cn,n), convergences

to the Shannon DRF Dµ(R) as O(
√

log n
n ) point-wise ∀µ ∈ F . Therefore in the process of comparing

Dµ(Cn,n) with the Shannon DR function, we lose the O(
√

1/n) rate of convergence.

7. Conclusions

This work revisits the problem of fixed-rate universal lossy source coding and model identification
with training data proposed in [18] from a learning perspective. Remarkably, we found that the problem
is equivalent to the problem of density estimation of the source distribution with some concrete but
non-conventional operational data-rate constraints in bits per sample. This learning problem can be
seen as the task of estimating and encoding the distribution of samples with a zero-rate in bits per
sample, while achieving a consistent estimation in expected total variations of the distribution after the
decoding process. From our perspective, the rate-constraint density estimation problem is interesting
in itself and can have relevant applications in other contexts such as distributed learning scenarios and
sensor network problems.

Importantly for the joint coding and modeling problem, the connection with density estimation
provides a context for the use of the skeleton estimator proposed by Yatracos in [29]. We highlight
two important implications from its use. First, we extend results about minimax universality from
the parametric context explored in [30] to the rich non-parametric family of L1-totally bounded
densities [26,30]. This result significantly expands the contexts where the joint model and coding
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objective can be achieved. We illustrated this with some examples in Section 4.2 and many more can
be found in the literature of density estimation [26,30].

Second, in the parametric case studied in [18], we were able to remove some of the assumptions
and obtain not only the same performance result in terms of rate of convergence of the n-order
distortion redundancy but also slightly better convergence results. Therefore, the Skeleton estimator,
though essentially a non-parametric learning scheme, is shown to be instrumental in enriching the
applicability of the joint coding and modeling framework.

8. Proofs of Results

8.1. Proposition 1

Proof. The fact that Π is uniformly consistent forF is directly from Definition 4. On the other hand, the
rate of πn = φn ◦ fn is R(πn) =

1
n log2

∣∣S̃n
∣∣. From the definition of Dn

µ(R), it is simple to show from the

strict monotonicity of Dµ(R) that in order for limn→∞ supµ∈F
[

Dµ(Cn,n)− Dn
µ(R)

]
= 0, it is required

that lim supn→∞
1
n log |Sn| > R − ε for any ε > 0. Then, from (16), and since log |S̃n|/n = R(πn),

lim supn→∞ R(Cn,n) ≤ R implies that limn→∞ R(πn) = 0.

8.2. Theorem 1

Proof. The proof builds upon the ideas elaborated in [18] (Theorem 3.2, p. 3065). Let us consider an
arbitrary R > 0 and let Π = {( fn, φn) : n ≥ 1} be the zero-rate learning scheme of the assumption.
Using Π, let us construct the joint coding and modeling rule of length n by:

Cn,n =
(

fn : Xn → S̃n, φn : S̃n → Θ,{
fn,s̃ : Xn → Sn, φn,s̃ : Sn → X̂n : s̃ ∈ S̃n

})
. (29)

Concerning the first stage of {Cn,n : n ≥ 1}, it is induced directly from the coding-decoding rules of Π.
For the second stage, ∀n ≥ 1, ∀s̃ ∈ S̃n the pair ( fn,s̃, φn,s̃) is picked such that C∗nµθn,s̃

= φn,s̃ ◦ fn,s̃, which

is the optimal n-block code that achieves Dn
µθn,s̃

(R) (from the hypothesis in (ii)), with θn,s̃ ≡ φn( fn(s̃))

short-hand for the reproduction codeword induced from the first stage-pair ( fn, φn), and Sn satisfying
the R-rate constraint, i.e., |Sn| = 2nR. From construction and the fact that Π has zero-rate,

lim
n→∞

R(Cn,n) = R + lim
n→∞

log2

∣∣S̃n
∣∣/n = R,

then {Cn,n : n ≥ 1} satisfies the rate condition. On the other hand, based on the assumption that Π is
zero-rate uniformly consistent, it follows that

lim
n→∞

sup
µ∈F

E(V(µθ̂n(Zn), µ)) = 0, (30)

where θ̂n(Zn) = φn( fn(Zn)). Then {Cn,n : n ≥ 1} achieves the modeling objective. Concerning the
coding objective, we use the following key result:

Lemma 2 ([18] (Lemma C.1)). Let P and Q be two probability measures in (X,B(X)). Let Cn = ( f , φ) be
a zero-memory n-block coder with the nearest neighbor property (i.e., Cn is nearest neighbor if, ∀xn

1 ∈ Xn,
φ( f (xn

1 )) = arg minx̂n
1∈ΓCn ρ(xn

1 , x̂n
1 ) with ΓCn the reproduction codebook of Cn.). If we denote the performance

of Cn (Cn = φ ◦ f ) with respect to P by

DP(Cn) ≡ 1
n
EXn∼Pn (ρ(Cn(Xn), Xn)) , (31)
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where Pn denotes the product measure with marginal P in (Xn,B(Xn)), and ρ satisfies the condition i) of
Theorem 1 and is bounded by dmax, then∣∣∣DP(Cn)1/p − DQ(Cn)1/p

∣∣∣ ≤ 21/pdmax ·V(P, Q). (32)

Furthermore, the inequality can be extended for the n-order operational distortions in (7), i.e.,∣∣∣Dn
P(R)1/p − Dn

Q(R)1/p
∣∣∣ ≤ 21/pdmax ·V(P, Q), (33)

∀R > 0.

Let us work with the following distortion redundancy,

Dµ(Cn,n|Zn)− Dn
µ(R) =

[
1
n
EXn∼Pn

µ
(ρn(Xn, Cn,n(Xn)))− Dn

µθ̂n(Zn)
(R)
]
+[

Dn
µθ̂n(Zn)

(R)− Dn
µ(R)

]
(34)

≤ Dµ(C∗nµθ̂n(Zn)
)− Dn

µθ̂n(Zn)
(R) + 21/pdmax ·V(µθ̂n(Zn), µ) (35)

= Dµ(C∗nµθ̂n(Zn)
)− Dµθ̂n(Zn)

(C∗nµθ̂n(Zn)
)

+ 21/pdmax ·V(µθ̂n(Zn), µ) (36)

≤ 21/p+1dmax ·V(µθ̂n(Zn), µ). (37)

For the first equality we use (5). The inequality in (35) is from the definition in (31) and (33), and the
equality in (36) is from the construction of C∗nµθ̂n(Zn)

which is n-operational optimal for the distribution
µθ̂n(Zn) at rate R. Finally, (37) is from (32).

Concluding, Dµ(Cn,n|Zn)− Dn
µ(R) is random (a measurable function of Zn) and dominated by

V(µθ̂n(Zn)µ). Hence taking the expected value (with respect to Zn) on both sides of this inequality
(see (6)), we have the uniform convergence in (30) implying that

lim
n→∞

sup
µ∈F

[
Dµ(Cn,n)− Dn

µ(R)
]
= 0, (38)

and then the coding objective is achieved.

8.3. Theorem 2

Proof. Let us first assume that F is L1-totally bounded and prove the direct part of the statement.
We adopt the skeleton estimate proposed by Yatracos [29] and extended by Devroye et al. [42,43]
(a complete presentation can be found in [30] (Chapter 7)). For any arbitrary ε > 0, let us consider the

ε-skeleton Gε =
{

µθε
i

: i = 1, ..., Nε

}
of F . We use gθε

i
(x) ≡

dµθε
i

dλ (x) as short-hand for the i-th pdf in
Gε, and we define

Θε ≡ {θε
i : i = 1, ..., Nε} ⊂ Θ

to represent the index set of Gε. Let us consider the Yatracos class of Gε given by [30]

Aε ≡
{

Aε
i,j, Aε

j,i : 1 ≤ i < j ≤ Nε

}
, (39)
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where Aε
i,j =

{
x ∈ X : gθε

i
(x) > gθε

j
(x)
}
∈ B(X) is the Scheffé set of µθε

i
with respect to µθε

j
in (2) [30,33].

Hence, given i.i.d. realizations X1, ..., Xn with Xi ∼ µθ (µθ ∈ F ), let us propose the encoder-decoder
pair ( fn,ε, φn,ε) associated with Aε by,

fn,ε(Xn) ≡ arg min
i∈{1,...,Nε}

sup
B∈Aε

∣∣∣µθε
i
(B)− µ̂n(B)

∣∣∣ ∈ [Nε], (40)

φn,ε(i) ≡ θε
i ∈ Θε ⊂ Θ, (41)

where µ̂n(B) = ∑n
j=1 1B(Xj) is the standard empirical distribution. In this context,

θ̂ε(Xn) = φn,ε(( fn,ε(Xn))) = arg min
θε

i ∈Θε

sup
B∈Aε

∣∣∣µθε
i
(B)− µ̂n(B)

∣∣∣ , (42)

is the well-known skeleton estimate [29]. θ̂ε(Xn
1 ) is the minimum-distance approximation of µ̂n with

elements of Gε [29,30], adopting the measure in the right-hand-side of (42) that is reminiscent of the
total variational distance in (1). In order to choose a sequence (εn)n≥1, we consider the following
performance bound.

Lemma 3 ([30] (Theorem 6.3)). For any µ ∈ F ,

V(µθ̂ε(Xn), µ) ≤ 3 min
v∈Gε

V(v, µ) + 4 sup
B∈Aε

|µ̂n(B)− µ(B)| . (43)

Equation (43) is valid for any ε > 0 and, consequently, it provides a trade-off between an
approximation error term and an estimation error term. The approximation error is minv∈Gε

V(v, µ),
which is bounded by the definition of Gε. For the estimation error, on the other hand, Yatracos proposed
the use of Hoeffding’s inequality [44] to obtain that ∀µ ∈ P(X) [30] (Theorem 7.1),

EXn∼µn

(
sup
B∈Aε

|µ̂n(B)− µ(B)|
)
≤
√

log(2N2
ε )

2n
. (44)

Using (44) in (43), it follows that, supµθ∈F E
{

V(µθ̂ε(Xn), µθ)
}
≤ 3ε +

√
8 log(2N2

ε )
n . This last expression

is distribution-free and it is valid if the approximation fidelity ε is a chosen function of n [30].
Consequently, for any sequence (εn)n≥1,

sup
µθ∈F

E
{

V(µθ̂εn (Xn), µθ)
}
≤ 3εn +

√
8 log(2N2

εn)

n
, (45)

for all n ≥ 1. Hence, we consider ε∗n ≡ inf
{

ε > 0 : log(2N2
ε ) ≤

√
n
}

proposed in [30]
(Chapter 7.2), which is well-defined and converges to zero as n tends to infinity.

Consequently from (45), limn→∞ supµθ∈F E
{

V(µθ̂ε∗n (Xn), µθ)

}
= 0. Then the learning scheme

Π((ε∗n)n≥1) ≡
{
( fn,ε∗n , φn,ε∗n) : n ≥ 1

}
satisfies the learning requirement in Definition 6, where in

particular R(φn,ε∗n ◦ fn,ε∗n) =
log2(Nε∗n )

n is O(1/
√

n) by construction. To conclude the argument of this
part (i.e., presenting the construction of the second stage of a joint coding & modeling scheme),
we adopt the result and the construction presented in the proof of Theorem 1 (see Remark 1 for details).
This result implies that ∀R > 0 there is a strongly minimax universal joint coding and modeling
scheme for F at rate R.

For the other implication (the converse part of the statement), let us fix R > 0 and assume that
we have a joint coding & modeling scheme that is strongly minimax universal (Definition 4) for F
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at rate R. Then from Proposition 1, we have a learning scheme Π = {( fn, φn) : n ≥ 1} such that
limn→∞ R(πn = φn ◦ fn) = 0 and

lim
n→∞

sup
µ∈F

EPn
µ

{
V(µπn(Xn), µ)

}
= 0. (46)

For the learning rule of length n, we have its reproduction codebook that we denote by Θn ≡{
θn

j : j = 1, ..., 2nR(πn)
}
⊂ Θ. Let us define the minimum-distance oracle solution in Θn by

θ̃n(µ) = arg inf
θ∈Θn

V(µθ , µ). (47)

From (46), we have that limn→∞ supµ∈F V(µθ̃n(µ)
, µ) = 0. In other words, ∀ε > 0, there exists

N(ε) < ∞, such that for all n ≥ N(ε), V(µθ̃n(µ)
, µ) < ε uniformly for every element µ ∈ F . This means

that ∀ε > 0 there exists N(ε) < ∞, such that for any arbitrary n̄ > N(ε), F ⊂ ⋃θ∈Θn̄ Bε(µθ), where by
construction |Θn̄| < ∞. Then F is totally bounded, which concludes the proof.

8.4. Theorem 3

Proof. From Lemma 3, for any arbitrary sequence (εn)n≥1

V(µθ̂εn (Xn), µθ) ≤ 3εn + 4 sup
B∈Aεn

|µ̂n(B)− µθ(B)| . (48)

with Aεn the Yatracos class of the skeleton Gεn . It is clear that ∀ε > 0, Aε ⊂ AΘ. Then by monotonicity
E
(

supB∈Aε
|µ̂n(B)− µ(B)|

)
≤ E

(
supB∈AΘ

|µ̂n(B)− µ(B)|
)

, for all ε > 0 and for any distribution
µ ∈ P(X). Here is where we use the assumption that AΘ has finite VC dimension J, which implies
from [30] (Theorem 3.1) that

sup
µ∈F

E
(

sup
B∈AΘ

|µ̂n(B)− µ(B)|
)
≤ c

√
J
n

(49)

for some constant c > 0. Substituting this result in (48), the argument concludes by
replacing (εn) = (1/

√
n), a solution which achieves the intended rate of convergence for

supµθ∈F E
{

V(µθ̂1/
√

n(Xn), µθ)
}

. Finally, the rate of the learning rule is
dlog2(N1/

√
n)e

n , which tends to

zero by the last hypothesis.
For the almost-sure convergence part if ε∗n = 1√

n , it is sufficient to show that the second term in

the right hand side (RHS) of (48) is O(
√

log n/n) Pµ-almost surely. From the fact thatAΘ has finite VC
dimension (Definition A1), and from the classical VC inequality [30] (Corollary 4.1 and Theorem 3.1)
and [45] (Chapter 12.4), it follows that

P

 sup
B∈Aε∗n

|µ̂n(B)− µθ(B)| > δ

 ≤ 8(n + 1)J · e− nδ2
32 ,

∀n ≥ 0 and ∀ε > 0. Then considering an =
√

log n/n and M2/32 > J + 2,

P

 sup
B∈Aε∗n

|µ̂n(B)− µθ(B)| > M · an

 ≤ 8
(n + 1)J

nM2/32
≤ K

n2

for some K > 0, hence ∑n≥0 P
(

1
an
· supB∈Aε∗n

|µ̂n(B)− µθ(B)| > M
)

< ∞. Then from the Borel

Cantelli Lemma, lim supn→∞
1
an
· supB∈Aε∗n

|µ̂n(B)− µθ(B)| ≤ M Pµ-almost surely, which concludes
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the proof. As (an) is o(1), this result implies the almost-sure convergences to zero of V(µθ̂ε∗n (Xn), µθ) as

n goes to infinity.
Finally, using similar arguments, it is possible to show that V(µθ̂ε∗n (Xn), µθ) is o(1/nτ) Pµ-almost

surely for any τ ∈ (0, 1/2).

8.5. Lemma 1

Proof. First note that Θ is contained in a compact set
⊗k

i=1[−L, L] ⊂ Rk, consequently, Θ inherits the

finite covering property of a compact set, i.e., ∀ε > 0, there exists a finite covering Θε =
{

θε
1, ., θε

K(ε)

}
⊂ Θ

such that,

Θ ⊂
⋃

θ∈Θ

Bε(θ) =
K(ε)⋃
i=1

Bε(θ
ε
i ). (50)

On the other hand, from the locally uniformly Lipschitz assumption on IF : Θ → F , there exists
r > 0 and m > 0 such that V(µθ , µφ) ≤ m ||θ − φ||, ∀θ ∈ Θ, ∀φ ∈ Br(θ). Then, by considering εo < r,
it follows by construction of Θεo that

F ⊂
K(εo)⋃
i=1

IF (Bεo (θ
εo
i )) ⊂

K(εo)⋃
i=1

BV
m·r(µθεo

i
), (51)

where BV
δ (µ) = {v ∈ P(X) : V(v, µ) < δ} is the ball centered at µ ∈ P(X), induced from the total

variational distance, and the last inequality stems from the Lipschitz condition. Hence, from (51), ∀ε > 0
there exists M(ε) = K(min {ε/m, r}) < ∞ and

{
µε

1, ..., µε
M(ε)

}
⊂ P(X), such that F ⊂ ⋃M(ε)

i=1 B(µθε
i
, ε),

which proves the result.
For the final part, let (m, r) be the uniform parameters that characterize the Lipschitz condition of

IF (·) (Definition 11). Without loss of generality, let us assume the critical regime where ε
m < r, hence

from (51) Nε is upper bounded by K(ε/m), which is the covering number of Θ. As Θ ⊂⊗k
i=1[−L, L] ⊂ Rk,

we will work with a uniform partition of
⊗k

i=1[−L, L] to find a bound for K(ε/m). Let ε̄ = ε
m ,

then inducing a product-type partition, where in each coordinate we have d L
√

k
ε̄ e uniform length

cells, we have the required ε̄-covering. The number of prototypes is O( (L
√

k)k

ε̄k ), which is O(1/εk) as a
function of ε (ε = ε̄ ·m).

To clarify the constructive nature of the ε-covering used to prove this result, an algorithm with
the basic steps of the construction of this practical covering is sketched in Appendix C.

8.6. Theorem 4

Proof. Let G̃ε ⊂ F be the ε-covering induced from the uniform partition of Θ presented in Lemma 1.
From this we can construct the minimum-distance estimate in (42) adopting the Yatracos class of G̃ε

(with index set Θ̃ε), i.e., Ãε, which, from (39), yields

θ̃ε(Xn) ≡ arg min
θε

i ∈Θ̃ε

sup
B∈Ãε

∣∣∣µθε
i
(B)− µ̂n(B)

∣∣∣ . (52)

Considering εn = 1/
√

n, from (45) it follows that

sup
µθ∈F

E
{

V(µθ̃εn (Xn), µθ)
}
≤ 3√

n
+

√√√√8 log(2 log
∣∣∣G̃1/

√
n

∣∣∣2)
n

.

The latter upper bound is asymptotically dominated by (
√

log n/n) from the fact that log
∣∣∣G̃1/

√
n

∣∣∣ is
O(k log(n)) (Lemma 1), which proves the assertions made in (26).



Entropy 2018, 20, 640 19 of 21

Concerning part (ii), using the arguments presented in the proof of Theorem 3, we can obtain that
∀ε > 0,

sup
µθ∈F

E
{

V(µθ̃ε(Xn), µθ)
}
≤ 3ε + 4 · c

√
J
n

. (53)

From this point, the proof follows from the arguments of Theorem 3 and the fact that log2

∣∣∣G̃1/
√

n

∣∣∣ is
O(k/2 · log2 n).
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Appendix A. Proof of (22) and (23)

First, we show that the zero-rate skeleton estimate Π((εn)) = {( fn,εn , φn,εn) : n ≥ 1} proposed
in (40) and (41) is also strongly consistent.

Proposition A1. Π((ε∗n)) =
{
( fn,ε∗n , φn,ε∗n) : n ≥ 1

}
is strongly consistent, i.e., for any µ ∈ F ,

lim
n→∞

V(µθ̂ε∗n (Xn), µ) = 0, Pµ-almost surely.

Proof. Let us consider the skeleton estimate µθ̂ε∗n (Xn), where the sequence was chosen by the rule

ε∗n = inf
{

ε > 0 : log(2N2
ε ) ≤

√
n
}

. Then log N2
ε∗n
≤ (
√

n − log 2) ≤ √n for all n. From Lemma 3,
V(µθ̂ε∗n (Xn), µ) ≤ 3ε∗n + 4 supB∈Aε∗n

|µ̂n(B)− µ(B)|. As by construction (ε∗n) is o(1), we just need to

concentrate on the estimation error term. Applying Hoeffding’s inequality [44] ∀δ > 0,

P

 sup
B∈Aε∗n

|µ̂n(B)− µ(B)| > δ

 ≤ 2 · N2
ε∗n · e

−2nδ2 ≤ 2e(
√

n/ log e−2nδ2), (A1)

where from the Borel-Cantelli lemma [46,47], the estimation error convergences to zero almost-surely.

Finally considering the inequality in (37), we have that Dµ(Cn,n|Zn) − Dn
µ(R) ≤ 21/p+1dmax ·

V(µθ̂n(Zn), µ), ∀µ ∈ F , which concludes the argument.

Appendix B. Basic Definitions of Vapnik and Chervonenkis Theory

Let C ⊂ B(X) be a collection of measurable events, and xn = (x1, ..., xn) be a sequence of n points
in Xn. Then we define by S(C, xn) the number of different sets in

{{x1, x2, ..., xn} ∩ B : B ∈ C} ,

and the shatter coefficient of C by [40,45]

Sn(C) = sup
xn∈Xn

S(C, xn). (A2)
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The shatter coefficient is an indicator of the richness of C to dichotomize a finite sequence of
points in the space, where by definition Sn(C) ≤ 2n.

Definition A1. The first time (in the index n) where Sn(C) is strictly less than 2n is called the Vapnik and
Chervonenkis (VC) dimension of C [45]. If C has a finite VC dimension then it is called a VC class; otherwise if
Sn(C) = 2n ∀n ≥ 1, then the class is said to have an infinite VC-dimension.

Appendix C. Pseudo Algorithm to Implement the Practical ε-Covering Presented in Lemma 1

Under the parametric assumptions of Lemma 1, we recognize four structural parameters that
characterize F : k the dimension of the Euclidean space that contains Θ, L > 0 associated with the
assumption that Θ ⊂ ⊗k

i=1[−L, L], and (r, m) the parameters associated with the locally Lipschitz
assumption of IF . Given these four parameters (k, L, m, r) and ε > 0, there is a constructive ε-covering
presented in the proof of Lemma 1 that can be implemented in the following steps:

1. In each of the k dimensions of Θ, the interval [−L, L] is partitioned uniformly with sub-intervals
of length 2ε/(m

√
k). This produces a scalar quantization of [−L, L] with dm

√
kL/εe prototypes

per coordinate.
2. A product partition of

⊗k
i=1[−L, L] is made with the scalar quantizations of the previous step.

From the proof of Lemma 1, this is a ε/m-covering of Θ with K = dm
√

kL/εek prototypes. Let us
denote this set by {θi, i = 1, ..., K} ⊂ Θ.

3. From the proof of Lemma 1, the covering of Θ constructed in the previous step induces an
ε-covering of F by applying the indexing function IF , i.e., by {IF (θi) : i = 1, ..., K} .
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