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Abstract: Einstein-Podolsky-Rosen (EPR) steering is very important quantum correlation of a composite
quantum system. It is an intermediate type of nonlocal correlation between entanglement and Bell
nonlocality. In this paper, based on introducing definitions and characterizations of EPR steering, some
EPR steering inequalities are derived. With these inequalities, the steerability of the maximally entangled
state is checked and some conditions for the steerability of the X-states are obtained.
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1. Introduction

Generally, quantum correlations means the correlations between subsystems of a composite
quantum system, including Bell nonlocality, steerability, entanglement and quantum discord.

Einstein-Podolsky-Rosen (EPR) steering was first observed by Schrodinger [1] in the context
of famous Einstein-Podolsky-Rosen (EPR) paradox [2–5]. It was realized that EPR steering, as a
form of bipartite quantum correlation, is an intermediate between entanglement and Bell nonlocality.
Wiseman et al. [6] shown the inequivalence between entanglement, steering, and nonlocality when
considering the projective measurements. Then, Quintino et al. [7] further considered the general
measurements and proved that these three quantum relations are inequivalent. Interestingly, steering
can be characterized by a simple quantum information processing task, namely, entanglement
verification with an untrusted party [6–10]. In addition, steering has been found useful in several
applications, such as one-sided device-independent quantum key distribution [11]; subchannel
discrimination [12]; temporal steering and security of quantum key distribution with mutually
unbiased bases against individual attacks [13]; temporal steering in four dimensions with applications
to coupled qubits and magnetoreception [14]; no-cloning of quantum steering [15]; and spatio-temporal
steering for testing nonclassical correlations in quantum networks [16]. Recently, detection and
characterization of steering have attracted increasing attention [3,6,8,17–32]. Many of the standard
Bell inequalities (e.g., CHSH ) are not effective for detection of quantum correlations which allow
for steering, because for a wide range of such correlations they are not violated. Various steering
inequalities have been derived, such as linear steering inequalities [33–35]; inequalities based on
multiplicative variances [3,17,33]; entropy uncertainty relations [36,37]; fine-grained uncertainty
relations [38], temporal steering inequality [39]. Besides, Zukowski et al. [40] presented some
Bell-like inequalities which have lower bounds for non-steering correlations than for local causal
models. These inequalities involve all possible measurement settings at each side. Based on the
data-processing inequality for an extended Rényi relative entropy, Zhu et al. [41] introduced a family
of steering inequalities, which detect steering much more efficiently than those inequalities known
before. Chen et al. [42] showed that Bell nonlocal states can be constructed from some steerable states.
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Furthermore, a nine-setting steering inequality had also been presented for developing more efficient
one-way steering and detecting some Bell nonlocal states. Bhattacharya et al. [43] present absolute
non-violation of a three-setting steering inequality by two-qubit states. Recently, some characterizations
of EPR steering are given in [44] and the generalized steering robustness was introduced and some
interesting properties were established in [45], which suggests a way of quantifying quantum steering.
Very recently, Bell nonlocality and EPR steering of bipartite states were discussed mathematically
in [46], including mathematical definitions and characterizations of these two quantum correlations, the
convexity and closedness of the sets of all Bell local states and all EPR unsteerable states, respectively.
Lastly, a sufficient condition for a state to be steerable was established, which leads to proofs of
the EPR steerability of the maximally entangled states and that of entangled pure states. Tripartite
systems have more complex structures than bipartite systems and then have more diversified steering
scenarios. In [47], two types of quantum steering scenarios were introduced for a tripartite quantum
system, named “one-sided device-independent steering”and “two-sided device-independent steering”.
Based on giving the mathematical definitions of these steering scenarios, some necessary and sufficient
conditions for a state to be unsteerable were obtained and sufficient conditions for a state to be steerable
were established.

In this paper, we will derive some EPR steering inequalities for bipartite states, including a more
general steering inequality that extends some known steering inequalities. Furthermore, we derive
some EPR steering criteria, with which the EPR steerability of the maximally entangled states and
Bell-diagonal states are checked. The other parts of this paper are divided as follows. In Section 2, we
will introduce the definitions of EPR unsteerability and EPR steerability of bipartite states, and some
equivalent characterizations of EPR unsteerability. In Section 3, we will establish some EPR steering
inequalities, prove the steerability of the maximally entangled state and derive some conditions for the
steerability of the X-states.

2. Steering Inequalities of Bipartite Quantum States

In this section, we will recall mathematical definitions related to steering motivated by the
literature (e.g., [29]) and proposed in [46], and list related results proved in [46]. To do this, we use
HA andHB to denote two finite dimensional complex Hilbert spaces, which describe two quantum
systems A and B, respectively. We use DX to denote the set D(HX) of all quantum states of the system
X described by a Hilbert spaceHX and 1X to denote the identity operator onHX .

In a typical quantum-steering scenario, there are two spatially separated systems A and B, which
are measured by one of the two distant observers, Alice and Bob; they share a joint state ρAB (Figure 1).
Alice may choose one measurement, labeled by x, from her measurement assemblage MA, and
perform it on her system A. Bob performs tomography and reconstructs the set of states

ρa|x = trA[(Ma|x ⊗ IB)ρ
AB]

conditioned on Alice’s measurements. The aim of this experiment is to steer Bob’s state using Alice’s
measurement on her system.                                                              

AB
 

x

a

Figure 1. Sketch of a quantum steering from Alice to Bob, in which ρAB denotes the shared state
and x and a denote Alice’s measurement choice and corresponding outcome, respectively, when the
measurement x is chosen and performed.
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Here are the mathematical definitions concerning EPR steering given by [46].

Definition 1. Let MA =
{
{Ma|x}

oA
a=1 : x = 1, 2, . . . , mA

}
be a set of mA positive operator value

measurements (POVMs) {Ma|x}
oA
a=1(x = 1, 2, . . . , mA) that Alice want to perform, called a measurement

assemblage of Alice, where the letters x and a label Alice’s measurement choice and outcome, respectively, each
POVM having oA possible values.

(1) A state ρAB of the system AB is said to be unsteerable from A to B withMA if there exists a probability
distribution (PD) {πλ}d

λ=1 and a set of states {σλ}d
λ=1 ⊂ DB such that

ρa|x := trA[(Ma|x ⊗ 1B)ρ
AB] =

d

∑
λ=1

πλPA(a|x, λ)σλ, ∀x, a, (1)

where {PA(a|x, λ)}oA
a=1 is a PD for each (x, λ). In this case, we also say that Equation (1) is an LHV-LHS

model of ρAB with respect toMA.
(2) A state ρAB is said to be steerable from A to B withMA if it is not unsteerable from A to B withMA.

In this case, we also say that ρAB exhibits quantum steering withMA.
(3) A state ρAB is said to be unsteerable from A to B if for any MA, ρAB is unsteerable from A to B

withMA.
(4) A state ρAB is said to be steerable from A to B if ∃ anMA such that it is steerable from A to B with

MA, i.e., it is not unsteerable from A to B withMA.
Symmetrically, we define unsteerability and steerability of a state from B to A.
(5) A state ρAB is said to be steerable if it is steerable from A to B or B to A.
(6) A state ρAB is said to be unsteerable if it is not steerable, i.e., it is unsteerable both from A to B,

and B to A.

Here are some remarks to the definitions above.

Remark 1. Denote by USA(MA) the set of all states which are unsteerable from A to B with respect toMA,
by USA the set of all states which are ussteerable from A to B, and denote by SA(MA) the set of all states
which are steerable from A to B withMA, by SA the set of all states which are steerable from A to B. From the
definition above, we have

USA =
⋂
MA

USA(MA);SA =
⋃
MA

SA(MA). (2)

Remark 2. The physical interpretation is as follows. When a state ρAB is unsteerable with MA, Bob can
interpret his conditional states ρa|x := trA[(Ma|x ⊗ 1B)ρ

AB] by Equation (1) as coming from the pre-existing
states {σλ}d

λ=1 and the PD {πλ}d
λ=1, where only the probabilities are changed due to the knowledge

{PA(a|x, λ)}x,a,λ of Alice’s measurement choice x and outcome a.

Example 1. Let us now assume that Alice’s measurements in MA are compatible, in the sense of being
jointly measurable [29]. This means that there exists a single ‘parent’ POVM N = {Nλ}d

λ=1 such that
∀Mx = {Ma|x}

oA
a=1 ∈ MA, there is d PDs {PA(a|x, λ)}oA

a=1(λ = 1, 2, . . . , d), such that

Ma|x =
d

∑
λ=1

PA(a|x, λ)Nλ(a = 1, 2, . . . , oA).

Thus, for any state ρAB of the system AB, we have for each (a, x),

trA[(Ma|x ⊗ 1)ρAB] =
d

∑
λ=1

PA(a|x, λ)trA[(Nλ ⊗ 1)ρAB] =
d

∑
λ=1

πλPA(a|x, λ)σλ,
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where
πλ = tr[(Nλ ⊗ 1)ρAB], σλ =

1
πλ

trA[(Nλ ⊗ 1)ρAB].

This shows that every state ρAB is unsteerable from A to B with a compatible measurement assemblageMA.

The following theorems were proved in [46].

Theorem 1. ([46], Theorem 3.2) A state ρAB of the system AB is unsteerable from A to B withMA if and
only if there exists a PD {πλ}d

λ=1, a set of states {σλ}d
λ=1 ⊂ DB, and dmA PDs {PA(a|x, λ)}oA

a=1(1 ≤ x ≤
mA, 1 ≤ λ ≤ d) such that every local POVM {Nb}oB

b=1 of B, it holds that

tr[(Ma|x ⊗ Nb)ρ
AB] =

d

∑
λ=1

πλPA(a|x, λ)tr(Nbσλ), ∀x, a, b. (3)

Theorem 2. ([46], Theorem 3.3) A state ρAB of the system AB is unsteerable from A to B if and only if for
everyMA, there exists a PD {πλ}d

λ=1, a set of states {σλ}d
λ=1 ⊂ DB and dmA PDs {PA(a|x, λ)}oA

a=1(1 ≤
x ≤ mA, 1 ≤ λ ≤ d) such that for every POVM {Nb}oB

b=1 of B, it holds that

tr[(Ma|x ⊗ Nb)ρ
AB] =

d

∑
λ=1

πλPA(a|x, k)tr(Nbσλ), ∀x, a, b, (4)

3. EPR Steering Inequalities

Let Bher(HA ⊗HB) be the set of all hermitian operators of the systemHA ⊗HB.

Theorem 3. Suppose that Ai ∈ Bher(HA), Bi ∈ Bher(HB)(i = 1, 2, . . . , n) and there exists a positive
constant M such that

n

∑
i=1
|tr(BiT)|2 ≤ M, ∀T ∈ DB. (5)

Then for every ρ ∈ USA, it holds that

Fn(ρ, µ) :=
1√
n

∣∣∣∣∣ n

∑
i=1
〈Ai ⊗ Bi〉ρ

∣∣∣∣∣ ≤
√

M
n

√
n

∑
i=1

r(Ai)2, (6)

where µ = {A1, A2, . . . , An; B1, B2, . . . , Bn}, r(Ai) is the spectral radius of Ai.

Proof. Since Ai ∈ Bher(HA), Bi ∈ Bher(HB), i = 1, 2, . . . , n, then the following spectrum
decompositions are valid:

Ai =
m1

∑
j=1

λ
(i)
j P(i)

j , Bi =
m2

∑
k=1

µ
(i)
k Q(i)

k (i = 1, 2, . . . , n). (7)

Consider POVMs Mi = {P(i)
j , j = 1, 2, . . . , m1}, Ni = {Q(i)

k , k = 1, 2, . . . , m2}(i = 1, 2, . . . , n), and

the measurement assemblages MA = {M1, M2, . . . , Mn}, NB = {N1, N2, . . . , Nn}. Suppose that
ρ ∈ USA, then ρ ∈ USA(MA). Thus, we see from Theorem 2 that there exists a PD {πλ}d

λ=1, a set of
states {σλ}d

λ=1 ⊂ DB, and nd PDs {PA(j|x, λ), j = 1, 2, . . . , m1}(1 ≤ x ≤ n, 1 ≤ λ ≤ d) such that

tr[(P(x)
j ⊗Q(y)

k )ρ] =
d

∑
λ=1

πλPA(j|x, λ)tr(Q(y)
k σλ) (8)
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for all x, y = 1, 2, . . . , n and all j ∈ {1, 2, . . . , m1}, k ∈ {1, 2, . . . , m2}. Hence, by Equations (7) and (8),
we compute that

〈Ai ⊗ Bi〉ρ =
m1

∑
j=1

m2

∑
k=1

λ
(i)
j µ

(i)
k 〈P

(i)
j ⊗Q(i)

k 〉ρ

=
m1

∑
j=1

m2

∑
k=1

λ
(i)
j µ

(i)
k

d

∑
λ=1

πλPA(j|i, λ)tr(Q(i)
k σλ)

=
d

∑
λ=1

πλLi(λ),

where

Li(λ) =
( m1

∑
j=1

λ
(i)
j PA(j|i, λ)

)( m2

∑
k=1

µ
(i)
k tr(Q(i)

k σλ)
)

=
( m1

∑
j=1

λ
(i)
j PA(j|i, λ)

)
tr(Biσλ).

Thus, by Cauchy inequality and Equation (5), we have∣∣∣∣∣ n

∑
i=1
〈Ai ⊗ Bi〉ρ

∣∣∣∣∣ =

∣∣∣∣∣ n

∑
i=1

d

∑
λ=1

πλLi(λ)

∣∣∣∣∣
≤

d

∑
λ=1

πλ

∣∣∣∣∣ n

∑
i=1

Li(λ)

∣∣∣∣∣
=

d

∑
λ=1

πλ

∣∣∣∣∣ n

∑
i=1

( m1

∑
j=1

λ
(i)
j PA(j|i, λ)

)
tr(Biσλ)

∣∣∣∣∣
≤

d

∑
λ=1

πλ

√√√√ n

∑
i=1

( m1

∑
j=1

λ
(i)
j PA(j|i, λ)

)2
√

n

∑
i=1

(
tr(Biσλ)

)2

≤
d

∑
λ=1

πλ

√√√√ n

∑
i=1

r(Ai)2
( m1

∑
j=1

PA(j|i, λ)
)2√

M

≤
√

M

√
n

∑
i=1

r(Ai)2.

In Theorem 3, we see that if the inequality (6) is invalid for any observables {Ai, Bi} satisfying the
condition there, then the state ρ must be steerable. Thus, the violating of the inequality implies the
steerability of the state ρ. Since this, we call the inequality a steering inequality.

In particular, letHA = HB = C2, and

Ai =~ai~σ = a1
i σx + a2

i σy + a3
i σz, Bi =~bi~σ = b1

i σx + b2
i σy + b3

i σz, (9)

where~ai = (a1
i , a2

i , a3
i )

T are unit vectors in R3 for all i = 1, 2, . . . , n and~bi = (b1
i , b2

i , b3
i )

T(i = 1, 2, . . . , n)
are orthonormal vectors in R3. Then Ai, Bi are all self-adjoint unitary operators of trace 0 for all i, thus
the eigenvalues of Ai are all 1,−1, we get r(Ai) = 1.



Entropy 2018, 20, 683 6 of 13

Since~bi = (b1
i , b2

i , b3
i )

T(i = 1, 2, . . . , n) are orthonormal vectors, we can easily obtain that operators
1√
2

I, 1√
2

Bi, i = 1, 2, . . . , n are orthonormal. Thus, the Bessel inequality yields that

1
2

(
|〈I, η〉HS|2 +

n

∑
i=1
|〈Bi, η〉HS|2

)
≤ tr(η2) ≤ 1, ∀η ∈ DB,

and so
n

∑
i=1
|tr(Biη)|2 =

n

∑
i=1
|〈Bi, η〉HS|2 ≤ 1, ∀η ∈ DB. (10)

Thus, inequality (5) is valid for M = 1 and then we obtain the following result which was pointed out
in [43] without proof.

Corollary 1. Suppose that Ai, Bi, i = 1, 2, . . . , n are given in Equation (9). Then

Fn(ρ, µ) =
1√
n

∣∣∣∣∣ n

∑
i=1
〈Ai ⊗ Bi〉ρ

∣∣∣∣∣ ≤ 1, ∀ρ ∈ USA, (11)

where µ = {~a1,~a2, . . . ,~an;~b1,~b2, . . . ,~bn}.

Example 2. For the maximally entangled 2-qubit state |ψ〉 = 1√
2
(|00〉+ |11〉), we have

ρ = |ψ〉〈ψ| = 1
2
(|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|).

Generally, for all real unit vectors: ~a = (ax, ay, az)T , ~b = (bx, by, bz)T , and the Pauli operator vector
~σ = (σx, σy, σz)T , we have

~a ·~σ⊗~b ·~σ = (axσx + ayσy + azσz)⊗ (bxσx + byσy + bzσz) = ∑
i,j

aibjσi ⊗ σj,

with 〈σi ⊗ σj〉ρ = 0 for all i, j ∈ {x, y, z} except for the following three cases:

〈σx ⊗ σx〉ρ = 1, 〈σy ⊗ σy〉ρ = −1, 〈σz ⊗ σz〉ρ = 1.

Thus,
〈~a ·~σ⊗~b ·~σ〉ρ = axbx − ayby + azbz. (12)

In particular, put n = 3, and

A1 = σx, B1 =

√
3

2
σx +

1
2

σy, A2 = σy, B2 =
1
2

σx −
√

3
2

σy, A3 = σz, B3 = σz, (13)

we obtain

F3(ρ, µ) =
1√
3

∣∣∣∣∣ 3

∑
i=1
〈Ai ⊗ Bi〉ρ

∣∣∣∣∣ =
√

3 + 1√
3

> 1.

By Corollary 1, we get that ρ = |ψ〉〈ψ| is steerable from A to B.

Example 3. The 2-qubit state ρ = |ψ〉〈ψ| is steerable from A to B, where |ψ〉 = r0|00〉+ r1|11〉, |r0r1| >√
3−1
4 , r0, r1 ∈ R.

By computation, we obtain
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ρ = |ψ〉〈ψ| = r2
0|00〉〈00|+ r0r1|00〉〈11|+ r0r1|11〉〈00|+ r2

1|11〉〈11|.

Generally, for all real unit vectors: ~a = (ax, ay, az)T , ~b = (bx, by, bz)T , and the Pauli operator vector
~σ = (σx, σy, σz)T , we obtain

~a ·~σ⊗~b ·~σ = ∑
i,j

aibjσi ⊗ σj,

with 〈σi ⊗ σj〉ρ = 0 for all i, j ∈ {x, y, z} except for the following four cases

〈σx ⊗ σx〉ρ = 2r0r1, 〈σy ⊗ σy〉ρ = −2r0r1, 〈σz ⊗ σz〉ρ = 1.

Thus,
〈~a ·~σ⊗~b ·~σ〉ρ = 2r0r1axbx − 2r0r1ayby + azbz.

Particularly, take n = 3, and
A1 = σx, A2 = σy, A3 = σz;

B1 =
m

4r0r1
σx +

√
1−

(
m

4r0r1

)2
σy, B2 =

√
1−

(
m

4r0r1

)2
σx −

m
4r0r1

σy, B3 = σz,

where
√

3− 1 < m < 4|r0r1|, we get

F3(ρ, µ) =
1√
3

∣∣∣∣∣ 3

∑
i=1
〈Ai ⊗ Bi〉ρ

∣∣∣∣∣ = m + 1√
3

> 1.

By Corollary 1, we get that ρ = |ψ〉〈ψ| is steerable from A to B.

Any two-qubit state can be written in the following form

ρ =
1
4
(I ⊗ I +~a ·~σ⊗ I + I ⊗~b ·~σ +

3

∑
i,j=1

tijσi ⊗ σj), (14)

where σj, j = 1, 2, 3 are three Pauli matrices,~σ = (σ1, σ2, σ3)
T is the vector composed of these Pauli

matrices, Tρ = [tij] is the correlation matrix of ρ, T†
ρ Tρ with eigenvalues λ1(ρ) ≥ λ2(ρ) ≥ λ3(ρ).

As an application of Corollary 1, we have the following result.

Corollary 2. Let ~ai,~bi, i = 1, 2, . . . , n be as in Eq. (9) and MA =
{{

I+~ai ·~σ
2 , I−~ai ·~σ

2

}
: i = 1, 2, . . . , n

}
.

If ρ ∈ USA(MA), then it holds that
1√
n

∣∣∣∣∣ n

∑
i=1
〈~ai, Tρ

~bi〉
∣∣∣∣∣ ≤ 1. (15)

Proof. Let ρ ∈ USA(MA). Then, we see from Corollary 1 that
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1 ≥ 1√
n

∣∣∣∣∣ n

∑
i=1
〈Ai ⊗ Bi〉ρ

∣∣∣∣∣
=

1√
n

∣∣∣∣∣ n

∑
i=1
〈~ai ·~σ⊗~bi ·~σ〉ρ

∣∣∣∣∣
=

1√
n

∣∣∣∣∣ n

∑
i=1

tr
(
(~ai ·~σ⊗~bi ·~σ)ρ

)∣∣∣∣∣
=

1√
n

∣∣∣∣∣ n

∑
i=1

3

∑
k,j=1

ak
i tkjb

j
i

∣∣∣∣∣
=

1√
n

∣∣∣∣∣ n

∑
i=1
〈~ai, Tρ

~bi〉
∣∣∣∣∣ .

It was proved in ([25], Theorem 2) that a Bell diagonal state ρ is steerable with three projective
measurements if ‖Tρ‖2

F = λ1(ρ) + λ2(ρ) + λ3(ρ) > 1. We see from Corollary 2 that if the inequality

(15) is not valid, then the state ρ must be steerable with n projective measurements
{

I+~ai ·~σ
2 , I−~ai ·~σ

2

}
(i = 1, 2, . . . , n). For instance, we have Corollary 3 and Corollary 4 below, which give sufficient
conditions for a general two-qubit state to be steerable under two and three projective measurements,
respectively. In [26], a strong necessary condition was obtained for the steerability of two-qubit states
having maximally mixed reduced states, via the construction of local hidden state models and two
provably sufficient conditions were also obtained, via asymmetric EPR steering inequalities.

Corollary 3. Suppose that ρ ∈ D(C2 ⊗C2) with λi(ρ) > 0(i = 1, 2) and
√

λ1(ρ) +
√

λ2(ρ) >
√

2, then
ρ ∈ SA(MA), where

MA =

{{
I +~ai ·~σ

2
,

I −~ai ·~σ
2

}
: i = 1, 2

}
,~a1 =

Tρ
~b1

|Tρ
~b1|

, ~a2 =
Tρ
~b2

|Tρ
~b2|

,

and~b1,~b2 are the orthonormal eigenvectors corresponding to the first two largest eigenvalues λ1(ρ), λ2(ρ) of
T†

ρ Tρ, respectively.

Proof. We compute that |Tρ
~bi| =

√
λi(ρ)(i = 1, 2) and so

1√
2

∣∣∣∣∣ 2

∑
i=1
〈~ai, Tρ

~bi〉
∣∣∣∣∣ = 1√

2

2

∑
i=1

√
λi(ρ) > 1.

Thus, Corollary 2 yields that ρ ∈ SA(MA).

Similarly, we can arrive the following conclusion for the case of n = 3.

Corollary 4. Suppose that ρ ∈ D(C2 ⊗ C2) with λi(ρ) > 0(i = 1, 2, 3) and ∑3
i=1
√

λi(ρ) >
√

3,
then ρ ∈ SA(MA), where

MA =

{{
I +~ai ·~σ

2
,

I −~ai ·~σ
2

}
: i = 1, 2, 3

}
,~a1 =

Tρ
~b1

|Tρ
~b1|

, ~a2 =
Tρ
~b2

|Tρ
~b2|

, ~a3 =
Tρ
~b3

|Tρ
~b3|

,

and~b1,~b2,~b3 are the orthonormal eigenvectors corresponding to the eigenvalues λ1(ρ), λ2(ρ), λ3(ρ) of T†
ρ Tρ,

respectively.

Proof. We compute that |Tρ
~bi| =

√
λi(ρ)(i = 1, 2, 3) and so
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1√
3

∣∣∣∣∣ 3

∑
i=1
〈~ai, Tρ

~bi〉
∣∣∣∣∣ = 1√

3

3

∑
i=1

√
λi(ρ) > 1.

Thus, Corollary 2 yields ρ ∈ SA(MA).

Example 4. Consider the state ρ characterized by the correlation matrix

Tρ =

 t1 0 0
0 t2 0
0 0 t3


where ti 6= 0(i = 1, 2, 3) and |t1|+ |t2|+ |t3| >

√
3. We note that λi(ρ) > 0(i = 1, 2, 3) and√

λ1(ρ) +
√

λ2(ρ) +
√

λ3(ρ) = |t1|+ |t2|+ |t3| >
√

3.

Hence, we get from Corollary 4 that ρ ∈ SA(MA), where

MA =

{{
I +~ai ·~σ

2
,

I −~ai ·~σ
2

}
: i = 1, 2, 3

}
(16)

and~a1 = (1, 0, 0)T ,~a2 = (0, 1, 0)T ,~a3 = (0, 0, 1)T . In particular, the Bell state ρ = |β10〉〈β10| characterized
by the correlation matrix

Tρ =

 −1 0 0
0 1 0
0 0 1

 ,

is steerable from A to B withMA, where |β10〉 = 1√
2
(|00〉 − |11〉),MA is given in Equation (16).

The following corollary gives a sufficient condition for a general two-qubit state to be steerable in
terms of eigenvalues µ1, µ2, µ3 of Tρ.

Corollary 5. Suppose that ρ ∈ D(C2 ⊗C2), and T†
ρ = Tρ, µ1, µ2, µ3 are the eigenvalues of Tρ,~b1,~b2, ~b3 are

the orthonormal eigenvectors corresponding to the eigenvalues µ1, µ2, µ3. Then
(a) When |µ1 + µ2| >

√
2, ρ ∈ SA(MA) where

MA =

{{
I +~ai ·~σ

2
,

I −~ai ·~σ
2

}
: i = 1, 2

}
, ~a1 =~b1, ~a2 =~b2.

(b) When |µ1 + µ2 + µ3| >
√

3, ρ ∈ SA(MA) where

MA =

{{
I +~ai ·~σ

2
,

I −~ai ·~σ
2

}
: i = 1, 2, 3

}
, ~a1 =~b1, ~a2 =~b2, ~a3 =~b3.

Proof. (a) Let |µ1 + µ2| >
√

2. Since ~a1 = ~b1, ~a2 = ~b2, and~b1,~b2 are the orthonormal eigenvectors
corresponding to the eigenvalues µ1, µ2 of Tρ, respectively, we have

1√
2

∣∣∣∣∣ 2

∑
i=1
〈~ai, Tρ

~bi〉
∣∣∣∣∣ = 1√

2

∣∣∣∣∣ 2

∑
i=1

µi〈~ai,~bi〉
∣∣∣∣∣ = 1√

2

∣∣∣∣∣ 2

∑
i=1

µi

∣∣∣∣∣ > 1,

since |µ1 + µ2| >
√

2. It follows from Corollary 2 that ρ ∈ SA(MA).
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(b) Let |µ1 + µ2 + µ3| >
√

3. Since~b1,~b2,~b3 are the orthonormal eigenvectors corresponding to
the eigenvalues µ1, µ2, µ3 of Tρ, respectively, and~a1 =~b1, ~a2 =~b2, ~a3 =~b3, we compute

1√
3

∣∣∣∣∣ 3

∑
i=1
〈~ai, Tρ

~bi〉
∣∣∣∣∣ = 1√

3

∣∣∣∣∣ 3

∑
i=1

µi〈~ai,~bi〉
∣∣∣∣∣ = 1√

3

∣∣∣∣∣ 3

∑
i=1

µi

∣∣∣∣∣ > 1,

since |µ1 + µ2 + µ3| >
√

3. It follows from Corollary 2 that ρ ∈ SA(MA).

Example 5. Consider the steerability of an "X" state given in [48]

ρX =


v1 v5

v2 v6

v6 v3

v5 v4


where vk’s are real parameters satisfying v1 + v2 + v3 + v4 = 1, v2

5 ≤ v1v4, v2
6 ≤ v2v3. It is not necessarily a

Bell-diagonal state.
By computation, we get that the correlation matrix

TρX =

 2v5 + 2v6 0 0
0 2v6 − 2v5 0
0 0 v1 − v2 − v3 + v4

 .

We can easily see that the eigenvalues of TρX are 2v5 + 2v6, 2v6− 2v5, v1− v2− v3 + v4 with the corresponding
eigenstates~a1 = (1, 0, 0)T ,~a2 = (0, 1, 0)T ,~a3 = (0, 0, 1)T . Put

Mi =

{
I +~ai ·~σ

2
,

I −~ai ·~σ
2

}
,

then Mi is a POVM for i = 1, 2, 3. The steerability of ρX is as follows.
(a) When |v6| >

√
2

4 or |v1− v2− v3 + v4 + 2v5 + 2v6| >
√

2 or |v1− v2− v3 + v4 + 2v6− 2v5| >
√

2,
the condition |µ1 + µ2| >

√
2 in Corollary 5 is satisfied and so ρX ∈ SA(MA) whereMA = {M1, M2}.

(b) When |v1 − v2 − v3 + v4 + 4v6| >
√

3, the condition |µ1 + µ2 + µ3| >
√

3 in Corollary 5 is satisfied
and so ρX ∈ SA(MA) whereMA = {M1, M2, M3}.

4. Conclusions

In this paper, we have obtained some remarks on EPR steering of bipartite states, including
mathematical definitions and characterizations of steerability. Using the characterizations, we have
established some necessary conditions for a state to be unsteerable by proving some inequalities.
The validity of the derived inequalities are necessary for unsteerability of bipartite states, and then the
violation of some of them are sufficient for a state to be steerable. As applications, the EPR steerability
of the maximally entangled states is checked and some conditions for the steerability of the X-states
are obtained.
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