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Abstract: In this paper, we obtain the upper bounds for the normalized δ-Casorati curvatures and
generalized normalized δ-Casorati curvatures for statistical submanifolds in Sasaki-like statistical
manifolds with constant curvature. Further, we discuss the equality case of the inequalities. Moreover,
we give the necessary and sufficient condition for a Sasaki-like statistical manifold to be η-Einstein.
Finally, we provide the condition under which the metric of Sasaki-like statistical manifolds with
constant curvature is a solution of vacuum Einstein field equations.
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1. Introduction

Information geometry provides a deeper understanding and a geometric approach to families
of statistical models. In general, it is related to the study of the differential geometry of statistical
manifolds. Information geometry has had a large scope of applications (e.g., physics, chemistry, biology
and finance). It has also enabled a joint approach to many problems in the field of differential geometry.
The purpose of information geometry is to use tools from Riemannian geometry to extract information
from the underlying statistical models. The idea has been successfully used in different areas, including
statistical inferences and manifold learning. Amari [1] showed that there are statistical relationships
between families of probability densities in terms of the geometric properties of Riemannian manifolds.
It is the study of the intrinsic properties of manifolds of probability distributions. In 1989, the notion of
statistical submanifolds was introduced and studied by Vos [2]. However, to-date it has made very
little progress due to the difficulty in finding classical differential geometric approaches for the study
of statistical submanifolds. Furuhata [3] studied hypersurfaces in statistical manifolds and provided
some examples as well. In 2006, Takano [4] introduced and studied the statistical structure on Sasakian
manifolds, called Sasaki-like statistical manifolds. He also studied Sasaki-like statistical submersions.
In 2017, Furuhata et al. [5] gave another notion for the statistical structures on Sasakian manifolds,
called Sasakian statistical manifolds, and obtained several results. Recently, some results have been
published for statistical manifolds and submanifolds by different geometers [6–9].

In order to provide an answer to an open question raised by S. S. Chern concerning the existence
of minimal immersions into Euclidean spaces of arbitrary dimension, in the early 1990s Prof. B. Y.
Chen introduced new types of Riemannian invariants known as Chen invariants or δ-invariants and
established general inequalities involving the new intrinsic invariants and the main extrinsic invariant
for arbitrary Riemannian manifold. Such invariants and inequalities have many nice applications in
several areas of Mathematics. In 1999, Casorati [10] introduced a new extrinsic invariant known as
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the Casorati curvature. Afterwards, various geometers discussed the geometrical importance of the
Casorati curvature [11–13]. Due to its geometric importance, a number of results have been obtained
in terms of the Casorati curvatures [14–21].

Recently, Lee et al. [19] derived extremities for normalized δ-Casorati curvature for statistical
submanifolds in statistical manifold with constant curvature. The purpose of this article is to show
that normalized scalar curvature is bounded above by Casorati curvatures for statistical submanifolds
in Sasaki-like statistical manifolds of constant φ-sectional curvature. Further, we find the condition
under which a Sasaki-like statistical manifold becomes η-Einstein, and vice-versa. We also derive the
condition which shows that the metric of Sasaki-like statistical manifolds with constant curvature is a
solution of vacuum Einstein field equations.

2. Sasaki-Like Statistical Manifolds

Definition 1. Let (N, g) be a Riemannian manifold and∇ and∇∗ be torsion-free affine connections on N. Then,
the Riemannian manifold (N, g) is said to be statistical if

Zg(X, Y) = g(∇ZX, Y) + g(X,∇∗ZY), (1)

for X, Y, Z ∈ Γ(TN).

Here, we remark the following:

1. The connections ∇ and ∇∗ are called conjugate connections.
2. If (∇, g) is a statistical structure on N, then (∇∗, g) is also a statistical structure on N.
3. For the dual connections ∇ and ∇∗, we have

∇◦ = 1
2
(∇+∇∗), (2)

where ∇◦ is the Levi-Civita connection for N.
4. The curvature tensor fields R and R

∗ of ∇ and ∇∗, respectively, satisfy

g(R∗(X, Y)Z, W) = −g(Z, R(X, Y)W). (3)

Let N be a (2m + 1)-dimensional manifold and let N be a n-dimensional submanifold of N. Then,
the Gauss formulae are [2]: {

∇XY = ∇XY+ ζ(X, Y),
∇∗XY = ∇∗XY+ ζ∗(X, Y),

(4)

where ζ and ζ∗ are symmetric, bilinear, imbedding curvature tensors of N in N for∇ and∇∗, respectively.
Let us denote the normal bundle of N by Γ(TN⊥). The linear transformations AN and A∗N are defined by{

g(ANX, Y) = g(ζ(X, Y), N),
g(A∗NX, Y) = g(ζ∗(X, Y), N),

(5)

for any N ∈ Γ(TN⊥) and X, Y ∈ Γ(TN). The corresponding Weingarten formulas are [2]:{
∇XN = −A∗NX+∇⊥X N,
∇∗XN = −ANX+∇∗⊥X N,

(6)

where N ∈ Γ(TN⊥), X ∈ Γ(TN), and ∇⊥X and ∇∗⊥X are Riemannian dual connections with respect to the
induced metric on Γ(TN⊥).
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The corresponding Gauss equations are given by [2]:

g(R(X, Y)Z, W) = g(R(X, Y)Z, W) + g(ζ(X, Z), ζ∗(Y, W))

− g(ζ∗(X, W), ζ(Y, Z)) (7)

and

g(R∗(X, Y)Z, W) = g(R∗(X, Y)Z, W) + g(ζ∗(X, Z), ζ(Y, W))

− g(ζ(X, W), ζ∗(Y, Z)), (8)

where R and R∗ are Riemannian curvature tensors with respect to ∇ and ∇∗, respectively.
Let a tensor φ be of type (1, 1), a vector field ξ, a 1-form η on an odd dimensional manifold N

satisfying the conditions

η(ξ) = 1,

φ2X = −X+ η(X)ξ,

for any X ∈ Γ(TN), then we say N has an almost contact structure (φ, ξ, η).

Definition 2 (see Reference [4]). A Riemannian manifold (N, g) is said to be an almost contact metric-like
manifold if it has an almost contact structure (φ, ξ, g) on N satisfying

g(φX, Y) + g(X, φ∗Y) = 0, (9)

for X, Y ∈ Γ(TN), and φ∗ is another (1, 1) tensor field on N.

Motivated by Takano’s examples in Reference [4], we provide the following examples:

Example 1. Let N = {(x1, . . . , xm, y1, . . . , ym, z) ∈ R2m+1} be a (2m+1)-dimensional semi-Euclidean space
which admits the following almost contact metric structure (g, φ, ξ, η):

η =
1
2
(dz−

m

∑
i=1

yidxi),

ξ = −2∂z,

g =
1
4
(η ⊗ η +

m

∑
i=1

(−2(dxi)2 + (dyi)2)).

These equations can be rewritten as follows:

η =
1
2
(−y1,−y2, . . . ,−ym, 0, . . . 0, 1), ξ =


0
...
0
−2

 ,

g =
1
4


−2δij + yiyj 0 −yi

0 δij 0
−yi 0 1

 .
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We also define a tensor field φ of type (1, 1) in matrix form as:

φ =


0 δij 0
−δij 0 0

0 yj 0

 .

We also find another tensor field φ∗ of type (1, 1) (see Reference [4]):

φ∗ =
1
2


0 −δij 0

4δij 0 0
0 −yj 0

 .

The vector fields Xi = 2∂yi, Xm+i = 2(∂xi + yi∂z), and ξ form a φ-basis for the contact metric-like
structure. Now, we show that

g(φXi, Xm+i) + g(Xi, φ∗Xm+i) = 4g(φ∂yi, ∂xi + yi∂z) + 4g(∂yi, φ∗(∂xi + yi∂z))

= 4g(∂xi, ∂xi)− 4g(∂xi, yi∂z) + 4g(∂yi, 2∂yi)

= −2 + (yi)2 − (yi)2 + 2

= 0,

and

g(φXm+i, Xi) + g(Xm+i, φ∗Xi) = −4g(∂yi, ∂yi)− 2g(∂xi, ∂xi + yi∂z)

= −1− 1
2
(−2 + (yi)2 − (yi)2)

= 0.

Hence (N, g, φ, ξ, η) is an almost contact metric-like manifold.

Example 2. Consider a 7-dimensional semi-Euclidean space R7 endowed with a semi-Riemannian metric g:

g =
1
4


−2δij 0 0

0 δij 0
0 0 1


and the coordinate system (x1, x2, x3, y1, y2, y3, z). We define φ, ξ, η by

φ =


0 δij 0
−δij 0 0

0 0 0

 ,

η = (0, 0, 0, 0, 0, 0,
1
2
), ξ = −2



0
0
0
0
0
0
1


.
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Then, we obtain the following tensor field:

φ∗ =
1
2


0 −δij 0

4δij 0 0
0 0 0

 .

Hence, it is easy to show that (R7, g, φ, ξ, η) is an almost contact metric-like manifold.

Example 3. Let R9 be a 9-dimensional semi-Euclidean space with the standard coordinate
(x1, x2, x3, x4, y1, y2, y3, y4, z) such that y1 > 0, . . . , y4 > 0. We define the almost contact metric
structure (g, φ, ξ, η) on R9 as follows:

g =


−2
(yi)2 δij 0 0

0 1
(yi)2 δij 0

0 0 1

 , φ =


0 δij 0
−δij 0 0

0 0 0

 ,

ξ =



0
0
0
0
0
0
0
0
1



, η = (0, 0, 0, 0, 0, 0, 0, 0, 1).

Also, we find

φ∗ =
1
2


0 −δij 0

4δij 0 0
0 0 0

 .

Then we can verify that (R9, g, φ, ξ, η) is an almost contact metric-like manifold.

Definition 3 (see Reference [4]). A Sasaki-like statistical manifold (N,∇, g, φ, ξ) is an almost contact
metric-like manifold satisfying

∇Xξ = −φX,

(∇Xφ)Y = g(X, Y)ξ − η(Y)X, X, Y ∈ Γ(TN).

Example 4. Let R5 be a 5-dimensional semi-Euclidean space with local coordinate system (x1, x2, y1, y2, z).
We put the following almost contact metric structure (g, φ, ξ, η) on R5:

g =
1
4


2δij 0 0
0 −δij 0
0 0 1

 , φ =


0 δij 0
−δij 0 0

0 0 0

 ,



Entropy 2018, 20, 690 6 of 18

ξ =



0
0
0
0
1


, η = (0, 0, 0, 0, 1).

Another tensor field of type (1, 1) is given by

φ∗ =
1
2


0 −δij 0

4δij 0 0
0 0 0

 .

The dual affine connections ∇ and ∇∗ are defined as

∇∂xi ∂xj = ∇∂yi ∂yj = ∇∂z∂z = 0,

∇∂xi ∂yj = ∇∂yj ∂xi = −2δij∂z,

∇∂xi ∂z = ∇∂z∂xi = ∂yi = −φ∂xi,

∇∂yi ∂z = ∇∂z∂yi = −∂xi = −φ∂yi,

∇∗∂xi ∂xj = ∇∗∂yi ∂yj = ∇∗∂z∂z = 0,

∇∗∂xi ∂yj = ∇∗∂yj ∂xi = δij∂z,

∇∗∂xi ∂z = ∇∗∂z∂xi = −2∂yi = −φ∗∂xi,

∇∗∂yi ∂z = ∇∗∂z∂yi =
1
2

∂xi = −φ∗∂yi,

for i, j = 1, 2. We compute the following:

(∇∂xi φ)∂xj = ∇∂xi φ∂xj − φ∇∂xi ∂xj

= −∇∂xi ∂yj

= 2δij∂z, (10)

and

g(∂xi, ∂xj)∂z− η(∂xj)∂xi = 2δij∂z− g(∂xj, ∂z)∂xi

= 2δij∂z. (11)

From Equations (10) and (11), we conclude that

(∇∂xi φ)∂xj = g(∂xi, ∂xj)∂z− η(∂xj)∂xi.

Thus, we say that (R5,∇, g, φ, ξ, η) is a Sasaki-like statistical manifold.

Definition 4 (see Reference [4]). Let (N,∇,g, φ, ξ) be Sasaki-like statistical manifold and c ∈ R. The Sasaki-like
statistical manifold is said to be of constant φ-sectional curvature c if R is defined by

R(X, Y)Z =
c + 3

4
{g(Y, Z)X− g(X, Z)Y}

+
c− 1

4
{g(φY, Z)φX− g(φX, Z)φY

− g(φX, Y)φZ+ g(X, φY)φZ− g(Y, ξ)g(Z, ξ)X
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+ g(X, ξ)g(Z, ξ)Y+ g(Y, ξ)g(Z, X)ξ − g(X, ξ)g(Z, Y)ξ}, (12)

where X, Y, Z ∈ TN. We denote a Sasaki-like statistical manifold with constant φ-sectional curvature c by N(c).

Remark 1. The curvature tensor R∗ can also be obtained by changing φ for φ∗ in Equation (12).

Definition 5 (see Reference [22]). Let N be a contact metric manifold. Then, N is said to be an η-Einstein if its
Ricci tensor S has the following form:

S = µg+ νη ⊗ η, (13)

for any smooth function µ and ν on N. Moreover, if the function ν = 0 in Equation (13), then the manifold N

becomes Einstein, and if both the functions µ and ν vanish in Equation (13), then the manifolds are known as
Ricci-flat manifolds.

Let {e1, . . . , en, en+1 = ξ} and {en+2, . . . , e2m+1} be the tangent orthonormal frame and normal
orthonormal frame, respectively, on N. The mean curvature vector fields are given by

H =
1
n

n+1

∑
i=1

ζ(ei, ei), (14)

H∗ =
1
n

n+1

∑
i=1

ζ∗(ei, ei), (15)

and

H◦ =
1
n

n+1

∑
i=1

ζ◦(ei, ei). (16)

We also set

‖ζ‖2 =
n+1

∑
i,j=1

g(ζ(ei, ej), ζ(ei, ej)), (17)

‖ζ∗‖2 =
n+1

∑
i,j=1

g(ζ∗(ei, ej), ζ∗(ei, ej)), (18)

and

‖ζ◦‖2 =
n+1

∑
i,j=1

g(ζ◦(ei, ej), ζ◦(ei, ej)). (19)

Let K(π) denote the sectional curvature of a Riemannian manifold N of the plane section π ⊂ TpN

at a point p ∈ N. Then,

τ(p) = ∑
1≤i<j≤n+1

K(ei ∧ ej), (20)

where τ is the scalar curvature. The normalized scalar curvature ρ is defined as

ρ =
2τ

n(n + 1)
. (21)
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We also put
ζ

γ
ij = g(ζ(ei, ej), eγ), ζ

∗γ
ij = g(ζ∗(ei, ej), eγ),

i, j ∈ 1, 2, ..., n, n + 1, γ ∈ {n + 2, ..., 2m + 1}. The squared norms of the second fundamental form ζ

and ζ∗ are denoted by C and C∗, respectively, and are given as

C =
1
n

2m+1

∑
γ=n+2

n+1

∑
i,j=1

(
ζ

γ
ij
)2 and C∗ =

1
n

2m+1

∑
γ=n+2

n+1

∑
i,j=1

(
ζ
∗γ
ij
)2, (22)

called Casorati curvatures of the submanifold [19,23].
Let Lr be an r-dimensional subspace of TN, r ≥ 2, and {e1, e2, . . . , er} is an orthonormal basis of

Lr. Then

τ(Lr) = ∑
1≤γ<β≤r

K(eγ ∧ eβ),

is called the scalar curvature of the r-plane section. The Casorati curvatures C and C∗ of that r-plane
section are [19,23]:

C(Lr) =
1
r

2m+1

∑
γ=n+2

r

∑
i,j=1

(
ζ

γ
ij
)2 and C∗(Lr) =

1
r

2m+1

∑
γ=n+2

r

∑
i,j=1

(
ζ
∗γ
ij
)2. (23)

The normalized δ-Casorati curvatures δc(n) and δ̂c(n) are defined as [20,23]:

[δc(n)]p =
1
2
Cp +

n + 2
2(n + 1)

in f {C(Ln)|Ln : a hyperplane of TpN} (24)

and

[δ̂c(n)]p = 2Cp −
2n + 1

2(n + 1)
sup{C(Ln)|Ln : a hyperplane of TpN}. (25)

Similarly, the dual normalized δ∗-Casorati curvatures δ∗c (n) and δ̂∗c (n) are defined as [14,19]:

[δ∗c (n)]p =
1
2
C∗p +

n + 2
2(n + 1)

in f {C∗(Ln)|Ln : a hyperplane of TpN} (26)

and

[δ̂∗c (n)]p = 2C∗p −
2n + 1

2(n + 1)
sup{C∗(Ln)|Ln : a hyperplane of TpN}. (27)

For a positive real number t 6= n(n + 1), put

b(t) =
1

(n + 1)t
(n)(n + t + 1)(n2 + n− t), (28)

then the generalized normalized δ-Casorati curvatures δc(t; n) and δ̂c(t; n) are given as [20,23]:

[δc(t; n)]p = tCp + b(t)in f {C(Ln)|Ln : a hyperplane of TpN}

if 0 < t < n(n + 1), and

[δ̂c(t; n)]p = tCp + b(t)sup{C(Ln)|Ln : a hyperplane of TpN}
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if t > n(n + 1).

Further, the dual generalized normalized δ∗-Casorati curvatures δ∗c (t; n) and δ̂∗c (t; n) are given
as [14,19]:

[δ∗c (t; n)]p = tC∗p + b(t)in f {C∗(Ln)|Ln : a hyperplane of TpN}

if 0 < t < n(n + 1), and

[δ̂∗c (t; n)]p = tC∗p + b(t)sup{C∗(Ln)|Ln : a hyperplane of TpN}

if t > n(n + 1).

Lemma 1 (see Reference [23]). Let

F = {(x1, . . . , xn+1) ∈ Rn+1 : x1 + · · ·+ xn + xn+1 = k}

be a hyperplane of Rn+1, and f : Rn+1 → R a quadratic form given by

f (x1, . . . , xn+1) = a
n

∑
i=1

(xi)
2 + b(xn+1)

2 − 2 ∑
1≤i<j≤n+1

xixj, a > 0, b > 0.

Then f has a global solution, {
x1 = x2 = · · · = xn = 1

a+1 k,

xn+1 = 1
b+1 k,

(29)

provided
b =

n
a− n + 1

.

3. Normalized δ-Casorati Curvature

In this section, we mainly show that the normalized scalar curvature ρ is bounded above by the
normalized δ-Casorati curvatures for statistical submanifolds of Sasaki-like statistical manifold with
constant φ-sectional curvature.

Theorem 1. Let N be a statistical submanifold in a Sasaki-like statistical manifold N(c) such that N is tangent to
the structure vector field ξ of N(c). Then, the normalized δ-Casorati curvatures δc(n) and δ∗c (n) satisfy

ρ ≤ 2δ◦c (n) +
c + 3

4
+

c− 1
4n(n + 1)

{(1− n)− (trφ)2 + 2‖P‖2}

+
1
n
C◦ − n + 1

2n
(‖H‖2 + ‖H∗‖2), (30)

for real t, 0 < t < n(n + 1), where 2δ◦c (n) = δc(n) + δ∗c (n), 2C◦ = C + C∗ and ‖P‖2 = g2(φej, ei).
The equality case holds in Equation (30) if and only if the component of ζ satisfiesζ

◦γ
11 = ζ

◦γ
22 = · · · = ζ

◦γ
nn = 1

2 ζ
◦γ
n+1n+1, α ∈ {n + 2, . . . , 2m + 1},

ζ
◦γ
ij = 0, i, j ∈ {1, . . . , n + 1}, α ∈ {n + 2, . . . , 2m + 1}.

(31)
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Proof. From Equations (7) and (12), we have

g(R(X, Y)Z, W) =
c + 3

4
{g(Y, Z)g(X, W)− g(X, Z)g(Y, W}

+
c− 1

4
{g(φY, Z)g(φX, W)− g(φX, Z)g(φY, W)

− g(φX, Y)g(φZ, W) + g(X, φY)g(φZ, W)

− g(Y, ξ)g(Z, ξ)g(X, W) + g(X, ξ)g(Z, ξ)g(Y, W)

+ g(Y, ξ)g(Z, X)g(ξ, W)− g(X, ξ)g(Z, Y)g(ξ, W)}
− g(ζ(X, Z), ζ∗(Y, W)) + g(ζ∗(X, W), ζ(Y, Z)). (32)

Putting Y = W = ei and X = Z = ej in Equation (32), we get

g(R(ei, ej)ej, ei) =
c + 3

4
{g(ej, ej)g(ei, ei)− g(ei, ej)g(ej, ei)}

+
c− 1

4
{g(φej, ej)g(φei, ei)− g(φei, ej)g(φej, ei)

− g(φei, ej)g(φej, ei) + g(ei, φej)g(φej, ei)

− g(ej, ξ)g(ej, ξ)g(ei, ei) + g(ei, ξ)g(ej, ξ)g(ej, ei)

+ g(ej, ξ)g(ej, ei)g(ξ, ei)− g(ei, ξ)g(ej, ej)g(ξ, ei)}
− g(ζ(ei, ej), ζ∗(ej, ei)) + g(ζ∗(ei, ei), ζ(ej, ej)). (33)

Applying summation 1 ≤ i, j ≤ n + 1 and using Equations (14)–(19) in Equation (33), we obtain

∑
1≤i,j≤n+1

g(R(ei, ej)ej, ei) =
c + 3

4
n(n + 1)

+
c− 1

4
{(1− n)− (trφ)2 + 2g2(φej, ei)}

+ n2g(H, H∗)− g(ζ(ei, ej), ζ∗(ej, ei))

=
c + 3

4
n(n + 1)

+
(n + 1)2

2
{
g(H∗ + H, H∗ + H)− g(H, H)− g(H∗, H∗)

}
+

c− 1
4
{
(1− n)− (trφ)2 + 2g2(φej, ei)

}
− 1

2
{
g(ζ(ei, ej) + ζ∗(ej, ei), ζ∗(ei, ej) + ζ(ej, ei))

− g(ζ(ei, ej), ζ(ei, ej))− g(ζ∗(ej, ei), ζ∗(ej, ei))
}

. (34)

Indeed, from Equation (2), 2H◦ = H+ H∗. Then, from Equations (22) and (34) we see that

2τ =
c + 3

4
n(n + 1) +

c− 1
4
{
(1− n)− (trφ)2 + 2‖P‖2}

+ 2(n + 1)2‖H◦‖2 − (n + 1)2

2
(‖H‖2 + ‖H∗‖2)

− 2(n + 1)C◦ +
(n + 1)

2
(C+ C∗). (35)

Now we write a quadratic polynomial Q as

Q = n(n + 1)C◦ + n(n + 2)C◦(Ln) +
c + 3

4
n(n + 1)
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+
c− 1

4
{
(1− n)− (trφ)2 + 2‖P‖2}− 2τ +

(n + 1)
2

(C+ C∗)

− (n + 1)2

2
(‖H‖2 + ‖H∗‖2), (36)

where Ln is the hyperplane of Tp M. Without loss of generality, let us assume that Ln is spanned by
e1, . . . , en, then Equation (36) yields

Q = 2(n + 1)
2m+1

∑
γ=n+2

n

∑
i=1

(ζ◦γii )2 + 4(n + 2)
2m+1

∑
γ=n+2

n

∑
i<j=1

(ζ◦γij )2

+ n
2m+1

∑
γ=n+2

(ζ◦γn+1n+1)
2 + 2(n + 2)

2m+1

∑
γ=n+2

n

∑
i=1

(ζ◦γin )2 − 4
2m+1

∑
γ=n+2

n+1

∑
i<j=1

ζ
◦γ
ii ζ
◦γ
jj ,

which implies

1
2
Q = (n + 1)

2m+1

∑
γ=n+2

n

∑
i=1

(ζ◦γii )2 + 2(n + 2)
2m+1

∑
γ=n+2

n

∑
i<j=1

(ζ◦γij )2

+
n
2

2m+1

∑
γ=n+2

(ζ◦γn+1n+1)
2 + (n + 2)

2m+1

∑
γ=n+2

n

∑
i=1

(ζ◦γin )2 − 2
2m+1

∑
γ=n+2

n+1

∑
i<j=1

ζ
◦γ
ii ζ
◦γ
jj

≥
2m+1

∑
γ=n+2

[
(n + 1)

n

∑
i=1

(ζ◦γii )2 +
n
2
(ζ◦γn+1n+1)

2 − 2
n+1

∑
i<j=1

ζ
◦γ
ii ζ
◦γ
jj
]
. (37)

Now, we consider the quadratic forms fγ : Rn+1 → R such that

fγ(ζ
◦γ
11 , ζ

◦γ
22 , . . . , ζ

◦γ
n+1n+1)

=
2m+1

∑
γ=n+2

[
(n + 1)

n

∑
i=1

(ζ◦γii )2 +
n
2
(ζ◦γn+1n+1)

2 − 2
n+1

∑
i<j=1

ζ
◦γ
ii ζ
◦γ
jj
]
.

(38)

We start with the problem

min fγ, subject to Γ : ζ
◦γ
11 + ζ

◦γ
22 + · · ·+ ζ

◦γ
n+1n+1 = kγ,

where kγ is a real constant. By comparing Equation (37) and Lemma 1, we get that

a = n + 1, b =
n
2

.

Hence, a critical point of the problem has the following form:{
ζ
◦γ
11 = ζ

◦γ
22 = · · · = ζ

◦γ
nn = 1

n+2 kγ,

ζ
◦γ
n+1n+1 = 2

n+2 kγ.
(39)

Thus, we get
Q ≥ 0,

which implies

2τ ≤ n(n + 1)C◦ + n(n + 2)C◦(Ln) +
c + 3

4
n(n + 1)

+
c− 1

4
{
(1− n)− (trφ)2 + 2‖P‖2}+ (n + 1)

2
(C+ C∗)
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− (n + 1)2

2
(‖H‖2 + ‖H∗‖2). (40)

From this, it follows that

ρ ≤ C◦ +
n + 2
n + 1

C◦(Ln) +
c + 3

4

+
c− 1

4n(n + 1)
{
(1− n)− (trφ)2 + 2‖P‖2}+ 1

2n
(C+ C∗)

− (n + 1)
2n

(‖H‖2 + ‖H∗‖2)

= 2δ◦c (n) +
c + 3

4
+

c− 1
4n(n + 1)

{(1− n)− (trφ)2 + 2‖P‖2}

+
1

2n
(C+ C∗)− n + 1

2n
(‖H‖2 + ‖H∗‖2),

which is the required inequality, and the equality in Equation (30) holds if and only if we have the
equality in the all the previous inequalities. Thus, the equality holds in Equation (30) if and only if the
relations in Equation (31) are true.

Remark 2. A similar result can also be obtained for normalized δ-Casorati curvatures δ̂c(n) and δ̂∗c (n).

4. Generalized Normalized δ-Casorati Curvature

In this section, we mainly show that the normalized scalar curvature is bounded above by the
generalized normalized δ-Casorati curvatures for statistical submanifolds of Sasaki-like statistical
manifold with constant φ-sectional curvature. We mainly prove the following result.

Theorem 2. Let N be a statistical submanifold in a Sasaki-like statistical manifold N(c) such that N is tangent
to the structure vector field ξ of N(c). Then, the generalized normalized δ-Casorati curvatures δc(t; n) and
δ∗c (t; n) satisfy

ρ ≤ 2
n(n + 1)

δ◦c (t; n) +
c + 3

4
+

c− 1
4n(n + 1)

{(1− n)− (trφ)2 + 2‖P‖2}

+
1
n
C◦ − n + 1

2n
(‖H‖2 + ‖H∗‖2), (41)

for real t, 0 < t < n(n + 1), where 2δ◦c (t; n) = δc(t; n) + δ∗c (t; n), 2C◦ = C+ C∗ and ‖P‖2 = g2(φej, ei).
The equality case holds in Equation (41) if and only if the component of ζ satisfiesζ

◦γ
ij = 0, i, j ∈ {1, . . . , n + 1}, α ∈ {n + 2, . . . , 2m + 1},

ζ
◦γ
11 = ζ

◦γ
22 = · · · = ζ

◦γ
nn = t

n(n+1) ζ
◦γ
n+1n+1, α ∈ {n + 2, . . . , 2m + 1}.

(42)

Proof. Keeping in mind the scalar curvature in Equation (35), we may assume a quadratic
polynomial T as

T = 2tC◦ + 2b(t)C◦(Ln) +
c + 3

2
n(n + 1) +

c− 1
4
{
(1− n)− (trφ)2 + 2‖P‖2}

− 2τ +
(n + 1)

2
(C+ C∗)− (n + 1)2

2
(‖H‖2 + ‖H∗‖2), (43)
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where Ln is the hyperplane of Tp M. Without loss of generality, let us assume that Ln is spanned by
e1, . . . , en, then from Equation (43) it follows that

T = 2
(

t
n + 1

+
b(t)

n

) 2m+1

∑
γ=n+2

n

∑
i=1

(ζ◦γii )2

+ 4
(

t
n + 1

+
b(t)

n
+ 1
) 2m+1

∑
γ=n+2

n

∑
i<j=1

(ζ◦γij )2 +

(
2t

n + 1

) 2m+1

∑
γ=n+2

(ζ◦γn+1n+1)
2

+ 4
(

t
n + 1

+ 1
) 2m+1

∑
γ=n+2

n

∑
i=1

(ζ◦γin )2 − 4
2m+1

∑
γ=n+2

n+1

∑
i<j=1

ζ
◦γ
ii ζ
◦γ
jj ,

which implies

1
2
T =

(
t

n + 1
+

b(t)
n

) 2m+1

∑
γ=n+2

n

∑
i=1

(ζ◦γii )2

+ 2
(

t
n + 1

+
b(t)

n
+ 1
) 2m+1

∑
γ=n+2

n

∑
i<j=1

(ζ◦γij )2 +

(
t

n + 1

) 2m+1

∑
γ=n+2

(ζ◦γn+1n+1)
2

+ 2
(

t
n + 1

+ 1
) 2m+1

∑
γ=n+2

n

∑
i=1

(ζ◦γin )2 − 2
2m+1

∑
γ=n+2

n+1

∑
i<j=1

ζ
◦γ
ii ζ
◦γ
jj

≥
2m+1

∑
γ=n+2

[( t
n + 1

+
b(t)

n

) n

∑
i=1

(ζ◦γii )2

+

(
t

n + 1

)
(ζ◦γn+1n+1)

2 − 2
n+1

∑
i<j=1

ζ
◦γ
ii ζ
◦γ
jj
]
. (44)

Now, we consider the quadratic forms fγ : Rn+1 → R such that

fγ(ζ
◦γ
11 , ζ

◦γ
22 , . . . , ζ

◦γ
n+1n+1) =

2m+1

∑
γ=n+2

[( t
n + 1

+
b(t)

n

) n

∑
i=1

(ζ◦γii )2

+

(
t

n + 1

)
(ζ◦γn+1n+1)

2 − 2
n+1

∑
i<j=1

ζ
◦γ
ii ζ
◦γ
jj
]
. (45)

We start with the problem

min fγ, subject to Γ : ζ
◦γ
11 + ζ

◦γ
22 + · · ·+ ζ

◦γ
n+1n+1 = kγ,

where kγ is a real constant.
By comparing Equation (44) and Lemma 1, it is easy to see that

a =
t

n + 1
+

b(t)
n

, b =
t

n + 1
.

Hence, a critical point of the problem has the following form:
ζ
◦γ
11 = ζ

◦γ
22 = · · · = ζ

◦γ
nn = 1

t
n+1+

b(t)
n +1

kγ

ζ
◦γ
n+1n+1 = 1

t
n+1+1

kγ.
(46)

Thus, we get
T ≥ 0,
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which implies

2τ ≤ 2tC◦ + 2b(t)C◦(Ln) +
c + 3

4
n(n + 1)

+
c− 1

4
{
(1− n)− (trφ)2 + 2‖P‖2}+ (n + 1)

2
(C+ C∗)

− (n + 1)2

2
(‖H‖2 + ‖H∗‖2). (47)

From this it follows that

ρ ≤ 2t
n(n + 1)

C◦ +
2b(t)

n(n + 1)
C◦(Ln) +

c + 3
4

+
c− 1

4n(n + 1)
{
(1− n)− (trφ)2 + 2‖P‖2}+ 1

2n
(C+ C∗)

− (n + 1)
2n

(‖H‖2 + ‖H∗‖2)

=
2

n(n + 1)
δ◦c (t; n) +

c + 3
4

+
c− 1

4n(n + 1)
{(1− n)− (trφ)2 + 2‖P‖2}

+
1

2n
(C+ C∗)− n + 1

2n
(‖H‖2 + ‖H∗‖2),

which is the required inequality. The equality in Equation (41) holds if and only if we have the equality
in the all the previous inequalities. Thus, the equality holds in Equation (41) if and only if the relations
in Equation (42) are true.

Remark 3. A similar result can also be obtained for generalized normalized δ-Casorati curvatures δ̂c(t; n)
and δ̂∗c (t; n).

5. η-Einstein Sasaki-Like Statistical Manifolds

In 1962, Okumura [22] introduced and studied the η-Einstein manifold. In 1965, Sasaki [24] named
it η-Einstein. Since then a number of papers have been published on this topic due to its application to
the physics or in particular to the theory of relativity.

In this section, we obtain the following results.

Theorem 3. A Sasaki-like statistical manifold N(c) is η-Einstein if and only if trφ = 0. Moreover, µ and ν are
constants and are equal to

µ =
1
4
(2nc + 6n + 3c− 3),

ν =
1− c

4
(2n + 1).

Proof. Taking the inner product of Equation (12) with W, we find

g(R(X, Y)Z, W) =
c + 3

4
{g(Y, Z)g(X, W)− g(X, Z)g(Y, W)}

+
c− 1

4
{g(φY, Z)g(φX, W)− g(φX, Z)g(φY, W)

− 2g(φX, Y)g(φZ, W)− g(Y, ξ)g(Z, ξ)g(X, W)

+ g(X, ξ)g(Z, ξ)g(Y, W) + g(Y, ξ)g(Z, X)g(ξ, W)

− g(X, ξ)g(Z, Y)g(ξ, W)}. (48)
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Substituting X = W = ei in Equation (48) and taking summation 1 ≤ i ≤ 2n + 1, we get

2n+1

∑
i=1

g(R(ei, Y)Z, ei) =
c + 3

4

2n+1

∑
i=1

{
g(Y, Z)g(ei, ei)− g(ei, Z)g(Y, ei)

}
+

c− 1
4

2n+1

∑
i=1

{
g(φY, Z)g(φei, ei)− g(φei, Z)g(φY, ei)

− 2g(φei, Y)g(φZ, ei)− g(Y, ξ)g(Z, ξ)g(ei, ei)
}

, (49)

which implies

S(Y, Z) =
1
4
(2nc + 6n + 3c− 3)g(Y, Z) +

c− 1
4

g(φY, Z)(trφ)

− c− 1
4

(2n + 1)η(Y)η(Z). (50)

With trφ = 0, the above equation takes the following form:

S(Y, Z) =
1
4
(2nc + 6n + 3c− 3)g(Y, Z)− c− 1

4
(2n + 1)η(Y)η(Z). (51)

Hence, N(c) is η-Einstein with µ = 1
4 (2nc + 6n + 3c− 3) and ν = 1−c

4 (2n + 1). A straight-forward
computation proves the converse part.

Theorem 4. The Ricci curvature tensor of η-Einstein Sasaki-like statistical manifold N(c) in the direction of ξ is

1
4
(5c + 8n + 1). (52)

Proof. Setting Y = Z = ξ in Equation (51), we obtain the required result.

Theorem 5. If the Ricci curvature tensor of an η-Einstein Sasaki-like statistical manifold N(c) in the direction
of ξ, then

µ =
r

2n
− 5c + 8n + 1

8n
, (53)

ν = r− (2n− 1)
[ r

2n
− 5c + 8n + 1

8n

]
. (54)

Proof. From Equation (13) we have

S(ξ, ξ) = µ + ν. (55)

Also, from Equation (51), we get

S(ξ, ξ) =
1
4
(5c + 8n + 1). (56)

Combining Equations (55) and (56), we find

µ + ν =
1
4
(5c + 8n + 1). (57)

Further, from Equation (13), we obtain

r = (2n + 1)µ + ν. (58)
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Solving Equations (57) and (58) for µ and ν, we have the required result.

Theorem 6. The scalar curvature of an η-Einstein Sasaki-like statistical manifold N(c) is constant and equal to

1
4
(2n + 1)(2nc + 5c + 6n + 1). (59)

Proof. Putting Y = Z = ei in Equation (51) and taking summation 1 ≤ i ≤ 2n + 1, we have
our assertion.

We give an example of Theorem 3, which is the following:

Example 5. We recall from Example 2.2 of Reference [4] that (N = {(x1, . . . , xm, y1, . . . , ym, z) ∈
R2m+1},∇, g, φ, ξ, η) is a Sasaki-like statistical manifold with c = −3 and the structure tensors (g, φ, ξ, η) are
defined by

g =


2δij + yiyj 0 −yi

0 −δij 0
−yi 0 1

 , φ =


0 δij 0
−δij 0 0

0 yj 0

 ,

ξ =


0
...
0
1

 , η = (−y1, 0,−y2, 0, . . . ,−ym, 0, 1).

We see that trace(φ) = 0. Thus, by Theorem 3, we conclude that N2m+1(−3) is an η-Einstein manifold.

Theorem 3 yields the following corollary.

Corollary 1. The η-Einstein Sasaki-like statistical manifold N(c) becomes Einstein if c = 1. Moreover, in that
case µ = 2n.

Proof. One can easily obtain the result by just substituting c = 1 in Equation (51).

6. Conclusions

We have the following conclusions from this work:

1. By using a different approach, we obtained a relationship between a new extrinsic invariant
called the Casorati curvature and an intrinsic invariant called the normalized scalar curvature of
statistical manifolds with any co-dimension of Sasaki-like statistical space forms. The derived
relations can motivate other researchers to obtain similar relationships for many kinds of
invariants of similar nature, for statistical submanifolds in different ambient spaces, such as
Kaehler-like statistical manifolds, Kenmotsu-like statistical manifolds, cosymplectic-like statistical
manifolds, and statistical warped product manifolds.

2. An Einstein Sasaki-like statistical manifold can not be Ricci-flat.
3. The metric of the Sasaki-like statistical manifolds with constant curvature is a solution of the

vacuum Einstein field equation if the manifold is η-Einstein with constant curvature c = 1.
In fact, the Einstein field equations consist of 10 equations in Einstein’s general theory of relativity.
This theory tells us the fundamental interaction of gravitation. Actually, the Einstein field
equations are used to obtain the spacetime geometry which are the the outcome of the presence of
linear momentum and mass-energy. Therefore, it is of great interest to see what type of solution we
can obtain for Einstein field equations in the case of the metric of Sasaki-like statistical manifold.
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