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Abstract: In view of the nonlinear characteristics of electroencephalography (EEG) signals collected in
the driving fatigue state recognition research and the issue that the recognition accuracy of the driving
fatigue state recognition method based on EEG is still unsatisfactory, this paper proposes a driving
fatigue recognition method based on sample entropy (SE) and kernel principal component analysis
(KPCA), which combines the advantage of the high recognition accuracy of sample entropy and the
advantages of KPCA in dimensionality reduction for nonlinear principal components and the strong
non-linear processing capability. By using support vector machine (SVM) classifier, the proposed
method (called SE_KPCA) is tested on the EEG data, and compared with those based on fuzzy entropy
(FE), combination entropy (CE), three kinds of entropies including SE, FE and CE that merged with
KPCA. Experiment results show that the method is effective.

Keywords: driving fatigue; sample entropy; kernel principal component analysis; support vector
machine

1. Introduction

Driving fatigue is a phenomenon in which, due to continuous driving, drivers’ ability of
perception, judgment and operation appear to decrease [1]. Drivers are prone to driving fatigue
after long driving, and if they keep driving, their limbs will be stiff, their attention will decrease and
their judgment will decline. Driving fatigue may cause people to become delirious, and they may be
prone to traffic accidents [2]. Therefore, an effective driving fatigue state recognition method is the key
to construct the dangerous driving state warning system.

At present, a series of studies has been conducted on the recognition of driving fatigue status at
home and abroad. Guo et al. [3] explored the correlation between ECG indicators and driving fatigue
state based on ECG signals and constructed the driving fatigue state recognition model combined
with the SVM classifier. Yang et al. [4] conducted research on driving fatigue recognition on the
basis of the fusion of eye movement and pulse information. Zhao et al. [5] applied functional brain
networks to establish a fatigue recognition model based on EEG data and graph theory methods.
Zhao et al. [6] constructed a driving fatigue recognition model based on the human eye feature
by using a concatenated convolutional neural network. To judge whether the driver felt fatigue,
Zhang et al. [7] conducted research on driving fatigue recognition on the feature extraction of
the wavelet entropy of EEG signals. Moreover, Chai and Naik et al. [8] used entropy rate bound
minimization as a source separation technique, the autoregressive (AR) modeling as the feature
extraction algorithm and the Bayesian neural network as the classification algorithm for driving fatigue
recognition; they combined independent component by entropy rate bound minimization analysis
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(ICA-ERBM) and EEG feature extraction components, which have not been explored previously
for fatigue classification. Zeng et al. [9] proposed to use deep convolutional neural networks and
deep residual learning to predict the drivers’ mental states from EEG signals; they also developed
two mental state classification models that are the architecture of our CNN-based EEG classier
called EEG-Conv and combining EEG-Conv with residual learning called EEG-Conv-R. Chai and
Ling et al. [10] combined the AR modeling feature extractor with a sparse-deep belief networks
(sparse-DBN) classifier to constructed a driving fatigue recognition model, which have not been
explored previously for EEG-based driving fatigue classification. Hu et al. [11] conducted a driving
fatigue recognition model by the combination of the feature set that consisted of sample entropy, fuzzy
entropy, approximate entropy and spectral entropy and the gradient boosting decision tree (GBDT)
through the use of three different classifiers.

The literature mentioned above has enriched and extended the research of fatigue recognition
from different perspectives. EEG signals, with the highest sensitivity in driving fatigue detection
and recognition and the highly correlated relationship with the driver’s mental state, have been
studied more deeply [12]. There are many ways to analyze EEG signals, such as time domain analysis,
frequency domain analysis, multidimensional statistical analysis and nonlinear analysis [13]. However,
the recognition accuracy of the driving fatigue state obtained by using these methods is still not
satisfactory after the feature extraction of EEG signals. PCA and SVM were used to obtain better
recognition accuracy based on motion imagination EEG signals in [14]. However, because of the
nonlinear characteristics of EEG data, the internal model of the PCA is linear, the same with the
relationship among the principal components. PCA will lose its effectiveness when the principal
components of the study object are nonlinear. Therefore, this paper proposes a driving fatigue
recognition method based on sample entropy and kernel principal component analysis. There are
several advantages to using the sample entropy kernel principal component analysis (SE_KPCA)
method. On the one hand, the recognition of driving fatigue state based on sample entropy (SE) [15] is
more accurate. On the other hand, the result of dimension reduction in KPCA [16] is more positive
and has a strong non-linear processing capability. On the basis of the above, a driving fatigue state
recognition model is constructed with the combination of the support vector machine (SVM) [17]
algorithm to achieve effective recognition of the driver’s fatigue state.

2. Sample Entropy

The sample entropy (SE) calculation process is described as follows, given the original signal of
length N, denote it by x(1), x(2), . . . , x(N), and define the m-dimensional vector:

Xm(i) = {x(i), x(i + 1), . . . , x(i + m− 1)}; 1 ≤ i ≤ N −m + 1 (1)

Calculate any two m-dimensional vectors:

D[Xm(i), Xm(j)] = max[x(i + k)− x(j + k)], 0 ≤ k ≤ m− 1; i 6= j, i, j ≤ N −m + 1 (2)

D[Xm(i), Xm(j)] is the maximum difference between Xm(i) and Xm(j). Given a threshold r,
calculate the total number of the maximum difference between any two elements that is less than
the threshold:

C =
N−m

∑
i=1

(D(i) < r) (3)

Define a ratio:
Bm

i (r) =
C

N −m
(4)
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Bm
i (r) is the ratio of C to the total; calculate its mean:

Bm
(r) =

1
N −m + 1

N−m+1

∑
i=1

Bm
i (r) (5)

where Bm
(r) is the proportion mean of the m-dimensional sequence. When the signal increases

to m + 1-dimension, repeat Equation (1) to Equation (4), and calculate the proportion mean of the
m + 1-dimensional sequence:

Am+1(r) =
C

N −m

N−m

∑
i=1

Bm+1
i (r) (6)

Get the sample entropy of the sequence:

SanmEn(m, r) = lim
N⇒∞

{
−ln(Am+1(r)/Bm

(r))
}

(7)

When N is finite, Equation (7) can be expressed as follows:

SanmEn(m, r, N) = −ln(Am+1(r)/Bm
(r)) (8)

From Equation (8), it is known that the value of SanmEn is related to m and r. Pincus [18] pointed
out that the value of m is generally taken as two, when r is set to be 0.1- to 0.25-times the standard
deviation of the original EEG signal time series (0.1 to 0.25 SD; SD is the standard deviation). Thus,
m is set as two, and r is set as 0.25 SD in this paper.

3. Principal Component Analysis and Kernel Principal Component Analysis

3.1. Basic Principles of PCA

Suppose that the m-times extracted data matrix of n variables Xi, X2, . . . , Xm is X = (Xpq)m∗n.
The main steps of PCA analysis [19,20] are as follows:

1. Calculate the sample mean and standard deviation for each indicator X:

X =
1
n

m

∑
p=1

Xpq, Sq = 2

√√√√ 1
N − 1

m

∑
p=1

(Xpq − Xq)2, q = 1, 2, . . . , n (9)

2. Normalize Xpq and calculate its normalization matrix:

Ypq =
Xpq − Xq

m
, p = 1, 2, . . . , m, q = 1, 2, . . . , n (10)

3. Calculate the correlation coefficient matrix R according to the obtained standardized matrix
Y = (Ypq)m∗n:

rqk =
1

m− 1

m

∑
p=1

Ypq ∗Ypk (11)

R = (rpq)mn, rqq = 1, rqk = rkq (12)

4. Get the eigenvalue of R, denoted as λ. Suppose λ1 ≥ λ2 ≥ . . . ≥ λn > 0 and l1, l2, . . . , ln are the
corresponding feature vectors. Determine the range of K according to the cumulative variance
contribution as CVC > 90%, and define the CVC as:

CVC =
k

∑
q=1

λq/
n

∑
q=1

λq (13)
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the K principal components are created, denoted as:

Zq = lqX (14)

3.2. Basic Principles of KPCA

There are M samples in the input space, denoted as xk(k = 1, 2, . . . , M), xk ∈ RN , ∑M
k=1 xk = 0.

The nonlinear mapping function Φ is introduced to the algorithm, transforming the sample points
in the input space x1, x2, . . . , xM into sample points in the feature space as Φ(x1), Φ(x2), . . . , Φ(xM),
and the hypothesis:

M

∑
k=1

Φ(xk) = 0 (15)

Then, the covariance matrix in the feature space F is defined as:

C =
1
M

M

∑
j=1

Φ(xj)Φ(xj)
T (16)

Therefore, the solving equation of PCA in the feature space is:

λV = Cv (17)

λ is the eigenvalue, and v ∈ F\{0} is the eigenvector, so:

λ(Φ(xk) ∗ v) = Φ(xk) ∗ Cv, (k = 1, 2, . . . , M) (18)

Note that v can be expressed linearly by Φ(xi)(i = 1, 2, . . . , M) in the above formula.

v =
M

∑
i=1

aiΦ(xi) (19)

where a1, a2, . . . , aN is constant. Define an N ∗ N matrix satisfying the Mercer condition, denoted as K:

Kij = Φ(xi) ∗Φ(xj) (20)

K is called the nuclear matrix, which can be obtained from Equation (16) to Equation (19)
as follows:

Mλa = Ka (21)

The required eigenvalues and eigenvectors are obtained by solving the formula Equation (21).
The projection of the test sample on the F-space vector Vk is:

(Vk ∗Φ(x)) =
M

∑
i=1

ak
i (Φ(xi) ∗Φ(x)) (22)

Supposed that Equation (15) is not valid. Then, the K in Equation (21) is replaced by K̃.

K̃ij = Kij −
1
M

M

∑
m=1

limKmj −
1
M

M

∑
n=1

Kinlnj +
1

M2

M

∑
m,n=1

limKmnlnj (23)

where lij = 1 (for all i, j).
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3.3. Kernel Function Methods

At present, there are several forms of kernel functions that can be chosen, as follows:

1. Linear kernel function (special case):

K(x, xi) = x ∗ xi (24)

2. P-order polynomial kernel function:

K(x, xi) = [(x ∗ xi) + 1]p (25)

3. Radial basis function (RBF):

K(x, xi) = exp(−||x− xi||
δ2 ) (26)

4. Multilayer perceptual (MLP) kernel function:

K(x, xi) = tanh[v(x ∗ xi) + c] (27)

The P-order polynomial kernel function, radial basis function and multilayer perceptual kernel
function are used in the model of this paper.

4. EEG Data Processing Method Based on Sample Entropy and Principal Component
Analysis/Kernel Principal Component Analysis

4.1. EEG Data Processing Method Based on Sample Entropy and Principal Component Analysis

Based on the above discussion about the method proposed in this paper, the algorithm that
combined sample entropy and principal component analysis (SE_PCA) can be divided into the
following three steps:

1. Collect the EEG signal, and preprocess it; then, extract the sample entropy characteristics of the
data by the formula Equations (1) to (8), and obtain a matrix Xm∗n;

2. Take the matrix Xm∗n into the formula Equations (9) to (14), then calculate its principal component;
3. Construct a model, and use SVM to classify.

4.2. EEG Data Processing Method Based on Sample Entropy and Kernel Principal Component Analysis

Based on the above discussion about the method proposed in this paper, the SE_KPCA algorithm
can be divided into the following four steps:

1. Collect the EEG signal, and preprocess the EEG signal; then, extract the sample entropy characteristics
of the data by the formula Equations (1) to (8), and obtain a matrix Xm∗n;

2. Select the kernel function K(x, xi), the matrix Xm∗n as an input of KPCA, and centralize it in high
dimensional space; then, calculate matrix K̃ according to Equation (23);

3. Calculate the eigenvalues and eigenvectors of the matrix K̃, as well as its nonlinear principal component;
4. Construct a model, and use SVM to classify.

5. Method Testing and Result Analysis

5.1. Test Environment and Test Data

Test environment: The platform environment used in the experiment includes a static simulator
(Beijing-China Joint Teaching Equipment Co., Ltd., ZY-31D vehicle driving simulator, Beijing, China),
and this includes three 24-inch monitors and a software teaching system for driving simulations
(ZM-601 V9.2). A 32-electrode EEG collecting cap, the computer system (windows 10 × 64), EEG
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collecting and preprocessing software (Neuroscan 3.2) and EEG analysis software (MATLAB R2014b)
were used.

Test data description: The EEG signal data analyzed in this paper come from the EEG study,
which simulated car driving training. Twenty five normal subjects were tested for the current fatigue
level during the training, such as the sleep quality on the previous night, the diet on the day, etc.,
then two sets of experiment data were recorded by every subject, namely fatigue state and non-fatigue
state. According to the precious experience in the fatigue-related experiment, each subject was asked to
drive for 40 min without a break, then they were asked to take a questionnaire to check their states [21].
The EEG data are 32-electrode, 600 s time series at a sampling rate of 1000 Hz, which consisted of 300 s
of rest (non-fatigue) and 300 s of fatigue. After collecting a person’s EEG signal data, filtering and
processing them (artifact removal, removal of eye movement interference, signal correction, etc. [21])
were conducted. This paper conducted two sets of experiments. The first one was taking some data
from 10 individuals and 60 s for each person (the first 30 s in the non-fatigue state and the other
30 s in the fatigue state), which constructed a 600 ∗ 30 data matrix (for which 600 is 600 s, 30 is the
30 electrodes), as shown in Figure 1. The other one was taking some data from 15 individuals and
60 s of each person, which constructed a 900 ∗ 30 data matrix, as shown in Figure 2. At present, this
paper merely compares the experimental results of 30 s, due to less data being able to reduce the time
of experiment and the amount of data in 30 s being enough. However, the subsequent experiments
would enlarge the selection of different time bands for testing.

Figure 1. Sample entropy data matrix (10 individuals).

Figure 2. Sample entropy data matrix (15 individuals).

5.2. Driving Fatigue State Recognition Test Based on SE_PCA

Firstly, the SE_PCA method was used to analyze the contribution ratio of the 30 electrode principal
components. According to formula ∑n

q=1 λq mentioned in Section 3.1, the contribution rate of the
30 electrode principal components was calculated as shown in Table 1, in which i represents the
principal components (or principal elements) and Ci represents the contribution rate. From Table 1,
each principal element corresponds to two sets of contribution rate, and the former data are from the
first experiment and the latter from the second experiment. In the first experiment, the cumulative
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contribution rate of the top 10 principal components reached 90.63%. As a result, the amount of
principal components was reduced from 30 to 10. Similarly, the cumulative contribution rate of
the top 14 principal components reached 95.08%, and the cumulative contribution rate of the top
23 principal components reached 99.10%. In the second experiment, the cumulative contribution rate
of the top eight principal components reached 90.14%. As a result, the amount of principal components
was reduced from 30 to eight. Similarly, the cumulative contribution rate of the top 13 principal
components reached 95.17%, and the cumulative contribution rate of the top 23 principal components
reached 99.12%.

Secondly, we selected the main component through Equation (13) >90%. This article mainly
tests three kinds of situations where the contribution rates reach 90%, 95% and 99%, respectively.
The corresponding characteristic variables in the three cases were 10, 14 and 23 in the first experiment;
the corresponding characteristic variables in the three cases were 8, 13 and 23 in the second experiment.

Table 1. Contribution rates of each principal component.

i Ci i Ci i Ci i Ci i Ci

1 0.5664 7 0.0275 13 0.0097 19 0.0043 25 0.0016
0.6286 0.0197 0.0068 0.0033 0.0017

2 0.0721 8 0.0209 14 0.0086 20 0.0038 26 0.0013
0.0960 0.0163 0.0060 0.0030 0.0014

3 0.0633 9 0.0191 15 0.0079 21 0.0031 27 0.0012
0.0470 0.0145 0.0056 0.0028 0.0012

4 0.0486 10 0.0154 16 0.0065 22 0.0027 28 0.0011
0.0350 0.0107 0.0050 0.0027 0.0009

5 0.0425 11 0.0138 17 0.0051 23 0.0023 29 0.0011
0.0322 0.0104 0.0046 0.0024 0.0008

6 0.0306 12 0.0125 18 0.0044 24 0.0018 30 0.0008
0.0266 0.0080 0.0040 0.0019 0.0007

Finally, according to the three contribution rates, the accuracy of the recognition in driving fatigue
was tested by the SVM classifier. This paper used a method based on k-fold cross-validation in which
k = 3. Seventy percent of the data were used as a training set, then the other thirty percent of the data
were used as a test set. The test results are shown in Tables 2 and 3. Compared with the driving fatigue
recognition accuracy rates, which only used the sample entropy, when the contribution rate reached
0.99, the SE_KPCA method improved the recognition accuracy of the driving fatigue state compared
with the SE method, and the time performance had also been reduced.

Table 2. Comparison of the sample entropy principal component analysis (SE_PCA) and SE methods
(10 individuals).

Contribution Rate
SE_PCA SE

Acc Time Acc Time

0.90 80.50% 7.68 s
0.95 81.83% 8.25 s 86.60% 14.87 s
0.99 88.00% 10.34 s

Table 3. Comparison of the SE_PCA and SE methods (15 individuals).

Contribution Rate
SE_PCA SE

Acc Time Acc Time

0.90 59.00% 20.18 s
0.95 66.33% 27.64 s 71.44% 39.66 s
0.99 73.78% 35.95 s
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5.3. Driving Fatigue State Recognition Test Based on SE_KPCA

First of all, we analyzed the principal components contribution rates by the SE_KPCA method.
For example, when the kernel function chose a P-order polynomial kernel function and the parameter
was set as P = 2, the calculation results were as shown in Table 4. As we can see, each principal
element corresponds to two contribution rates; the former data were from the first experiment, and the
latter data were from the second experiment, the same for Tables 5 and 6.

Then, we selected the main component, and the cumulative contribution rate calculation was
consistent with the PCA method. For example, the kernel function chose a P-order polynomial kernel
function testing for three cases with contribution rates of 90%, 95% and 99%. In the first experiment,
Table 4 shows the result when parameter P = 2, and the characteristic variables in the three cases were:
8, 12, 26. Table 5 shows the result when parameter P = 1, and the characteristic variables in the three
cases were: 9, 14, 23. Table 6 shows the result when parameter P = 0.5, and the characteristic variables
in the three cases were: 10, 14, 22. For the second experiment, Table 4 shows the result when parameter
P = 2, and the characteristic variables in the three cases were: 7, 12, 25. Table 5 shows the result when
parameter P = 1, and the characteristic variables in the three cases were: 8, 13, 23. Table 6 shows the
result when parameter P = 0.5, and the characteristic variables in the three cases were: 9, 13, 21.

Table 4. Contribution rates of each principal component of the P-order (P = 2) polynomial kernel function.

i Ci i Ci i Ci i Ci i Ci

1 0.7026 7 0.0190 13 0.0059 19 0.0027 25 0.0013
0.7171 0.0156 0.0052 0.0024 0.0013

2 0.0534 8 0.0157 14 0.0057 20 0.0023 26 0.0013
0.0679 0.0131 0.0042 0.0023 0.0011

3 0.0412 9 0.0141 15 0.0048 21 0.0019 27 0.0011
0.0359 0.0118 0.0037 0.0020 0.0009

4 0.0318 10 0.0093 16 0.0037 22 0.0018 28 0.0010
0.0313 0.0089 0.0034 0.0019 0.0009

5 0.0269 11 0.0077 17 0.0034 23 0.0016 29 0.0009
0.0214 0.0070 0.0030 0.0017 0.0008

6 0.0213 12 0.0073 18 0.0030 24 0.0015 30 0.0008
0.0183 0.0064 0.0028 0.0016 0.0006

Table 5. Contribution rates of each principal component of the P-order (P = 1) polynomial kernel function.

i Ci i Ci i Ci i Ci i Ci

1 0.5977 7 0.0257 13 0.0087 19 0.0034 25 0.0017
0.6255 0.0205 0.0066 0.0033 0.0016

2 0.0809 8 0.0208 14 0.0079 20 0.0030 26 0.0016
0.1035 0.0177 0.0055 0.0031 0.0013

3 0.0557 9 0.0197 15 0.0065 21 0.0026 27 0.0013
0.0456 0.0139 0.0046 0.0026 0.0012

4 0.0434 10 0.0127 16 0.0051 22 0.0022 28 0.0011
0.0390 0.0112 0.0046 0.0025 0.0009

5 0.0355 11 0.0104 17 0.0044 23 0.0021 29 0.0010
0.0288 0.0091 0.0042 0.0023 0.0008

6 0.0284 12 0.0097 18 0.0041 24 0.0019 30 0.0009
0.0255 0.0076 0.0042 0.0021 0.0006
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Table 6. Contribution rates of each principal component of the P-order (P = 0.5) polynomial kernel function.

i Ci i Ci i Ci i Ci i Ci

1 0.5055 7 0.0314 13 0.0107 19 0.0041 25 0.0020
0.5343 0.0249 0.0081 0.0041 0.0020

2 0.1051 8 0.0250 14 0.0097 20 0.0036 26 0.0019
0.1374 0.0224 0.0069 0.0039 0.0016

3 0.0685 9 0.0238 15 0.0079 21 0.0032 27 0.0015
0.0562 0.0159 0.0061 0.0033 0.0014

4 0.0552 10 0.0157 16 0.0062 22 0.0027 28 0.0013
0.0476 0.0135 0.0058 0.0030 0.0011

5 0.0424 11 0.0128 17 0.0054 23 0.0025 29 0.0012
0.0366 0.0112 0.0052 0.0028 0.0009

6 0.0353 12 0.0128 18 0.0051 24 0.0023 30 0.0010
0.0330 0.0089 0.0051 0.0026 0.0007

Last but not least, the three selected principal components for driving fatigue recognition accuracy
were tested by the SVM classifier. The specific test was performed under three different principal
component contribution rates by using the KPCA method of the P-order polynomial kernel function,
radial basis function and multilayer perceptual kernel function, and every optimal parameters was
obtained through multiple experiments. The test results are shown in Tables 7–9. The data test results
of 15 people are shown in Tables 10–12. These tables also include the accuracy of the driving fatigue
state recognition based on SE_PCA under the same contribution rates.

Table 7. Comparison between the sample entropy kernel principal component analysis (SE_KPCA)
(P-order) method and the SE_PCA method (10 individuals).

Contribution Rate
SE_KPCA

SE_PCA
Parameter P = 2 P = 1 P = 0.5

0.90 Acc 74.50% 73.83% 73.33% 80.50%
Time 66.08 s 14.74 s 6.41 s 7.68 s

0.95 Acc 82.5% 82.33% 75.83% 81.83%
Time 83.25 s 15.70 s 7.40 s 8.25 s

0.99 Acc 93.17% 85.83% 75.83% 88.00%
Time 99.63 s 17.77 s 10.36 s 10.34 s

Table 8. Comparison between the SE_KPCA (RBF) method and the SE_PCA method (10 individuals).

Contribution Rate
SE_KPCA

SE_PCA
Parameter σ = 0.1 σ = 0.2 σ = 0.7 σ = 1

0.90 Acc 93.80% 98.33% 89.50% 81.80% 80.50%
Time 91.60 s 36.46 s 7.58 s 6.47 s 7.68 s

0.95 Acc 93.80% 98.33% 92.60% 85.80% 81.83%
Time 116.19 s 45.00 s 13.05 s 8.57 s 8.25 s

0.99 Acc 93.80% 98.33% 92.80% 86.30% 88.00%
Time 138.92 s 54.01 s 28.50 s 21.51 s 10.34 s

The test results from Tables 7–12 show that the SE_KPCA method was better than the SE_PCA
method at identifying and classifying driving fatigue. In particular, when KPCA’s kernel functions
chose a radial basis function with a parameter of 0.2 and a contribution rate of 0.9, the classification
accuracy of the SE_KPCA method reached 98.33%, and the time performance was good. The subsequent
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experiments in this paper all used the radial basis function, and the parameter σ was 0.2, while the
contribution rate was set as 0.9.

Table 9. Comparison between the SE_KPCA (MPL) method and the SE_PCA method (10 individuals).

Contribution Rate
SE_KPCA

SE_PCA
Parameter c = 0.1 c = 0.2 c = 0.7 c = 1

v = 0.001 v = 0.01 v = 0.001 v = 0.01

0.90 ACC 70.60% 70.30% 70.67% 70.50% 80.50%
Time 4.03 s 3.83 s 3.97 s 3.81 s 7.68 s

0.95 ACC 79.10% 79.60% 79.10% 73.80% 81.83%
Time 14.15 s 13.82 s 14.05 s 13.48 s 8.25 s

0.99 ACC 88.00% 86.33% 88.00% 85.83% 88.00%
Time 7.09 s 7.10 s 7.07 s 6.80 s 10.34 s

Table 10. Comparison between the SE_KPCA (P-order) method and the SE_PCA method (15 individuals).

Contribution Rate
SE_KPCA

SE_PCA
Parameter P = 2 P = 1 P = 0.5

0.90 Acc 58.56% 56.89% 57.89% 59.00%
Time 235.78 s 40.49 s 19.09 s 20.18 s

0.95 Acc 66.78% 66.22% 57.223% 66.33%
Time 268.56 s 43.84 22.24 s 27.64 s

0.99 Acc 75.56% 72.11% 58.56% 73.78%
Time 325.98 s 65.78 s 35.64 s 35.95 s

Table 11. Comparison between the SE_KPCA (RBF) method and the SE_PCA method (15 individuals).

Contribution Rate
SE_KPCA

SE_PCA
Parameter σ = 0.1 σ = 0.2 σ = 0.7 σ = 1

0.90 Acc 91.44% 91.78% 80.89% 66.11% 59.00%
Time 411.60 s 259.83 s 50.80 s 41.20 s 20.18 s

0.95 Acc 91.44% 91.67% 83.89% 74.33% 66.33%
Time 416.19 s 361.75 s 72.98 s 43.39 s 27.64 s

0.99 Acc 91.56% 91.67% 84.44% 75.89% 73.78%
Time 458.92 s 395.39 s 239.60 s 99.86 s 35.95 s

Table 12. Comparison between the SE_KPCA (MPL) method and the SE_PCA method (15 individuals).

Contribution Rate
SE_KPCA

SE_PCA
Parameter c = 0.1 c = 0.2 c = 0.7 c = 1

v = 0.001 v = 0.01 v = 0.001 v = 0.01

0.90 ACC 41.11% 40.78% 41.11% 40.33% 59.00%
Time 12.52 s 11.91 s 11.22 s 11.94 s 20.18 s

0.95 ACC 62.78% 61.78% 62.78% 61.33% 66.33%
Time 14.15 s 13.82 s 14.05 s 13.48 s 27.64 s

0.99 ACC 73.11% 71.78% 73.11% 71.56% 73.78%
Time 22.12 s 21.26 s 22.13 s 21.19 s 35.95 s
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5.4. Comparison Test between SE_KPCA and the Driving Fatigue Recognition Method Based on Fuzzy
Entropy/Combination Entropy

In order to verify the classification effect of the SE_KPCA method further, traditional methods
of feature extraction were used to compare the sample entropy, fuzzy entropy (FE) [13,22] and
combination entropy (CE) [16]. Take the samples of 10 and 15 individuals’ EEG signals as an example;
fuzzy entropy and combination entropy were used for feature extraction, and then SVM was applied
to identify the driving fatigue state; the test results are shown from Figures 3–6. After the comparison
and analysis of the figure, the conclusion was draw that SE_KPCA had significantly improved the
classification recognition rate compared with the traditional sample entropy, fuzzy entropy and
combination entropy, and the time performance was good.

Figure 3. Comparison of the recognition accuracy rates among the sample entropy, fuzzy entropy,
combination entropy and SE_KPCA methods (10 individuals).

Figure 4. Comparison of the time among the sample entropy, fuzzy entropy, combination entropy
and SE_KPCA methods (10 individuals).
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Figure 5. Comparison of the recognition accuracy rates among the sample entropy, fuzzy entropy,
combination entropy and SE_KPCA methods (15 individuals).

Figure 6. Comparison of the time among the sample entropy, fuzzy entropy, combination entropy
and SE_KPCA methods (15 individuals).

5.5. Comparison of the SE_KPCA Method Based on KPCA and Fuzzy Entropy/Combination Entropy for
Driving Fatigue Identification

5.5.1. Data Description

(1) The EEG data processing method based on KPCA and fuzzy entropy (FE_KPCA):

• Extract the features of fuzzy entropy from the collected EEG signals according to the fuzzy entropy
formula in the literature [22];

• Select the kernel function K(x, xi); centralize the fuzzy entropy data in the high dimensional space,
and then, calculate the matrix according to Equation (23);

• Calculate the eigenvalues and eigenvectors of the matrix K̃ ;
• Calculate its nonlinear principal component.

(2) The EEG data processing method based on the KPCA and combination entropy (CE_KPCA):

• Extract the features of the combination entropy from the collected EEG signals according to the
combination entropy formula in the literature [21];
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• Select the kernel function K(x, xi); centralize the combination entropy data in the high dimensional
space, and then, calculate the matrix according to Equation (23);

• Calculate the eigenvalues and eigenvectors of the matrix K̃;
• Calculate its nonlinear principal component.

5.5.2. Experimental Results

After verifying the validity of the SE_KPCA method in Section 5.4, this paper compares
KPCA combined with fuzzy entropy (FE_KPCA) with KPCA combined with combination entropy
(CE_KPCA). As shown from Figures 7–10, through the same method, the SVM was adopted for
classification and identification. After comparing and analyzing all the figures, our conclusion is that
the classification recognition rate of SE_KPCA was obviously higher than FE_KPCA and CE_KPCA,
and the temporal performance was lower.

Figure 7. Comparison of the recognition accuracy rates among the fuzzy entropy KPCA (FE_KPCA),
combination entropy KPCA (CE_KPCA) and SE_KPCA methods (10 individuals).

Figure 8. Comparison of the time among the FE_KPCA, CE_KPCA and SE_KPCA methods (10 individuals).
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Figure 9. Comparison of the recognition accuracy rates among the FE_KPCA, CE_KPCA and SE_KPCA
methods (15 individuals).

Figure 10. Comparison of the time among the FE_KPCA, CE_KPCA and SE_KPCA methods (15 individuals).

As shown from Figures 3–10, it can also be seen that FE_KPCA and CE_KPCA have no higher
classification accuracy than traditional FE and CE, and the time performance is worse.

6. Conclusions

This paper studies the characteristics of EEG signals in two groups (fatigue state and non-fatigue
state). Firstly, feature extraction of the EEG signal was conducted by applying sample entropy,
then further feature extraction was made by using kernel principal component analysis, and the
SVM classifier was used to classify and identify the two states of fatigue and non-fatigue. Through
analysis and comparison of the experiment results that indicate when the kernel functions select the
radial basis function, the classification recognition rate performs excellently. Besides, when compared
with the traditional methods, the classification recognition rate is also significantly improved. This
paper mainly researched the experiment results of the entropy, PCA and KPCA, but the subsequent
experiments will introduce more methods for testing.
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