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Abstract: In a recent article, Schmelzer and Tropin [Entropy 2018, 20, 103] presented a critique of
several aspects of modern glass science, including various features of glass transition and relaxation,
crystallization, and the definition of glass itself. We argue that these criticisms are at odds with
well-accepted knowledge in the field from both theory and experiments. The objective of this short
comment is to clarify several of these issues.
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1. Introduction

This short letter serves as a rebuttal to a recent article by Schmelzer and Tropin [1], which was
recently published in this journal. This is not meant to be a comprehensive listing of all issues in that
article. Rather, it is meant to address some of their main points criticizing modern ideas in glass science.

2. Definition of “Glass”

Much of the content of Schmelzer and Tropin’s paper is devoted to an attack on our recently
proposed modern definitions of “glass” [2]. The first definition presented in our paper is meant
for the general public and non-experts in the field: “Glass is a nonequilibrium, non-crystalline state of
matter that appears solid on a short time scale but continuously relaxes towards the liquid state”. We also
proposed an alternative, more detailed definition for use by advanced students and professionals in
the field: “Glass is a nonequilibrium, non-crystalline condensed state of matter that exhibits a glass transition.
The structure of glasses is similar to that of their parent supercooled liquids (SCL), and they spontaneously relax
toward the SCL state. Their ultimate fate is to solidify, i.e., crystallize”.

While our definition stresses the hybrid nature of the glassy state, combining both solid-like
and liquid-like features, Schmelzer and Tropin favor older definitions from the 1920s–1930s, where
glass is treated as strictly a solid. As we explain in Ref. [2], the glass transition is a kinetic transition
involving a gradual freezing-in of the supercooled liquid (SCL) state to a solid-like glassy state.
However, this freezing-in is only temporary, since the glass continuously relaxes toward the liquid
state over a long time. This relaxation has been demonstrated in numerous silicate [3], organic [4–7],
chalcogenide [8], and metallic [9] systems.

3. On Greek Philosophy

Schmelzer and Tropin [1] continue their argument by drawing upon the pre-Socratic Greek
philosopher, Heraclitus, who is invoked five times in their article. However, the work of Heraclitus has
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nothing to do with glass. While Heraclitus certainly observed (liquid) rivers flowing in his time scale,
we wonder how Heraclitus measured the flow of crystals during his lifetime, 535–475 BC? Where are
his experimental results published?

4. Glass Flow vs. Relaxation

Regarding glass flow and relaxation, Schmelzer and Tropin [1] write:

“The fact that predominantly glasses flow with a perceptible rate on relevant time scales
only in a certain temperature range and not beyond is well known in glass technology [24],
as is clearly formulated also for example by Tammann [40,41] and is already given in the
title of his well-known paper by Tool [53]. Of course, for certain applications, flow processes
have to be taken into consideration as is well known already from the work of Kohlrausch,
Weber, Williams & Watts, Adams & Williamson, Eyring & Tobolsky (see, e.g., [54]) starting
around 1850. However, such possible flow processes under certain conditions have not been
considered as essential by Tammann and Simon in their definition of glass. Such a point of
view, that flow processes may be neglected in most applications for relevant times scales, has
also been clearly expressed by one of the authors of Ref. [52] in Reference [55,56]. For example,
in Ref. [55] it is noted that “window glasses may flow at ambient temperature only over incredibly
long times, which exceed the limits of human history”. The flow processes considered in Ref.
[55,56] are primarily the response to external fields and are governed by viscosity. However,
the viscosity and structural relaxation time are uniquely correlated as noted also in Ref. [55,56],
where the analysis is performed widely in terms of relaxation times.”

References [55,56] in [1] (Refs. [10,11] in this letter) are indeed authored by one of us (Zanotto).
In these two articles, we estimated the average relaxation times (in the absence of any external
stress)—not the flow times under stress—of GeO2 glass and a commercial soda-lime-silica glass
at room temperature, i.e., approximately 530 ◦C below their laboratory glass transition temperatures.
The calculated relaxation times are indeed astronomical, but they are still finite!

More recently, Mauro and co-authors [12] used an improved model and new experimental
viscosity measurements to calculate the times needed for a real medieval glass—the Westminster
Abbey cathedral glass—to relax (under zero external stress) and also to flow under gravity. The results
are billions of years for both times. Moreover, the concept of a single relaxation time below Tg has been
challenged on several fronts; in particular, multiple relaxation mechanisms have been demonstrated
for low molecular weight systems and polymers [13], chalcogenides [8], and metallic glasses [14,15].

Schmelzer and Tropin [1] have also confused the concepts of flow and relaxation in our definition.
Our shorter definition reads [2]: “Glass is a state of matter that appears solid on a short time scale but
continuously relaxes towards the liquid state”. Glasses are thermodynamically unstable against the
supercooled liquid (SCL) and spontaneously relax—even in the absence of external stress—towards
the SCL state. Solids do not undergo spontaneous relaxation. They may creep or flow (by different
mechanisms than glasses) under external stress.

Schmelzer and Tropin continue [1]:

“In Ref. [52], Zanotto and Mauro discuss Simon’s definition of glass as a freezing-in process.
Referring to Ref. [30] and presenting Simon’s point of view in the form that “glass is a rigid
material obtained from freezing-in a supercooled liquid in a narrow temperature range”, they further
state that “it is not clear if he intended to convey the same meaning we are using here (frozen = a
temporary state)”. However, the meaning Simon assigned to his statement of freezing-in is
clearly reflected in Ref. [32]. In free translation, it sounds as though freezing-in at Tg does
not imply that below Tg relaxation processes are excluded. However, any such structural
transformations proceed already slightly below Tg with such large time scales that the
suggestion of a permanent arrest of such structural changes is completely substantiated
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([32], p. 223); or, as stated by Davies and Jones ([57], p. 375), “Simon pointed out that as a
glass is cooled through its transformation temperature the molecular diffusion which is necessary to
effect the appropriate change in configuration is increasingly inhibited and finally becomes practically
impossible”. This interpretation is fully in line with Ref. [55,56] but not with the revised
definition of a glass given in Ref. [52]”.

The relaxation times of a glass strongly depends upon the chemical composition (e.g., the liquid
fragility), the temperature (i.e., how far below Tg the material is) and the entire thermal history (i.e., the
degree of thermal disequilibrium). For small undercoolings below Tg, the relaxation times (and flow
under stress) will be only minutes or hours. However, if one is studying his/her glass well below
the Tg, the relaxation and flow times will be extremely long, as shown in Ref. [3–17]. But, in the
end, they all relax and flow at any temperature above the absolute zero. This is a requirement for a
nonequilibrium, thermodynamically unstable system with finite thermal energy.

5. Viscosity

Schmelzer and Tropin [1] draw upon the notion of divergent viscosity in glass-forming
liquids, writing:

“Moreover, the viscosity of glass-forming melts increases dramatically with decreasing
temperature [24,58]. One of the relations describing it with a sufficiently high degree of
accuracy for most applications is the Vogel–Fulcher–Tammann equation widely employed in
glass science [59]. This equation results in a divergence of the viscosity at finite values of
temperature, denoted as Vogel temperatures. Whether the viscosity will really diverge or not
is a matter of intensive debate; it cannot be established by direct experimental investigations
restricted to maximum values of viscosity less than 1018 Pa·s. In any case, a variety of
models of the vitreous state lead to the confirmation of such a conclusion. However, once the
viscosity diverges, the structural relaxation time also diverges. Glasses at temperatures below
the Vogel temperature are then excluded from the vitreous state by the above-mentioned
definition.”

The Vogel-Fulcher-Tammann (VFT) was proposed in the 1920s as an empirical function to describe
the viscosity of liquids and supercooled liquids [18]. However, the VFT equation does not describe
the viscosity of the nonequilibrium glassy state, which is typically many orders of magnitude less
than that of the corresponding supercooled liquid at the same temperature. This is well known,
both through experimental measurements and basic theory [16,17]. Second, the divergence predicted
by the VFT equation (for supercooled liquids, not glasses!) is an artifact of the particular form of this
empirical equation. Since the 1920s, several more successful and physically derived models have
been proposed that do not predict such divergence and have been shown to provide a dramatically
improved description of liquid viscosity at low temperatures. Unfortunately, this work is not cited by
Schmelzer and Tropin. Readers interested in a review of the modern understanding of the viscosity of
glass-forming systems are referred to Ref. [17].

6. Crystallization

Schmelzer and Tropin [1] argue against the reality of glass crystallization, writing:

“Further extending their modification of the definition of glass, Zanotto and Mauro propose
to include into the definition of glass the statement, “Their ultimate fate, in the limit of infinite
time, is to crystallize”. However, even if this statement would be true, it seems to us not
to be reasonable to include such a statement into the definition, as it does not supply any
additional information as to what glasses are. In addition, if at all, crystallization proceeds at
a perceptible rate for states below the glass transition range also only at time scales exceeding
the limits of human history.”
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However, glasses will always relax and then crystallize. Moreover, in certain cases, they can even
crystallize before full relaxation [2]. As for relaxation, the actual crystallization time depends upon
the chemical composition of the material and the temperature. If one is testing a glass a few degrees
below its Tg, these processes will take only minutes or hours; if one is working well below Tg, say at
room temperature for a typical oxide glass, crystallization will take longer than the age of the universe.
To give a few examples, in the Zanotto laboratory we have crystallized lithium diborate glass and
a diopside (CaO·MgO·2SiO2) glass, 30–50 ◦C below their respective Tg in less than 3 months [19].
Crystallization (or “devitrification”) is also a well-known critical problem for the glass industry [20,21].

As shown in Ref. [20], even the most stable oxide glasses known so far, B2O3 and albite,
will crystallize below their Tg with adequate heat treatments. The crystallization times are indeed
very long well below Tg, but they are finite. Even glasses that do not exhibit congruent crystallization
will still crystallize incongruently in the limit of long time—in this case the primary devitrification
phase corresponds to the crystal having the minimum Gibbs free energy in the phase diagram of the
system. Finally, we should mention that atactic polymers do not crystallize because they are unstable
artificial materials that degrade (their molecular weight dramatically decreases) upon treatment in
a temperature range (somewhat above Tg) where crystal nucleation and growth would be typically
observed in laboratory time scales.

In our opinion, this part of our new definition is very important because it reinforces the fact
that glasses are not true solids: They only solidify at the end of their lives, when they crystallize.
Our message is that all of the dynamic processes that take place above the laboratory Tg (ionic diffusion,
viscous flow, relaxation, liquid-liquid phase separation, crystal nucleation and growth, etc.) also take
place below the Tg. It only takes longer as the temperature drops.

7. Broken Ergodicity and Entropy

Regarding the concepts of broken ergodicity and the configurational entropy of glass, Schmelzer
and Tropin write [1]:

“Our conclusion is that the treatment of vitrification as a process of continuously breaking
ergodicity with entropy loss and a residual entropy tending to zero in the limit of zero
absolute temperature is in disagreement with the absolute majority of experimental and
theoretical investigations of this process and the nature of the vitreous state. This conclusion
is illustrated by model computations.”

Unfortunately, their model does not account for broken ergodicity (i.e., the non-equivalence of time
and ensemble averages of properties due to the long timescales involved with glass science), which we
argue is the single most fundamental, defining feature of the glassy state [22–24]. One cannot accurately
model the thermodynamics or statistical mechanics of the glassy state without accounting for its
non-ergodic nature. This was demonstrated by Mauro et al. [25] who derived model-free equations
for the entropy of glass considering both ensemble and time averages. A finite residual entropy is
present only in the ensemble-average formulation, which would also predict a non-zero heat capacity
of glass at absolutely zero temperature. In contrast, the time-average formulation yields zero entropy
at absolute zero, since the glass is confined to a single microstate, and all of its properties are an average
over this one microstate alone. Without fluctuations, the time-average formulation yields zero heat
capacity in the limit of absolute zero temperature, which is consistent with experimental results [25].
While it is possible to construct a model to obtain any result that one desires, as Schmelzer and Tropin
have done [1], the ultimate truth must come from experiments, where there is no doubt that glasses
are confined to a single microstate in the limit of absolute zero, and hence have zero heat capacity and
zero entropy, consistent with the Third Law of Thermodynamics [25].
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8. Conclusions

We have given arguments against several ideas promoted by Schmelzer and Tropin [1] regarding
viscous flow, relaxation, crystallization, and entropy of supercooled liquids and glasses. We emphasize
that recent theoretical and experimental understanding of glass-forming systems must be considered
with respect to each of these topics. New advances in the applications of glass can only be made by
taking advantage of the improved understanding of the fundamental materials processes driving their
properties and behavior [26]. It is, therefore, essential to embrace progress in glass science on both
experimental and theoretical fronts.

We are thankful to Daniel R. Cassar, Marcio, L.F. Nascimento, and Raphael, M.C.V. Reis for their
critical comments and suggestions.

Author Contributions: The two authors equally contributed to designing the rebuttal strategy, writing it up,
responding to the reviewers and editors, and producing the final version.

Funding: This research was funded by The São Paulo Research Foundation, Fapesp, grant number 2013/07793-6
(CEPID).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Schmelzer, J.W.P.; Tropin, T.V. Glass Transition, Crystallization of Glass-Forming Melts, and Entropy. Entropy
2018, 20, 103. [CrossRef]

2. Zanotto, E.D.; Mauro, J.C. The Glassy State of Matter: Its Definition and Ultimate Fate. J. Non-Cryst. Solids
2017, 471, 490–495. [CrossRef]

3. Welch, R.C.; Smith, J.R.; Potuzak, M.; Guo, X.; Bowden, B.F.; Kiczenski, T.J.; Allan, D.C.; King, E.A.;
Ellison, A.J.; Mauro, J.C. Dynamics of Glass Relaxation at Room Temperature. Phys. Rev. Lett. 2013,
110, 265901. [CrossRef] [PubMed]

4. Greiner, R.; Schwarzl, F.R. Thermal Contraction and Volume Relaxation of Amorphous Polymers. Rheol. Acta
1984, 23, 378–395. [CrossRef]

5. Wimberger-Friedl, R.; de Brui, J.G. The Very Long-Term Volume Recovery of Polycarbonate: Is Self-
Retardation Finite? Macromolecules 1996, 29, 4992–4997. [CrossRef]

6. Robertson, C.G.; Wilkes, G.L. Long-Term Volume Relaxation of Bisphenol A Polycarbonate and Atactic
Polystyrene. Macromolecules 2000, 33, 3954–3955. [CrossRef]

7. Perez-De Eulate, N.G.; Cangialosi, D. The Very Long-Term Physical Aging of Glassy Polymers. Phys. Chem.
Chem. Phys. 2018, 20, 12356–12361. [CrossRef] [PubMed]

8. Golovchak, R.; Kozdras, A.; Balitska, V.; Shpotyuk, O. Step-Wise Kinetics of Natural Physical Ageing in
Arsenic Selenide Glasses. J. Phys. Condens. Matter 2012, 24, 505106. [CrossRef] [PubMed]

9. Ruta, B.; Pineda, E.; Evenson, Z. Relaxation Processes and Physical Aging in Metallic Glasses. J. Phys.
Condens. Matter 2017, 29, 503002. [CrossRef] [PubMed]

10. Zanotto, E.D. Do Cathedral Glasses Flow? Am. J. Phys. 1998, 66, 392. [CrossRef]
11. Zanotto, E.D.; Gupta, P.K. Do Cathedral Glasses Flow? Additional Remarks. Am. J. Phys. 1999, 67, 260–262.

[CrossRef]
12. Gulbiten, O.; Mauro, J.C.; Guo, X.; Boratav, O.N. Viscous Flow of Medieval Cathedral Glass. J. Am. Ceram. Soc.

2018, 101, 5. [CrossRef]
13. Miller, R.S.; MacPhail, R.A. Ultraslow Nonequilibrium Dynamics in Supercooled Glycerol by Stimulated

Brillouin Gain Spectroscopy. J. Chem. Phys. 1997, 106, 3393. [CrossRef]
14. Luo, P.; Wen, P.; Bai, H.Y.; Ruta, B.; Wang, W.H. Relaxation Decoupling in Metallic Glasses at Low

Temperatures. Phys. Rev. Lett. 2017, 118, 225901. [CrossRef] [PubMed]
15. Gallino, I.; Cangialosi, D.; Evenson, Z.; Schmitt, L.; Hechler, S.; Stolpe, M.; Ruta, B. Hierarchical Aging

Pathways and Reversible Fragile-to-Strong Transition Upon Annealing of a Metallic Glass Former. Acta Mater.
2018, 144, 400–410. [CrossRef]

16. Mauro, J.C.; Allan, D.C.; Potuzak, M. Nonequilibrium Viscosity of Glass. Phys. Rev. 2009, B80, 094204.
[CrossRef]

http://dx.doi.org/10.3390/e20020103
http://dx.doi.org/10.1016/j.jnoncrysol.2017.05.019
http://dx.doi.org/10.1103/PhysRevLett.110.265901
http://www.ncbi.nlm.nih.gov/pubmed/23848901
http://dx.doi.org/10.1007/BF01329190
http://dx.doi.org/10.1021/ma951625y
http://dx.doi.org/10.1021/ma991696n
http://dx.doi.org/10.1039/C8CP01940A
http://www.ncbi.nlm.nih.gov/pubmed/29713723
http://dx.doi.org/10.1088/0953-8984/24/50/505106
http://www.ncbi.nlm.nih.gov/pubmed/23174805
http://dx.doi.org/10.1088/1361-648X/aa9964
http://www.ncbi.nlm.nih.gov/pubmed/29120342
http://dx.doi.org/10.1119/1.19026
http://dx.doi.org/10.1119/1.19236
http://dx.doi.org/10.1111/jace.15092
http://dx.doi.org/10.1063/1.473068
http://dx.doi.org/10.1103/PhysRevLett.118.225901
http://www.ncbi.nlm.nih.gov/pubmed/28621988
http://dx.doi.org/10.1016/j.actamat.2017.10.060
http://dx.doi.org/10.1103/PhysRevB.80.094204


Entropy 2018, 20, 703 6 of 6

17. Zheng, Q.; Mauro, J.C. Viscosity of Glass-Forming Systems. J. Am. Ceram. Soc. 2017, 100, 1–20. [CrossRef]
18. Mauro, J.C. Gordon Scott Fulcher: Renaissance Man of Glass Science. Front. Mater. 2014, 1, 25. [CrossRef]
19. Cassar, D.R. Crystal Nucleation, Growth, Relaxation and Viscous Flow in Diopside and Lithium Diborate

Glasses. Ph.D. Thesis, Federal University of São Carlos, São Carlos, Brazil, 2014.
20. Zanotto, E.D.; Cassar, D.R. The Microscopic Origin of the Extreme Glass-Forming Ability of Albite and B2O3.

Sci. Rep. 2017, 7, 43022. [CrossRef] [PubMed]
21. Mauro, J.C.; Philip, C.S.; Vaughn, D.J.; Pambianchi, M.S. Glass Science in the United States: Current Status

and Future Directions. Int. J. Appl. Glass Sci. 2014, 5, 2–15. [CrossRef]
22. Palmer, R. Broken Ergodicity. Adv. Phys. 1982, 31, 669–735. [CrossRef]
23. Mauro, J.C.; Gupta, P.K.; Loucks, R.J. Continuously Broken Ergodicity. J. Chem. Phys. 2017, 126, 184511.

[CrossRef] [PubMed]
24. Mauro, J.C.; Smedskjaer, M.M. Statistical Mechanics of Glass. J. Non-Cryst. Solids 2014, 396, 41–53. [CrossRef]
25. Mauro, J.C.; Loucks, R.J.; Sen, S. Heat Capacity, Enthalpy Fluctuations, and Configurational Entropy in

Broken Ergodic Systems. J. Chem. Phys. 2010, 133, 164503. [CrossRef] [PubMed]
26. Mauro, J.C.; Zanotto, E.D. Two Centuries of Glass Research: Historical Trends, Current Status, and Grand

Challenges for the Future. Int. J. Appl. Glass Sci. 2014, 5, 313–327. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/jace.14678
http://dx.doi.org/10.3389/fmats.2014.00025
http://dx.doi.org/10.1038/srep43022
http://www.ncbi.nlm.nih.gov/pubmed/28240225
http://dx.doi.org/10.1111/ijag.12058
http://dx.doi.org/10.1080/00018738200101438
http://dx.doi.org/10.1063/1.2731774
http://www.ncbi.nlm.nih.gov/pubmed/17508815
http://dx.doi.org/10.1016/j.jnoncrysol.2014.04.009
http://dx.doi.org/10.1063/1.3499326
http://www.ncbi.nlm.nih.gov/pubmed/21033801
http://dx.doi.org/10.1111/ijag.12087
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Definition of “Glass” 
	On Greek Philosophy 
	Glass Flow vs. Relaxation 
	Viscosity 
	Crystallization 
	Broken Ergodicity and Entropy 
	Conclusions 
	References

