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Abstract: A basic pattern in the body plan architecture of many animals, plants and some molecular
and cellular systems is five-part units. This pattern has been understood as a result of genetic
blueprints in development and as a widely conserved evolutionary character. Despite some efforts,
a definitive explanation of the abundance of pentagonal symmetry at so many levels of complexity is
still missing. Based on both, a computational platform and a statistical spatial organization argument,
we show that five-fold morphology is substantially different from other abundant symmetries like
three-fold, four-fold and six-fold symmetries in terms of spatial interacting elements. We develop
a measuring system to determine levels of spatial organization in 2D polygons (homogeneous
or heterogeneous partition of defined areas) based on principles of regularity in a morphospace.
We found that spatial organization of five-fold symmetry is statistically higher than all other
symmetries studied here (3 to 10-fold symmetries) in terms of spatial homogeneity. The significance
of our findings is based on the statistical constancy of geometrical constraints derived from spatial
organization of shapes, beyond the material or complexity level of the many different systems where
pentagonal symmetry occurs.
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1. Introduction

Pentagonal symmetry is a remarkable property of some biological systems [1]. There are
many notable examples of pentagonal symmetry in the members of some biological groups like
Echinodermata, radiolarians and plants. In many cases, the five-fold symmetry is clearly displayed but,
in some others, the radial symmetry is partially overprinted by bilateral symmetry. However, in this
last case the body is still divided into five parts but a secondary bilateral symmetry is superimposed
on the body plan. In a more precise definition, symmetry is a property of an object which is invariant
to any of various transformations; including reflection, rotation or scaling [2]. Besides the relevance of
symmetry, our main goal here is a theoretical contribution to understand the emergence of shapes in
terms of spatial configurational elements using polygons as systems. Our path is a statistical analysis
of spatial distributions of areas associated with stars and partitions of discs, either symmetrical or not.
For this reason, here we broaden the study of symmetry to the understanding of five-fold organization
(FO) which in terms of phenotypes, development and evolution can be considered as fivefold symmetry.
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These five-part unit arrangements are frequent and in an evolutionary biology context, such patterns
and their emergence have traditionally been approached by developmental genetics, systematics and
ecology as a biological consequence of selective and ontogenetical processes [3–11]. Although common
in nature, there are few general comments on the extended frequency of FO in phenotype shape,
with some important exceptions [2,12]. In a pioneering work, Breder [12] shows that FO is a basic
pattern in many flowers, dicotyledons, echinoderms, the vertebrate body section, the distal ends of
tetrapod limbs, and of the oral armature of priapulids. Breder concludes “Five-partness, where it
appears, is held to with great rigidity, even when extensive evolutionary change has taken place.
This does not seem to be the case to such a marked extent where other symmetries are concerned, as the
coelenterates witness”. The reasons for the success of FO, where it has evolved, are not yet understood
although some hypotheses have been formulated in sea urchins and flowers, either based on their
functional, ecological role, developmental constraints [8–10,13–15] or such as those derived from
mechanical models, [16] or mathematical models associating pentagonal symmetry with robustness
and pattern formation [17]. However, even these hypotheses seem to be supported by a large body of
evidence, they do not explain the occurrence and robustness of FO in all other remaining organismic
and non-organismic entities such as molecules, cellular and inorganic organizations. Neither do those
approaches consider the emergence of shapes in terms of spatial interacting elements nor in terms of
spatial variability. Breder [12] suggested that the origin of the stability of the FO lies in the geometrical
properties of the pentagon. Consequently, our proposal requires a discerning of the statistical geometric
properties for pentagonal arrangements in contrast with other geometries.

Convex polygons are plane entities and their geometry restricts the way inner regions (considered
as sub-entities defining areas) are partitioned (e.g., the star associated with the vertexes of a pentagon
can generate five identical areas). Those surface regions distribute areas inside polygons and, with a
proper measurement of spatial organization in 2D shapes, a quantitative parameter of that distribution
can be determined. In fact, an important constraint in any spatial region may be the spatial homogeneity
which we can understand as regularity and a statistical spatial organization argument of this constraint
associated with FO is developed here. In a previous work, we considered quantitative spatial
homogeneity among areas inside a region (a bounded polygon) as synonymous of regularity and the
presence of disparity among areas as spatial heterogeneity [18]. Therefore, our definition of spatial
heterogeneity is based on the unequal distribution of areas inside polygons; we propose a parameter to
define quantitatively the spatial organization of inner polygonal elements around three main concepts:
eutacticity, regularity and spatial heterogeneity. It has been shown in a previous work [19] that
eutacticity is a parameter closely linked with regularity and it is a suitable measurement of spatial
homogeneity and heterogeneity [18]. Eutacticity is sharply linked with regularity by considering
that a given polygon, polyhedron and, in general, polytope can be associated with a star of vectors
(pointing from the center to the vertices) and it has been demonstrated that stars associated with
regular polytopes are eutactic [20]. That regularity is derived from measurements of variation of
partitioning areas using the vertexes of polygons as star points linked with areas. In terms of spatial
interacting elements, in regular polygons of n sides there are equal areas arranging around one centroid
resulting in a homogeneity of areas. In contrast, irregular polygons have variations of spatial states
(areas) which will rearrange the distribution implying spatial heterogeneity. We weighed spatial
homogeneity-heterogeneity using eutacticity in FO looking for geometrical constraints which we
contemplated would give us some advice about the preferential emergence of shape organizations.
The spontaneous organization of individual blocks into ordered structures is ubiquitous in nature
and found at all length scales, thus the shape and the quantitative nature of the building blocks
becomes increasingly important [21,22]. The analysis of abstract entities, such as the geometry of
these building blocks, into constituent elements and their degrees of interaction among internal parts
represents a source of important information in terms of evolutionary constraints and evolvability [23].
According to this, the modularity of spatial components might be a natural phenomenon able to
explain the emergence of shapes. It is assumed that systems are composed of individual elements or
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modules and knowledge of modules and their integration is important to realize some properties of
the particular containing systems. Behind the deep essence of modularity, the concept of module can
be a useful tool to understand the development of organisms or generic systems, for instance due to
organizational principles of self-maintaining systems [24], or it may be an “evolved property” [23].
In this work, we study the frequency of FO in nature by using the concept of module in simple
polygonal organizations. Intuitively, here, a module is a summation of particular elements from many
polygons regarding spatial variability and it will depict non-trivial differences between shapes, in terms
of spatial organization, inside a universe of shapes or star morphospace. A theoretical morphospace
has been proposed as a geometric space of both existent and non-existent biological forms [25], and an
important step towards the proof that spatial homogeneity is related with the high occurrence of FO,
is the development of a morphospace of stars with different symmetries. The final goal in our research
will be to show that FO is restricted to a particular zone of spatial homogeneity using; (a) eutacticity
inside a morphospace of stars with different symmetries and; (b) a second experimental evidence
devoid of eutacticity using a simulation of disc partitions regarding spatial variability. Accordingly,
we claim that spatial organization besides star morphospace should be examined as an important way
to understand how existing shapes emerge in the morphological context of phenotypes as generic
spatial organizations apt to change without losing equity.

2. Methods

2.1. Statistics of Spatial Organization for Shapes Γ

To establish a proper measure of spatial organization we start by defining a shape Γ. A shape
Γ is a set of spatial planar confined regions called sub-localities inside a locality Li. Hence, a shape
might be a regular or irregular polygon. In addition, we will see that each shape Γ can be associated to
a star which, eventually, will be turned into a number (a set of area) that can be subject to statistical
analysis. Our statistical analysis will be derived from localities and their sub-localities coming from
constructions of shapes Γ. The main idea to establish the generic name of shapes Γ is because it is
useful to define either shapes or numbers associated with shapes.

Each locality Li is constituted by a subset of a given number Ni of sub-localities, Si1, Si2, . . . , SiNi

such that Li = ∪Ni
j=1Sij, where Li is a convex regular or irregular polygon in R2. Let Aij be the area

of each sub-locality. If Aij = Aik ∀ k, j, then we said that Li is regular (Figure 1). In contrast, if there

exists some j 6= k such that Aij 6= Aik then we say that Li is not regular. Therefore, let Ai =
Ni
∑

j=1
Aij be

the sum of all the associated areas of every locality; this set determines Γ = {Ai}. Therefore, Γ is a
generalization of locality or any set of sub-localities which will be understood as a number in statistical
terms. Therefore, the area average of a locality Li is:

Ai =
1
Ni

Ni

∑
j=1

Aij (1)

and

σi =

√√√√ 1
Ni − 1

Ni

∑
j=1

(
Aij − Ai

)2 (2)

is the standard deviation of each locality. Notice that if σi = 0⇒ Aij = Aik ∀ j, k .
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Figure 1. Schematic properties of two different shapes ߁. (a) A square is a locality associated to four 
subareas from four sub-localities ଵܵ, ܵଶ, … , ܵସ  which are all equal; (b) A shape ߁ with a four-fold 
partition such that any of their sub-localities have unequal subareas is not regular; the set of areas 
defined by sub-localities ଵܵ	and		ܵଶ are smaller than those of ܵଷ	and	ܵସ. 

2.2. Mathematical Basis of Eutacticity 

A star ߰ is a set of ݊ vectors {੥ଵ, ੥ଶ, … , ੥௡ሽ with a common origin in an N-dimensional space (ℝே). The star is eutactic if it can be obtained by projecting an orthogonal set. Eutacticity is sharply 
linked with regularity by considering that a given polygon, polyhedron and, in general, polytope can 
be associated with a star of vectors (pointing from the center to the vertices) and it has been 
demonstrated that stars associated with regular polytopes are eutactic [26]. A good numerical 
criterion for obtaining the eutacticity of a star, suitable for dealing with experimental measurements, 
was proposed in Reference [26] and is as follows. Let ܤ be the matrix whose ܰ columns are the 
coordinates of the vectors forming a star ߰, with respect to a given fixed orthonormal basis of ℝଶ.  

The star is eutactic if and only if: ߝ = 2√(ܵܵ)ݎඥܶ(ܵ)ݎܶ = 1 (3) 

where ܵ =  denotes the trace and the superindex ܶ denotes the transpose. Notice that the ݎܶ ;்ܤܤ
parameter ߝ can indicate the degree of eutacticity of the star represented by ܤ; if it is not strictly 1, 
which is the highest value of eutacticity, then the closer to 1, the more eutactic the star is. In case of 
planar stars, it can be proved that:  1√2 ൑ ߝ ൑ 1 (4) 

The strategy is to associate a given polygon or locality ܮ௜, with a star ߰, using Equation (3) to 
measure its value of eutacticity. Next, a measure of spatial organization can be proposed and used to 
measure the regularity of a form ߁, using sub-locality areas. For this goal, we should prove that the 
closer ߝ is to 1, the more regular (the feature of spatial homogeneity) the star is (Section 2.3). Our 
hypothesis is that the higher the eutacticity, the more homogeneous (i.e., the area variability of the 
sub-locality decreases) the partition of the space is. Lower values of eutacticity imply unequal 
partition of the space, more area variability or spatial heterogeneity. According to Equations (1) and 
(2), the variability defining regularity must occur among localities. In order to support statistical 
differences between highly regular stars (highly eutactic stars), in contrast with non-regular stars 
(low eutectic stars), we need to define spatial variability between two experimental groups; highly 
eutactic and less eutactic stars using the values of polygons associated with them.  

2.3. The Eutacticity and the Standard Deviation of Dispersion Mean of a Module 

The algorithms used in this section are found in Reference [27]. In this section, we will show that 
eutacticity is an important parameter to measure spatial organization. Here, we introduce the concept 
of module to support the statistical framework of Section 2.1, linking this with vector stars ߰ 
described in Section 2.2. Spatial organization is the fundamental property to quantify regularity using 
polygons. A partition of the localities ܮ௜ into sub-localities ௜ܵଵ, ௜ܵଶ, … , ௜ܵಿ೔  is proposed using Voronoi 

Figure 1. Schematic properties of two different shapes Γ. (a) A square is a locality associated to four
subareas from four sub-localities S1, S2, . . . , S4 which are all equal; (b) A shape Γ with a four-fold
partition such that any of their sub-localities have unequal subareas is not regular; the set of areas
defined by sub-localities S1 and S2 are smaller than those of S3 and S4.

2.2. Mathematical Basis of Eutacticity

A star ψ is a set of n vectors {u1, u2, . . . , un} with a common origin in an N-dimensional space(
RN). The star is eutactic if it can be obtained by projecting an orthogonal set. Eutacticity is sharply

linked with regularity by considering that a given polygon, polyhedron and, in general, polytope can be
associated with a star of vectors (pointing from the center to the vertices) and it has been demonstrated
that stars associated with regular polytopes are eutactic [26]. A good numerical criterion for obtaining
the eutacticity of a star, suitable for dealing with experimental measurements, was proposed in
Reference [26] and is as follows. Let B be the matrix whose N columns are the coordinates of the
vectors forming a star ψ, with respect to a given fixed orthonormal basis of R2.

The star is eutactic if and only if:

ε =
Tr(S)√

Tr(SS)
√

2
= 1 (3)

where S = BBT ; Tr denotes the trace and the superindex T denotes the transpose. Notice that the
parameter ε can indicate the degree of eutacticity of the star represented by B; if it is not strictly 1,
which is the highest value of eutacticity, then the closer to 1, the more eutactic the star is. In case of
planar stars, it can be proved that:

1√
2
≤ ε ≤ 1 (4)

The strategy is to associate a given polygon or locality Li, with a star ψ, using Equation (3) to
measure its value of eutacticity. Next, a measure of spatial organization can be proposed and used
to measure the regularity of a form Γ, using sub-locality areas. For this goal, we should prove that
the closer ε is to 1, the more regular (the feature of spatial homogeneity) the star is (Section 2.3).
Our hypothesis is that the higher the eutacticity, the more homogeneous (i.e., the area variability of
the sub-locality decreases) the partition of the space is. Lower values of eutacticity imply unequal
partition of the space, more area variability or spatial heterogeneity. According to Equations (1)
and (2), the variability defining regularity must occur among localities. In order to support statistical
differences between highly regular stars (highly eutactic stars), in contrast with non-regular stars (low
eutectic stars), we need to define spatial variability between two experimental groups; highly eutactic
and less eutactic stars using the values of polygons associated with them.

2.3. The Eutacticity and the Standard Deviation of Dispersion Mean of a Module

The algorithms used in this section are found in Reference [27]. In this section, we will show
that eutacticity is an important parameter to measure spatial organization. Here, we introduce the
concept of module to support the statistical framework of Section 2.1, linking this with vector stars
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ψ described in Section 2.2. Spatial organization is the fundamental property to quantify regularity
using polygons. A partition of the localities Li into sub-localities Si1, Si2, . . . , SiNi is proposed using
Voronoi tessellations as proposed in Reference [27]. The goal in Reference [27] was to verify the spatial
distribution of areas inside localities by comparing stars with high and low values of eutacticity. In this
way, two experimental groups can be distinguished; ψa representing eutactic stars (ε = 1) and ψb
representing stars with a lower value of eutacticity (ε = 0.8). With these two groups, we proceed as
follows. There will be ψ1, ψ2, . . . , ψk stars such that; (1) all of them have the same value of ε; (2) any of
them has the same number of vectors ν; (3) they are geometrical random stars, even though any of
them has the same eutacticity value (point 1). Finally; (4) Stars ψ1, ψ2, . . . , ψk are the building blocks to
construct localities L1, L2, . . . , Lk with the number Ni of sub-localities Si1, Si2, . . . , SiNi associated with
the same number of vectors ν. In fact, according to property 2, we have Ni = Nj = ν, ∀ i, j, which is an
important condition to establish a formal definition of module. Intuitively, a module is a summation of
particular sub-localities from many localities and it will be used to contrast two arbitrary values of ε

numerically (Figure 2).
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Figure 2. Construction of a module from k stars. A module is an average derived from an area
summation of a particular sub-locality (e.g., sub-locality 1) from k stars ψ with a constant value ε.
In this figure, the second sub index of A is referring to sub-locality 1. Stars ψ1, ψ2, . . . , ψk are the
building blocks to construct localities L1, L2, . . . , Lk. This process is applied to build modules of the
two experimental groups of stars, ψa and ψb.

According to Reference [27], let us assume that the areas Ai,j associated to sub-localities of the
two groups of stars (ψa, ψb) have two crucial components: (a) The eutacticity ε of the star ψ and
(b) a set of random points ωm,n defining the associated areas Ai,j. It is important to highlight that
L1, L2, . . . , Lk depend on ψ1, ψ2, . . . , ψk (property 4 of stars ψ). According to this, ψ1, ψ2, . . . , ψk are
associated with ωm,n which will define regions to establish sub-localities Si1, Si2, . . . , SiNi . In that sense,
let us call ψ

ω1,n
1,j , ψ

ω2,n
2,j , . . . , ψ

ωk,n
k,j to the stars, where j represents the particular sub-locality and n is the

set of random points n = 1, . . . , α. So ωm,i 6= ωm,j for every i 6= j. In this case, m = 1, . . . , k is a simple
tag to associate star k with ωk and subsequently with a set α of random points, and the associated
areas are Aω1,n

1,j , Aω2,n
2,j , . . . , Aωk,n

k,j . Therefore, the module for a particular sub-locality is defined using the
average of its areas. Modules for particular sub-localities of two experimental groups of stars (ψa, ψb)
are built in order to contrast its sub-locality area variations.

In Table 1, an example of the analysis of module 1, which is exclusive for sub-locality 1 in a locality
of j sub-localities, is shown:
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Table 1. Calculation of a module for sub-locality 1.

Set of Random Points !m,n Defining the Associated Areas Ai,j
for Sub-Locality 1 (Algorithm Defined in Reference [24])

Summation of
Areas for Star ψk

Stars ω1,1 ω1,2 . . . ω1,α

ψ1 Aω1,1
1,1 Aω1,2

1,1 . . . Aω1,α
1,1 ⇒ 1

α

α
∑

n=1
Aω1,n

1,1

ψ2 Aω2,1
2,1 Aω2,2

2,1 . . . Aω2,α
2,1 ⇒ 1

α

α
∑

n=1
Aω2,n

2,1

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

ψk Aωk,1
k,1 Aωk,2

k,1 . . . Aωk,α
k,1 ⇒ 1

α

α
∑

n=1
Aωk,n

k,1

The summation Σ of module 1 derived from sub-locality 1 in a locality with j sub-localities, k stars
and a set α of randomly generated points will be defined by:

1
α

(
α

∑
n=1

Aω1n
11 +

α

∑
n=1

Aω2n
21 + . . . +

α

∑
n=1

Aωkn
k1

)
(5)

Therefore, the average for module 1 is:

Aµ1 =
1

αk

k

∑
i=1

α

∑
n=1

Aωi,n
i,1

and the standard deviation:

σµ1 =

√√√√ 1
(α− 1)(k− 1)

α

∑
n=1

k

∑
i=1

(
Aωin

i1 − Aµ

)2 (6)

In general, for any sub-locality Aωi,n
i,j associated with the star Si, we can obtain the average of each

star and the average of each set of random points of the module Aµj . This average is:

Aµj =
1

αk

k

∑
i=1

α

∑
n=1

Aωi,n
i,j

and the standard deviation:

σµj =

√√√√ 1
(α− 1)(k− 1)

α

∑
i=1

k

∑
n=1

(
Aωi,n

i,j − Aµj

)2
(7)

If we now fix a star, the average of areas and standard deviation of this locality by summation
over α random set of points is

Aµj(Si) =
1
α

α

∑
n=1

Aωi,n
i,j

and

σµj(Si) =

√
1

α− 1

α

∑
n=1

(Aωi,n
i,j − Aµj(Si))

2
(8)
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The average of these standard deviations is calculated by performing summation over the k stars:

σµj =
1
k

k

∑
i=1

σµj(Si); Dispersion mean of module j; (9)

which will have the final standard deviation:

σSµ =

√√√√ 1
(k− 1)

k

∑
i=1

(σµj(Si)− σµj)
2; Standard variation of dispersion mean of module; (10)

Modules associate the value ε with spatial organization since the variation of area sub-localties
from two different values of eutacticity represents variation in module area for any sub-locality
(Figure S1).

2.4. Standard Deviation of Partition Variability

In past Sections 2.1–2.3, we focused on a computational and quantitative method able to establish
some important practical details concerning the measurement of planar spatial variations of shapes Γ.
However, to unveil the geometrical properties that favor FO against any other symmetry, we can go
beyond by proposing a numerical approach using partitions of planar discs (localities) divided into 3
to 10 sub-localities. In fact, this numerical experiment is necessary to relate Equations (1) and (2) with
a proper collection of data reflecting a quantification of standard deviations of spatial organization in
FO. A complete view of a wide spectrum of partitions of shapes Γ is obtained if we design a numerical
model not restricted to the eutacticity parameter, since this parameter is proposed mainly as a tool but
it is not a definite proof. Our geometrical design has as a first condition, the fact that planar discs with
different numbers of sub-localities remains with a constant area during the experiment in order to
have normalized data. Although we consider partitions of discs ranging from 3 to 10 sob-localities and
each partition must be with a constant area during the experiment, we include 10 levels of variability.
Therefore, each partition with particular constant area has 10 levels of variability during the experiment.
According to Section 2.1, the standard deviation of each locality can be obtained by using Equation (2).
For this purpose, we use Voronoi diagrams to model space partitioning with different number of
parts (from 3 to 10), where two variables are studied, namely, partitioning number (pn) and partition
variability (pv), which are defined as follows:

a. Partitioning number (pn) defines the number of partitions inside a disc (ranging from three
to ten).

b. Partition variability (pv) determines multiple levels of variability (ten) inside discs by using
random points, which in turn define the Voronoi diagrams. These levels of variability will be
defined below.

The algorithm to build partitioning and levels of variability of discs is described in the next seven
steps as follows:

1. We initially consider a disk with a unitary radius where a second inscribed disk will be partitioned
into a pn with a pv during the experiment (steps 4 and 5 of this algorithm, respectively).
These discs are defined by particular features each: (a) The first disc is the external limit of
the second and their coordinates are constant during the experiment; (b) the second one is
constantly changing to obtain a pv (step 5 of this algorithm) and it is obtained by establishing a
Voronoi tessellation. These two features (a) and (b) are described in the next steps (2) and (3) of
this algorithm.

2. Features of external disc. The boundaries of the external limit are defined by 24 fixed points
generated as follows: The radius of the external disk is set to r = 1 and consecutive points are
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separated by an angle θ/24. The functionality of this feature lies in the establishment of a fixed
limit of reference to maintain a constant area during variation of partitions.

3. Features of internal disc. The boundaries of the internal limit are defined by 24 fixed points
generated as follows: The radius of the internal disk is initially set to r = 0.53 ± 0.4 (established
by the first level of variability step 6 of this algorithm) with 24 points consecutively separated by
an angle θ/24. These radii are derived from a Voronoi tessellation whose points are the 24 points
established before in this step besides the points derived from step 5. The functionality of this
feature lies in the establishment of an internal limit able to change, providing statistical variation
determining levels of variability of areas inside discs.

4. Now, we define partition numbering (pn) inside the disk. Once the number of partitions is
defined, say n (where 3 ≤ n ≤ 10 and n ∈ Z) to define a Voronoi tessellation, points are located in
the disk at angles 2π/n ± 0.069 radians but at different radius. These radius values will define
the pv, as described in the next item.

5. Partition variability (pv). For each angular region defined above, 10 points are located at radius
(between r = 0 and r = 10) at different positions to define different degrees of variability using
Voronoi tessellations. The first point (first level of variability) is at r = 1. After the second point,
all of them are located at random radius between 1 to 10. Hence, each level of variability (10) is
given by radii ranges except 1 which is fixed at 1 (Figure 3); (a) 1, (b) 1–2, (c) 1–3, (d) 1–4, (e) 1–5,
(f) 1–6, (g) 1–7, (h) 1–8, (i) 1–9 and (j) 1–10. Partition variability will define the broad spectrum of
possibilities for area distribution inside discs without losing partitioning number. According to
Equation (1), the average of areas requires a summation of sub-localities areas

(
Aij
)

which were
derived from partitions.

6. Once the partition areas
(

Aij
)

inside discs were obtained and Equation (1) was solved, Equation (2)
is used to get standard deviations (σi) of variability for each disc. In order to normalize the
level of variability for each pn, an index dividing the standard deviation of partitions and
the particular area average of each partition was obtained (variability average; supporting
information 2). There are eight particular area averages of partitions since we have a sample
of 8 discs with different pn (from 3 to 10). These particular area averages are derived from a
value n/(≈108.5 ± 1.5) which are n values obtained from the first level of variability (pv) at r
= 1. It is important to say that the radius of the external disc (1) and the radius of the internal
disc (r = 0.53 ± 0.4) was modified in order to get the particular area averages. However, in spite
of the modification, the index between external discs and the internal ones remains constant.
A sample of 20 discs to get 20 standard deviations (20 σi) was generated for each pn, and also for
each level of pv (10) giving a sample of 200 discs for each pn. An average of standard deviations
(σi; variability average) was derived for each level of variability. Once the partition areas

(
Aij
)

inside discs were obtained and Equation (1) was solved, Equation (2) is used to get standard
deviations (σi) of variability for each disc. In order to normalize the level of variability for each
pn, an index dividing the standard deviation of partitions and the particular area average of each
partition was obtained (variability average; supporting information 2). There are eight particular
area averages of partitions since we have a sample of 8 discs with different pn (from 3 to 10).
These particular area averages are derived from a value n/(≈108.5 ± 1.5) which are n values
obtained from the first level of variability (pv) at r = 1. It is important to say that the radius of the
external disc (1) and the radius of the internal disc (r = 0.53 ± 0.4) was modified in order to get
the particular area averages. However, in spite of the modification, the index between external
discs and the internal ones remains constant. A sample of 20 discs to get 20 standard deviations
(20 σi) was generated for each pn, and also for each level of pv (10) giving a sample of 200 discs
for each pn. An average of standard deviations (σi; variability average) was derived for each
level of variability.

7. Finally, a standard deviation of all variability averages is obtained for each pn.
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Figure 3. Defining partitioning number and partition variability. A disc is constructed to get Voronoi
diagrams with constant area in spite of variability. The disc of this figure has a partitioning number of 2,
one between axes x and y and the other is the remaining space. The magnitude of the radius defines
ten levels of partition variability, which are the numbers emerging from the origin upon the diagonal
on ray 3; (a) 1, (b) 1–2, (c) 1–3, (d) 1–4, (e) 1–5, (f) 1–6, (g) 1–7, (h) 1–8, (i) 1–9 and (j) 1–10. Each level of
variability is given by radii ranges except (a) which is fixed at 1.

3. Results

3.1. Star Morphospace for Shapes Γ

Low values of eutacticty imply spatial heterogeneity while high values imply spatial homogeneity.
Figure 4 shows that this standard deviation reflects the spatial variation of areas inside a given number
of stars with ε = 1(ψa), in contrast with a second set of stars with ε = 0.8(ψb). Thus, the eutacticity
parameter ε turns out to be useful to determine the spatial variation of areas inside localities (Equation
(10)) when two values of eutacticity are compared. Using the idea of modules from Section 2.3 of
methods we can conclude that the higher the eutacticity value, the higher the spatial homogeneity
inside shapes, that is, the less the standard variation of dispersion mean (Equation (10); Figure 4).
In other words, spatial heterogeneity increases according to the decreasing of eutacticity. In order
to define particular values of this property, regarding spatial organization for statistical geometrical
samples of several shapes Γ we must build that universe of shapes or star morphospace. Random
stars (n = 10,000), with number of vectors N = 3, 4, 5, 6, 7, 8, 9 and 10 were generated according
to a well established previous methodology reported in Reference [24]. Once these sets of stars are
generated, eutacticity is measured in stars given eight particular statistical distributions (Figure S2).
Those distributions are characterized by a mean which will give us a first insight about particular
values of spatial organization for shapes Γ which will determine the resulting morphospace (Figure 5).
As has already been mentioned in Section 2.2, in planar stars the range for eutacticity values is

1√
2
≤ ε ≤ 1, which is a range between 0.7 and 1. A first interesting fact to highlight about distribution

for eutactic values is that the mean value for stars with five vectors (0.89388) is higher than those
values for both four and six vectors (0.88126 and 0.88324 respectively; Figure 5). As was expected
from a first eye approach, over the statistical distribution for stars with three vectors (Figure S2a) the
eutacticity value was lower (0.84827) than for all remaining stars (Figure 5). For stars above seven
vectors, eutacticity values fall over 0.918. It is important to say at this point that stars with 8, 9 and
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10 vectors can be considered as multiples of degree 2, 3, 4 and 5. However, it is not the case for stars
with seven vectors. In fact, structures of seven folding order or higher are rare or absent, except those
that can be considered as multiples of 2, 3, 4 and 5 [11]. Shapes with more than seven vectors can serve
as controls to understand spatial deviations from the most abundant stars (3, 4, 5 and 6) and they will
be included in our final analysis.
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Figure 4. Dispersion mean of modules (DMM) and the standard variation of dispersion mean (SDM).
DMM is the average of standard deviation of areas derived from Equation (9), from 100 localities using
100 sets of random points with several number of sub-localities with ε = 1 (ψa; yellow bars) and ε = 0.8
(ψb; orange bars). ANOVA test was performed in order to contrast eutactic values of DMM between ψa

and ψb. The obtained statistical significances of p range from less than 0.0001 for partitions with three
modules and four modules (***); less than 0.05 for partitions with five modules (*); and less than 0.01
for partitions with six and seven modules (**). The null hypothesis was rejected in 23 of the 25 modules.
The SDM (Equation (10)) for the module with ε = 1 (ψa; grey bars) is notably smaller than the one
obtained from the module with ε = 0.8 (ψb; blue bars).
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Figure 5. Star morphospace for eutacticity values derived from shapes Γ. Eutacticity means obtained
from statistical distributions for vector stars ranging from 3 to 10 vectors.

The resulting morphospace comes from mean eutacticity values derived from distributions of
mean eutactic values (Figure S2). The establishment of a formal test comparing distributions was
included in order to detect statistical differences between mean eutacticity values. We decided to
contrast samples using a nonparametric statistical test, the Wilcoxon/Kruskall-Wallis test using the
program JMP 8.0., since the statistical distributions are non-normal. The Wilcoxon/Kruskall Wallis
standardized scores for three, four, five and six vector star distributions which fall below the mean
while values for seven vectors or more are over the mean. Interestingly, scores for five vector stars is
the nearest value to zero (Figure S3) which implies the most significative statistical difference. This fact
reflects the increasing of the eutacticity mean for five vector stars visualized in the morphospace
of Figure 5 in the middle of four and six vectors. In addition, four and six vector stars remain
closest between them in contrast with five vector stars. Concerning this last point, we focused on
comparing only four, five and six vector stars including a statistical analysis contrasting only these
samples (Figure S4). This result shows how distribution of eutacticity values for five vector stars
are considerably away from four and six vector star samples. According to this, we can conclude
that eutacticity is a suitable measure able to detect variations of spatial organization inside polygons.
The average for areas inside regular stars associated to highly eutactic stars reflects a tendency toward
equal partition of internal space, while the high variation of SDM indicates that low eutactic stars
have a much less equal distribution of areas. In that sense, statistically, five-folding stars are showing
that they are in a particular position which is more regular than that for four-folding and six-folding
organizations but less than organizations whose vectors are above seven vectors.

3.2. Experimental Evidence

The final part of our methodology (Section 2.4) is based on a numerical approach determining
particular values for partitions ranging from 3 to 10 sub-localities, using Equations (1) and (2).
The experimental evidence in this section is devoid of eutacticity using a simulation of disc partitions
regarding spatial variability. The results of this experiment are shown in Figures 6 and 7. Each level of
variability was composed of a sample of 20 standard deviations per partitioning (Figure 6). Spatial
variability increases according to the levels of variability generating random points beyond the disc
centroid which divides partitions enhancing Euclidean distance among random points. As an evidence
of that spatial variability, we include eight graphics of averages of standard deviation plotting levels of
variability (right side squares in Figure 6). Interestingly, the curves for variability averages between
partitions are different. In addition, the lowest value for standard deviation of the overall sample
of averages for standard deviation determined by the variability average is that for five partitioning
number (Figure 7). Therefore, we can conclude that Equations (2) and (10) are appropriated to explain
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the selective frequency of FO in some natural systems since its selection is derived from a bias to equal
spatial partitioning in spite of spatial variation.
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Figure 6. Partitioning number and partition variation of planar discs. A sample of 40 planar discs
shows how partitioning number (vertical left side) determines segmentation of an almost constant
area (≈108.5 ± 1.5) into a particular number of sub-localities. Partition variability (bottom horizontal
numbers) installs levels of variability giving 10 constant and subtle increases of area to generate random
segmentations. Variability averages (right vertical graphics) reflect the average of standard deviations
(σi) which is derived for each level of variability. It is important to note how each increase of variability
enhances heterogeneity for every partitioning equally even if the graphics are dissimilar. Partitioning
number for discs with 7, 8, 9 and 10 regions are showed in Figure S5.
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this data, five-fold organizations are at the lowest level of dissimilarity among areas inside discs.

4. Discussion

Low values of eutacticty imply spatial heterogeneity, while high values imply spatial homogeneity.
According to our results, standard deviation of low eutactic stars are associated with an increase in

Figure 6. Partitioning number and partition variation of planar discs. A sample of 40 planar discs
shows how partitioning number (vertical left side) determines segmentation of an almost constant
area (≈108.5 ± 1.5) into a particular number of sub-localities. Partition variability (bottom horizontal
numbers) installs levels of variability giving 10 constant and subtle increases of area to generate random
segmentations. Variability averages (right vertical graphics) reflect the average of standard deviations
(σi) which is derived for each level of variability. It is important to note how each increase of variability
enhances heterogeneity for every partitioning equally even if the graphics are dissimilar. Partitioning
number for discs with 7, 8, 9 and 10 regions are showed in Figure S5.
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Figure 7. Standard deviation of all variability averages for each partitioning number. An average of
standard deviations (σi; variability average) was derived for each level of variability from Figure 6.
A standard deviation of all variability averages is obtained for each partitioning number. According to
this data, five-fold organizations are at the lowest level of dissimilarity among areas inside discs.

4. Discussion

Low values of eutacticty imply spatial heterogeneity, while high values imply spatial homogeneity.
According to our results, standard deviation of low eutactic stars are associated with an increase in
spatial heterogeneity. Stars with eutactic values equal to ε = 1 (ψa) remain in a zone with small SDM for
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modules, in contrast with those of a second set of stars with ε = 0.8 (ψb). The morphospace of stars in
Figure 5 shows that the mean eutactic value for stars with five vectors have a subtle major difference in
contrast with stars with four and six vectors. Hence, two parameters are being important keys to detect
spatial homogeneity inside morphospace, eutacticity and number of vectors. Whether dispersions of
area distribution are associated with eutactic values we may conclude that small SDM for modules
implies spatial homogeneity. Module variation implies fluctuating partitions without losing the
particular correlation structure of the system related with polygonal side number. Therefore, the idea
of modularity in our systems relies on a conserved polygonal structure even varying magnitudes of
inner areas. One of our main hypotheses lies on considering these conserved polygonal structures
as constraints that are not included as such, in our knowledge, in any other research. In that sense,
polygons are changing in terms of spatial distribution depending on the number of vectors and the
associated areas. Consequently, system-level properties for common architectures in simple polygonal
forms are emergences of interacting spatial elements, attempting to gain space. One alternative,
in terms of biological statistical mechanics, should be directed that endeavors as mechanical forces.
However, according to our results, those forces might be considered as simple probabilistic parameters
derived from standard deviations of modules immersed in polygons with a particular number of sides.

Section 3.2 of results includes experimental evidence of the outcome derived from star
morphospace of Section 3.1 but is devoid of eutacticity. The idea of modules in this experimental
evidence relies on two factors; partitioning number (number of partitions on each disc) and partition
variability (levels of variability regarding levels of variation). According to this idea, there are system
states such as irregular polygons or discs with particular numbers of regions which can distribute
their inner space depending on the number of sides. That is, those several systems have fluctuating
variations between areas which can be visualized with proper statistical tools. In fact, regular and
symmetrical polygons whose inner space is not varying at all are not included as part of those system
states since they are static entities neglecting variability. As a consequence, the experimental evidence
exposed in Figures 6 and 7 reflects that the lowest levels of spatial heterogeneity are for five-fold
organizations. Despite the myriad of area variability inside discs of Figure 6, there are particular
constraints in terms of standard deviations. The column on the right-side panel of Figure 6 shows
different graphics for any partitioning number. In fact, Figure 7 exposes the global standard deviation
of all variability averages for each partitioning number where five-fold organizations are at the lowest
level of dissimilarity among areas inside discs. We assume as a possible hypothesis of these particular
differences among the graphics for particular partitioning number differences among amounts of
spatial heterogeneity. In order to achieve this novel context, we must visualize spatial homogeneity and
spatial heterogeneity as probabilistic states whose levels of regularity can be related with particular
system properties, such as biological behaviors or emergences. The defiance of some emergent
structures to entropy would be behind a proper distribution of dynamical space. Some evolutionary
processes, such as evolutionary convergences or selective events of some frequent architectures would
be an outcome of modular internal arrangements of space, derived in the overwhelming amount of
shapes, patterns and forms in nature, even in dynamic processes.

5. Conclusions

One of our global resulting conclusions is that the spatial organization for five-folding
architectures or FO can be associated to a particular distribution of maximizing homogeneous internal
space given by its geometry. That is, our idea lies on a suggestion that geometry defines a source of
information and is not just a consequence of traditional physical button-up development. This last
idea is notably different from those given by functional, ecological and even mechanical explanations
because those hypotheses, traditionally, consider that form follows function. We consider that the
significance of our findings is based on the statistical constancy of geometrical constraints, derived
from the spatial organization of shapes beyond the material or complexity level of the many different
systems. Our geometrical argument is not against the selective performance for five-folding symmetries
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in nature, since the high well qualified performance of this geometry during evolution could be a
generic geometric constraint defined first as a system character before being a biological character.

Supplementary Materials: Supplementary materials are available at http://www.mdpi.com/1099-4300/20/9/
705/s1.
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