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Abstract: We numerically study the first-principle dynamics and thermostatistics of a d-dimensional
classical inertial Heisenberg ferromagnetic model (d = 1, 2, 3) with interactions decaying with
the distance rij as 1/rα

ij (α ≥ 0), where the limit α = 0 (α → ∞) corresponds to infinite-range
(nearest-neighbour) interactions, and the ratio α/d > 1 (0 ≤ α/d ≤ 1) characterizes the short-ranged
(long-ranged) regime. By means of first-principle molecular dynamics we study: (i) The scaling
with the system size N of the maximum Lyapunov exponent λ in the form λ ∼ N−κ , where κ(α/d)
depends only on the ratio α/d; (ii) The time-averaged single-particle angular momenta probability
distributions for a typical case in the long-range regime 0 ≤ α/d ≤ 1 (which turns out to
be well fitted by q-Gaussians), and (iii) The time-averaged single-particle energies probability
distributions for a typical case in the long-range regime 0 ≤ α/d ≤ 1 (which turns out to be
well fitted by q-exponentials). Through the Lyapunov exponents we observe an intriguing, and
possibly size-dependent, persistence of the non-Boltzmannian behavior even in the α/d > 1 regime.
The universality that we observe for the probability distributions with regard to the ratio α/d
makes this model similar to the α-XY and α-Fermi-Pasta-Ulam Hamiltonian models as well as to
asymptotically scale-invariant growing networks.

Keywords: complex Hamiltonian systems; nonextensive statistical mechanics; long-ranged-
interacting thermostatistics; lyapunov exponents

1. Introduction

Although nature is strictly quantum at the microscopic level, classical systems of particles have
been studied for decades, usually considered as good approximations in some limiting cases. In what
concerns magnetism, classical spin models have succeeded in providing good qualitative agreement
with experiments on several materials [1–3]. Many of these investigations focused on equilibrium
properties of models characterized by nearest-neighbour interactions (see, e.g., Refs. [4–11]). In contrast,
a paradigmatic example dealing with infinite-range interactions, the so-called Hamiltonian Mean Field
(HMF) model, consisting of N fully coupled classical XY rotators, was introduced in [12]. This was
done through the addition of a kinetic term in the Hamiltonian of a classical XY model, so that
equations of motion could be derived, leading to the possibility of investigating its dynamic properties
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by a direct integration of these equations. Since then, a vast amount of papers devoted to the study of
the HMF model have put forward its anomalous properties [13–23]: existence of negative specific heat,
quasistationary states (QSSs), nonmaxwellian velocity probability distributions, anomalous diffusion
and ergodicity breaking, among others.

The HMF model was further generalized into the so-called α-XY model [24], via the introduction
of an interaction term decaying with the distance r between rotators as r−α. The parameter α ≥ 0
controls the range of the interaction, with the limits α = 0 and α→ ∞ corresponding respectively to the
HMF and nearest-neighbour models. For the α-XY model defined on d-dimensional lattices, the mean
potential energy per particle diverges in the thermodynamic limit for 0 ≤ α/d ≤ 1. Consequently,
serious mathematical difficulties emerge in the thermodynamic limit for the Boltzmann-Gibbs (BG)
partition function. Nowadays, it has become evident that BG statistical mechanics fails in describing
appropriately systems generically characterized by relevant long-range correlations (e.g., due to
long-range interactions). In such cases, the classification of thermodynamical quantities as either
extensive or intensive is not sufficient, since one frequently finds a third category, the one of
nonextensive quantities.

These kinds of difficulties have led to generalizations of BG statistical mechanics, and the most
widely used theory for dealing with such systems so far is nonextensive statistical mechanics [25].
This theory emerged from the proposal of a generalized entropy, known as Sq, characterized by a real
index q [26],

Sq = k
W

∑
i=1

pi

(
lnq

1
pi

)
, (1)

where we have introduced the q-logarithm definition,

lnq u =
u1−q − 1

1− q
; (ln1 u = ln u) . (2)

Therefore, one recovers BG entropy as limq→1 Sq = SBG, whereas in the microcanonical ensemble,
where all microstates present equal probability, pi = 1/W, Equation (1) becomes,

Sq = k lnq W . (3)

Since then, a considerable progress was achieved, leading to generalized functions, distributions,
and important equations of physics. In particular, the q-Gaussian distribution, which generalizes the
standard Gaussian, appears naturally by extremizing the entropy Sq [25],

Pq(u) = P0 expq(−βu2) , (4)

with

expq(u) = [1 + (1− q)u]1/(1−q)
+ ; (exp1(u) = exp(u)) , (5)

where P0 ≡ Pq(0) and [y]+ = y, for y > 0 (zero otherwise). Above, the q-exponential function appears
precisely as the inverse function of the q-logarithm of Equation (2), i.e., expq(lnq u) = lnq(expq(u)) = u.

The α-XY model has also been largely studied [27–34] and, in the d-dimensional case, it was
shown [29] that in its high-energy regime, the maximum Lyapunov exponent scales with the number
N ≡ Nd of rotators as λ ∼ N−κ , where the exponent κ(α, d) depends on α and d through the ratio α/d,
as in the case of other quantities, with κ > 0 in the long-range regime (α/d ≤ 1) and κ = 0 (thus yielding
positive Lyapunov exponents) in the short-range regime (α/d > 1). In addition, q-Gaussians have
been obtained for the time-averaged momenta probability distributions not only before, but even after
the crossover to the very-large-time QSS, with a value of the entropic index q ≡ qp(α/d) depending
again on the ratio α/d [34]. The usual Maxwellian distributions are recovered as α/d increases above
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unity. A curious behavior occurs also for the ensemble-averaged momenta probability distributions.
The same departure from the BG predictions is observed for the time-averaged energy distributions;
in this case, instead of the usual BG exponential, q-exponential probability distributions are obtained,
with q ≡ qE(α/d) [34]. Similar universality features have been recently obtained in quite different
contexts, such as a generalized Fermi-Pasta-Ulam model with long-range interactions [35–39], complex
networks with preferential attachment growth [40,41], and a system of particles under overdamped
motion interacting repulsively with power-law interactions [42].

By considering three-dimensional rotators (instead of planar ones), the corresponding classical
inertial ferromagnetic Heisenberg model is obtained; this has not been very much explored in the
literature [43–47]. In the fully coupled (infinite-range interactions) version, QSSs have also been
observed, implying that, just as in the HMF model, the thermodynamic and time limits do not
commute: if the N → ∞ limit is taken first, the system will remain in the QSS, whereas if the t→ ∞
limit is considered first, the system may attain the Boltzmann temperature after a transient time, which
was shown to increase with the system size [44–47]. Inspired by the α-XY model, the classical inertial
ferromagnetic Heisenberg model was also generalized by introducing an interaction term decaying
with the distance r between rotators as r−α (α ≥ 0) [47]. Such an α-Heisenberg model, studied up
to the moment only in dimension d = 1, exhibited a clear QSS in the long-range-interaction regime,
with its duration decreasing for increasing values of α. In this paper, we extend the α-Heisenberg
model to dimensions d = 2 and 3, and show that the scaling with the system size of the maximum
Lyapunov exponent follows the same trend as in the above indicated α-XY model. In addition, we
calculate numerically the probability distributions for the time-averaged momenta, as well as the
energy distributions, in order to get α/d-dependent entropic indexes. The anomalous (non-Maxwellian
for the momenta and nonexponential for the energies) distributions persist well beyond the α = d
threshold and intriguingly coexist with positive values of the maximal Lyapunov exponent, at least for
the sizes that have been numerically attained.

2. The Model

The α-Heisenberg inertial model consists of a collection of N interacting rotators, represented
by three-component rotating vectors ~Si with unit norm, located at fixed positions on a d-dimensional
hypercubic lattice of linear size N (N ≡ Nd).The Hamiltonian is given by

H = K + Vα =
1
2

N
∑
i=1

~L2
i +

1
2Ñ

N
∑
i=1

N
∑

j = 1
j 6= i

1− ~Si · ~Sj

rα
ij

, (6)

where α ≥ 0 controls the interaction range, rij denotes the distance between rotators i and j, the angular
momenta ~Li coincide with the angular velocities since we are considering unit moments of inertia.
Moreover, the prefactor with Ñ (α, d) ≡ ∑j 6=i

1
rα

ij
in the potential energy is convenient in order to get

a total potential energy Vα which scales linearly with N [25], like the total kinetic energy.

2.1. The α = 0 and α→ ∞ Limiting Cases

It is easily seen that, for α = 0, Ñ (0, d) = N − 1 ∼ N , so in the infinite-range case the total
potential energy reduces to

V0 =
1

2N
N
∑
i=1

N
∑
j=1

(1− ~Si · ~Sj) =
N
2
− 1

2N
N
∑
i=1

~Si

N
∑
j=1

~Sj =
N
2
(1−M2), (7)
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where the restriction j 6= i has been trivially dismissed since ~S 2
i = 1, and the order parameter M is the

norm of the total magnetization vector

~M =
1
N
N
∑
i=1

~Si. (8)

In addition, following the usual prescription for the kinetic temperature, T = 2
nN 〈K〉 =

1
N 〈K〉, where

n = 2 represents the number of degrees of freedom per spin (three components of the spin vector minus
the constant norm restriction). Thus, considering the energy per particle U ≡ 〈H〉N in Hamiltonian (6)
with α = 0 together with Equation (7), one gets

U = T +
1
2
(1−M2), (9)

which, together with the consistency equation for the magnetization [1–3],

M = L(M/T), (10)

with the Langevin function L(x) ≡ coth x − 1
x , allows us to determine a relation between the

thermodynamical variables of the model, which undergoes a second-order phase transition for the
critical values (Tc, Uc) = ( 1

3 , 5
6 ). The caloric curve, as well as the M− T curve and some other details

of the model can be found in Ref. [47]. It can be shown that [27], within BG statistical mechanics,
Equations (9) and (10) are not only valid for α = 0 but also throughout the long-range regime
0 ≤ α/d < 1.

No analytical results are available in the short-range regime except for the limiting case α→ ∞,
which corresponds to nearest-neighbors interactions, where Ñ (∞, d) = 2d (that is, the number of
nearest-neighbour spins on a d-dimensional hypercubic lattice) and the potential energy reduces to

V∞ =
1

2d ∑
〈i,j〉

(1− ~Si · ~Sj) , (11)

where 〈i, j〉 indicates that sites labelled i and j are nearest neighbours. The equation for the internal
energy in the one-dimensional case reads

U = T +
1
2
(1−L(1/2T)), (12)

while M = 0, ∀T 6= 0 (there is no phase transition in the d = 1 short-range regime).

2.2. Equations of Motion

From the definition ~Li = ~Si × ~̇Si one trivially gets ~̇Si = ~Li × ~Si. In addition, ~̇Li = ~Si × ~̈Si =

−~Si × ∂Vα

∂~Si
, so the equations of motion are given by

~̇Si = ~Li × ~Si (13)

~̇Li = ~Si × ~Mi (14)

where

~Mi ≡ −
∂Vα

∂~Si
=

1
Ñ

N
∑
j 6=i

~Sj

rα
ij

, (15)

carries the contribution of the interactions of spin i with all (N − 1) other spins. This quantity becomes
the total magnetization vector of (8) when α = 0, and the sum 1

2d ∑〈i,j〉 ~Sj, extended to the nearest
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neighbours of spin i, when α = ∞. From Equations (13) and (14) not only follows the aforementioned
conservation of the spin norms, since ~̇S 2

i = 2~Si · ~Si = 2~Si · (~Li × ~Si) = 0, but also the conservation of

the total angular momentum~L = ∑Ni=1
~Li, since ~̇L = ∑Ni=1

~̇Li =
1
Ñ ∑Ni=1 ∑j 6=i

~Si×~Sj
rα

ij
=~0.

3. Results

We have numerically integrated the equations of motion (13) and (14) by means of the standard
fourth-order Runge-Kutta algorithm with an integration step h = 0.02. It is well known that numerical
methods, like the one used herein, present an energy drift for long-time simulations [48–50]; using the
integration step above, we have checked that the total energy was preserved within a relative precision
10−5.We have considered two different kinds of initial conditions. In the first one we take random
sets of angular momenta {~Li}, with components drawn from a symmetric uniform distribution and
then redefined in order to yield zero total momentum. As for the spins {~Si}, two of their components
are randomly chosen, while the third one is obtained by the orthogonality restriction ~Si ·~Li = 0 (∀i).
Then, we get spins of unit length dividing by the norm. Finally, the angular momenta are rescaled
so as to obtain the desired total energy per particle U which remains virtually constant throughout
our microcanonical ensemble simulations. This process yields a poorly magnetized initial state with
~M(0) ∼ ~0 and Vα(0) ∼ 0.5. In the second kind of initial conditions, we take all the spins equal and
normalized, so as to get a fully magnetized state with M(0) = 1 and zero potential energy. Then we
randomly choose the angular momenta in the perpendicular plane to finally translate and rescale them
to get zero total angular momentum and the desired total energy. Large time-limit qualitative and
quantitative results coincide with both kinds of initial conditions.

3.1. Time-Averaged Momenta and Energy One-Particle Distributions

As already shown in Ref. [47], for values of the total energy below the critical one but close
enough to the transition, after a short initial transient, the kinetic temperature of the system,
T(t) = 1

N 〈K(t)〉, decreases to a first plateau value given by T = U − 1/2 (consider M = 0 in
Equation (9)), corresponding to a nonmagnetized state. Only after waiting long enough, the system
abandons the QSS when the temperature as well as the magnetization rise to reach the values predicted
by Equation (9) and stays forever in this second plateau, which is non Boltzmannian though its
temperature coincides with that associated with BG statistics. It is in this (nearly) final QSS where we
choose a time window [t0, t f ] of width ∆t = W × h and calculate the averaged-in-time momenta as
〈~Li〉 = 1

W+1 ∑W
k=0

~Li(t0 + kh). Then we put together all the 3N averaged-in-time angular momenta
components to build the corresponding histograms. In Figure 1 we present the probability distribution
functions of time-averaged angular momenta P(〈Li〉) for one-, two-, and three-dimensional systems.
These distributions were computed for systems with ~M(0) ∼ 0 initial conditions, total energy per
particle U = 0.76 < Uc = 5/6, size N = 262144 = (512)2 = (64)3 (corresponding to d = 1, 2,
and 3), and α/d = 0.9, that is, in the long-range-interaction regime. A clear collapse of all three
distributions into a q-Gaussian (cf. Equation (4)) is exhibited, with qL(α/d) = 1.42 and βL = 4.44; the
maximum values P0 ≡ P(〈Li〉 = 0) fluctuated slightly with the lattice dimensionality, being found as
P0 = 0.27 (d = 1), P0 = 0.19 (d = 2), and P0 = 0.22 (d = 3).Further results exhibiting values of qL as
a function of the ratio α/d will be published elsewhere.
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Figure 1. Probability distribution functions of time-averaged angular momenta P(〈Li〉) are represented
in conveniently rescaled variables, for one-, two-, and three-dimensional systems with N = 262,144
rotators and α/d = 0.9. The three data sets collapse into a q-Gaussian (full line), P(〈Li〉) =

P0 expqL
(−βL(〈Li〉P0)

2) (cf. Equation (4)), with qL(α/d) = 1.42 and βL = 4.44; the maximum values
P0 ≡ P(〈Li〉 = 0) varied slightly with the lattice dimensionality (see text). In the left inset we
preset the evolution in time of the kinetic temperature. A first plateau at a temperature close to
TQSS(α/d) = U − 1

2 , whose duration depends on d, is observed. After the transition to the second
plateau, the temperature reaches the equilibrium value TBG(α/d) = 0.3118 predicted by the BG caloric
curve [33]; the time window [60,000, 100,000] used for the time averages is indicated. In the inset on
the right we represent the same data in the q-logarithm (qL = 1.42) of Equation (2) versus (〈Li〉P0)

2,
where the slope of the full straight line yields the value of βL.

In Figure 2 we exhibit the probability distribution functions of time-averaged angular momenta
P(〈Li〉) for α/d = 1.6, that is, in the short-range regime, with the same initial conditions and parameters
used in Figure 1. Now, the collapse into a single curve occurs only around the origin; next we point
out possible reasons for the vital differences between the probability distributions shown in Figures 1
and 2. (i) The distinction in the time evolution of the kinetic temperature, shown in the left insets
in both figures. Particularly, one should emphasize that the equilibrium temperature (along which
time averages 〈Li〉 were computed) in Figure 2 depends on α and d separately. (ii) Finite-size effects,
which become more significant in the limit of short-range interactions, might be playing an important
role. (iii) At the BG equilibrium, the corresponding short-range-interaction models present further
relevant distinctions, e.g., in d = 1 there is no phase transition, whereas an ordered state exists
in d = 3 [1–3]. (iv) The maximum Lyapunov exponents show significant differences in the cases
investigated in Figures 1 and 2, as we shall see below.
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Figure 2. Probability distribution functions of time-averaged angular momenta P(〈Li〉) are represented
in conveniently rescaled variables (P0 ≡ P(〈Li〉 = 0)) for one-, two-, and three-dimensional systems
with N = 262,144 rotators and α/d = 1.6. The data cannot be adequately fitted by a single q-Gaussian;
a Gaussian (dashed line) is exhibited for comparison, showing a good fitting around the central region
only, i.e., for small values of 〈Li〉. The left inset exhibits the time evolution of the kinetic temperature:
one sees that the QSS is not present in the short-range regime and the system rapidly reaches its
equilibrium temperature which depends on α and d separately; the same time window shown in
Figure 1 has been used for the time averages.

We have also calculated the probability distributions of time-averaged individual energies, i.e.,

〈Ei〉 = 1
W+1 ∑W

k=0 Ei(t0 + kh), with Ei =
1
2
~L2

i +
1

2Ñ ∑Nj 6=i
1−~Si ·~Sj

rα
ij

. Results for the long-range-interaction

regime, with α/d = 0.9 and the same initial conditions and parameter values considered in Figure 1,
are shown in Figure 3. Again, all data collapse, now in the energy range Ei ≥ µ (see details in Figure 3);
since different dimensions present distinct densities of states, the data does not collapse near the
origin. One should call attention to the fact that the value qE = 1.3 of Figure 3 coincides with the
recent result for the α-XY model, obtained also with α/d = 0.9 [34]. Moreover, as found in the study
of the α-XY model [34], a curious discrepancy in the values of the index q occurred in the estimates
of Figures 1 and 3, i.e., qL > qE. Whether this may be a real effect, or a consequence of finite-size
effects, remains a point for further investigation. Moreover, similarly to Figure 2, the corresponding
probability distributions P(〈Ei〉) in the short-range regime (for α/d = 1.6), do not reveal a collapse of
the curves into a q-exponential, so that the significant distinctions in the short-range regime persist.
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Figure 3. Probability distribution functions of time-averaged individual energies P(〈Ei〉) are
represented versus 〈Ei〉 for one-, two-, and three-dimensional systems. The parameters are the same as
in Figure 1, i.e.,N = 262,144 rotators, α/d = 0.9, and the same time window. All data are well fitted by

a shifted q-exponential (cf. Equation (5)) of the form Ae−βE(〈Ei〉−µ)
qE , with the values of A, qE, βE, and µ

specified. In the inset we exhibit the same data in the q-logarithm (qE = 1.3) of Equation (2) versus
〈Ei〉, which, as expected, approaches a straight line.

3.2. Nearest-Neighbour Limit

In order to shed more light on the short-range regime, we shall focus now on the limiting α→ ∞
case. We have calculated the equilibrium temperature, as well as the magnetization as a function of
the total energy per particle and the dimension. Analytical results are available only for the caloric
curve in the one-dimensional case, as given by Equation (12) and shown in Figure 4, where we
obtain an excellent agreement between the theoretical results and the numerical ones obtained in
our microcanonical ensemble simulations with M(0) = 1 initial conditions (which are mandatory in
this case since, for small values of the constant total energy per particle we need to have vanishing
initial potential energy and the potential energy for the ~M(0) ∼ 0 initial conditions is V ∼ 0.5) and
N = 46,656. The caloric curve corresponding to the long-range regime 0 ≤ α/d < 1 is also shown in
Figure 4 where it can be seen that the temperature coincides in both limits α → 0 and α → ∞ in all
dimensions within the energy range 0 ≤ U ≤ 0.25. For larger values of U, the equilibrium temperature
decreases with the dimension in the nearest neighbours limit, which is to be expected since the number
of connections and thus the potential energy increases with the dimension while the total energy
is kept constant so the kinetic energy and thus the temperature must decrease. Finally, it is worth
mentioning that in the energy range U > Uc, the temperature versus energy curves for d > 1 are
surprisingly well approximated by Equation (12) with the Langenvin function evaluated at 1/2dT.

Figure 5 shows the M vs. U curve for the long-range regime compared with the nearest neighbours
regime curve for 1, 2 and 3 dimensions with the same parameter values and initial conditions used in
Figure 4. As expected, in one dimension one gets M = 0 for any value of U since there is no phase
transition for d = 1. For d = 3 the order parameter M vanishes at the critical value U ≡ U3d ∼ 0.6 for
which the ferromagnetic-paramagnetic transition takes place. In dimension d = 2, it is observed a less
sharp decay of the magnetization, which vanishes for U ≡ U2d ∼ 3.5.
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Figure 4. Analytic caloric curve for the Boltzmann-Gibbs (BG) long-range (full line) and
one-dimensional nearest-neighbour (black dashed line) models compared with nearest-neighbour
(NN) molecular dynamics simulation results for dimensions d = 1, 2 and 3 and system size
N =46,656= (216)2 = (36)3. Fully magnetized initial state has been considered in all cases. The dashed
lines connecting d = 2 and d = 3 numerical results for U > Uc correspond to Equation (12) with L
evaluated at 1/2dT.
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Figure 5. Analytic M − U curve for the BG long-range (full line) model compared with
nearest-neighbour (NN) molecular dynamics simulation results for dimensions d = 1, 2 and 3 and
system size N = 46,656 = (216)2 = (36)3. Fully magnetized initial state has been considered in
all cases.

3.3. Size-Scaling of the Largest Lyapunov Exponent

The maximum Lyapunov exponent characterizes the rate of separation of two initially close orbits.
It is defined as λ = limt→∞

1
t ln d(t)

d(0) , where d(t) is the distance between orbits, measured in phase space,
at time t. In order to numerically calculate it, we consider the usual approach given in Ref. [51]. Figure 6
shows the obtained values of the maximum Lyapunov exponents for one-dimensional systems of sizes
N = 1000, 2000, . . . , 10,000, energy per particle U = 5.0 and interaction range α = 0.0, 0.2, . . . , 1.6.
An average over five different realizations of disorder has been taken in order to improve statistics.
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In a log-log plot the relation λ ∼ N−κ takes the form of a straight line with slope −κ, which has then
been obtained via a least squares fitting. Figures 7 and 8 show the corresponding results for two- and
three-dimensional systems for the same values of α/d as in Figure 6 and the system sizes specified in
the captions. Figure 9 displays the values of κ obtained in Figures 6–8 versus α/d, where a clear collapse
of the data is observed, with κ(0) ∼ 0.3 and κ ∼ 0 for α/d ≥ αc ≡ 1.6. The hypothesis κ = κ(α/d) is
thus confirmed. It is worth mentioning that we have an intermediate regime 1 ≤ α/d ≤ αc with zero
Lyapunov exponent and short-range interactions. This curious anomaly demands further study to
check whether it is a finite-size effect or something else.
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Figure 6. Maximum Lyapunov exponent as a function of the system size for U = 5.0, d = 1 and
different values of α. The considered system sizes are N = 103, 2× 103, 3× 103 . . . , 9× 103 and 104.
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Figure 7. Maximum Lyapunov exponent as a function of the system size for U = 5.0, d = 2 and
different values of α. The considered system sizes are N = (30)2, (40)2, (50)2 . . . , (100)2.
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Figure 8. Maximum Lyapunov exponent as a function of the system size for U = 5.0, d = 3 and different
values of α. The considered system sizes are N = (10)3, (12)3, (14)3, (16)3, (18)3, (20)3 and (22)3.
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Figure 9. Exponent κ(α/d) in the scaling of the maximum Lyapunov exponent λ ∼ N−κ . A collapse
of results of data from Figures 6–8 is observed.

As mentioned in the beginning of this section, we have used the standard fourth-order
Runge-Kutta algorithm for the integration of the equations of motion, by monitoring that the total
energy was preserved within a relative precision 10−5 (at least). However, further simulations using
specially designed symplectic methods for Hamiltonian problems [48–50] are welcome.

4. Conclusions

We have here focused on the classical inertial Heisenberg model in d = 1, 2, 3 dimensions with
arbitrarily-ranged interactions, characterized by a power-law decay r−α (α ≥ 0), with the distance
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r between rotators. Such an α-Heisenberg model has been studied previously only in dimension
d = 1 [47], with a special emphasis on the time evolution of its kinetic temperature, where it was
shown to exhibit a clear QSS in the long-range-interaction regime, with its duration decreasing for
increasing values of α. Herein, the properties of the model have been preliminary analyzed in d = 1, 2, 3
dimensions, within first-principle numerical calculations, particularly the one-particle moment and
energy distributions, as well as the largest Lyapunov exponent.

The Lyapunov exponent scales with the size through the exponent κ, which was shown to depend
only on the ratio α/d. However, intriguingly enough, the results differ from those already known for
the quite analogous α-XY and α-Fermi-Pasta-Ulam models. Indeed, for the XY and Fermi-Pasta-Ulam
models, κ monotonically decreases for increasing α/d and vanishes at α/d = 1. This fact is in variance
with the result obtained for the Heisenberg model, for which κ decreases for increasing α/d but only
appears to vanish above α/d = 1, nearly at α/d ' 1.6.

We have illustrated the one-particle momenta and energy distributions in the long-range region
with one example, namely for α/d = 0.9, and the results have shown a clear collapse of data and
were well fitted with a q-Gaussian and a q-exponential respectively. As found in the recent study
of the α-XY model [34], an interesting discrepancy in the values of the index q occurred, leading to
qL > qE. Whether this may be a real effect, or a consequence of finite-size effects, remains a point for
further investigation.In addition, we have analyzed similar distributions in the short-range region,
namely α/d = 1.6. In this case, the results are quite more complex, in the sense that no clear collapse,
and consequently, no adequate fitting occurs.

The present numerical analysis is consistent with the theoretical prevision of a change of behavior
at α/d = 1, in agreement with recent results obtained in other long-range-interaction models, such as
a generalized Fermi-Pasta-Ulam model [35–39], complex networks with preferential attachment
growth [40,41], and a system of particles under overdamped motion interacting repulsively [42].
In future works we intend to cover the entire α/d ≥ 0 region in order to clarify further this point,
and particularly, to investigate why some of the Heisenberg results found herein sensibly differ from
those available in the literature for the XY and Fermi-Pasta-Ulam models.
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