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Abstract: In this paper, a novel analysis method based on recurrence networks is proposed to
characterize the evolution of dynamical systems. Through phase space reconstruction, a time series
was transformed into a high-dimensional recurrence network and a corresponding low-dimensional
recurrence network, respectively. Then, two appropriate statistics, the correlation coefficient of node
degrees (CCND) and the edge similarity, were proposed to unravel the evolution properties of the
considered signal. Through the investigation of the time series with distinct dynamics, different
patterns in the decline rate of the CCND at different network dimensions were observed. Interestingly,
an exponential scaling emerged in the CCND analysis for the chaotic time series. Moreover, it was
demonstrated that the edge similarity can further characterize dynamical systems and provide
detailed information on the studied time series. A method based on the fluctuation of edge similarities
for neighboring edge groups was proposed to determine the number of groups that the edges should
be partitioned into. Through the analysis of chaotic series corrupted by noise, it was demonstrated that
both the CCND and edge similarity derived from different time series are robust under additive noise.
Finally, the application of the proposed method to ventricular time series showed its effectiveness in
differentiating healthy subjects from ventricular tachycardia (VT) patients.
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1. Introduction

In the last few decades, complex network theory [1–8] has undergone vast developments since
the first reports of small world networks [9] and scale free networks [10]. The theory of complex
networks provides us with a new perspective to understand complex systems. A resulting application
field of these theories is the use of complex network methods to identify the characteristics of time
series. Zhang and Small [11,12] first attempted the transformation from the pseudo-periodic time
series to a complex network, which considered each cycle of a time series as a node in the network.
Lacasa et al. [13] proposed a visibility graph method by taking individual observations as nodes and
establishing connectivity according to a partial convexity constraint. McCullough et al. and Sun et
al. [14,15] proposed ordinal partition networks that divide the phase space of a dynamical system into
K disjoint sets and transform the evolution of the system into a sequence of symbols. The network
construction methods mentioned above have the specific advantage of a low cost in computations
because the embedding step can be avoided, but it may be difficult for them to obtain sufficient
information from high-dimensional systems.

Takens’ embedding theorem [16] for phase space reconstruction states that, if the time delay and
embedding dimension are chosen appropriately, the distribution of state vectors in phase space will
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reflect the underlying dynamics of the original systems. Donner et al. [17] provided a full classification
of networks based on neighborhood relationships between state vectors in the reconstructed phase
space of a dynamical system, distinguishing between the k-nearest neighbor networks [18], adaptive
nearest neighbor networks [19], and epsilon-recurrence networks [20–22]. The epsilon-recurrence
networks form the class of recurrence networks in the strict sense, according to the most common
definition of recurrences in phase space [23]. In this type of time series networks, nodes represent state
vectors in the reconstructed phase space, and the distance thresholds that determine the connection
between nodes are chosen according to a fixed link density or a fixed phase space distance [20–22].
If the distance between two nodes is smaller than or equal to the threshold, two nodes are considered
to be connected. The traditional statistical characteristics of recurrence networks only reflect the
static properties of a time series, such as the homogeneity of the spatial filling, but the time-ordering
information is lost in this framework.

In this paper, a novel method based on epsilon-recurrence networks is proposed for the study of
the evolution properties of dynamical systems. For each time series, a high-dimensional recurrence
network and a corresponding low-dimensional recurrence network were constructed. The network
dimension L represents the number of state vectors that form a node in the network. Specifically, the
nodes of the L-dimensional recurrence network are defined by the sequence of L consecutive state
vectors, while the nodes of the low-dimensional recurrence network represent single state vectors in
phase space. The connection is determined by the distance between the nodes. Two topological
statistics, the correlation coefficient of the node degrees and edge similarity, were proposed to
characterize the similarity between the high-dimensional recurrence network and the corresponding
low-dimensional recurrence network. By analyzing numerical data derived from the Hénon map,
lkeda map, folded-towel map, and white noise, the capability of these measures to characterize the
dynamic properties of time series in the presence of significant noise was demonstrated. Finally, the
application to human electrocardiogram (ECG) recordings showed that network-based statistics can
effectively distinguish the cardiac system in both the healthy and ventricular tachycardia (VT) states.

The remainder of this paper is organized as follows: Section 2 introduces the procedures required
for the transformation of time series into networks and some topological parameters, which were
used to study the similarity between networks; the applications of the proposed method to synthetic
data and ECG data are shown in Sections 3 and 4, respectively; and finally, conclusions are drawn in
Section 5.

2. Network Construction from Time Series

We first introduce the procedures required for the construction of complex networks. The process
is shown in Figure 1.
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Figure 1. The process of network construction.

Beginning with the phase space reconstruction, according to Takens’ embedding theorem [16],
a time delay can be used to reconstruct the phase space from a time series. For a time series with N
samples, {ri}, the state vectors in a phase space, can be defined as follows:

Ri =
{

ri, ri+τ , . . . , ri+(m−1)τ

} (
i = 1, 2, . . . , N′

)
(1)
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where τ is the time delay; m is the embedding dimension; and N′ is the number of reconstructed state
vectors, which is equal to N − (m− 1)τ.

By reconstructing the phase space from a given time series, a series of state vectors
R1, R2, . . . , Rk, . . . , RN′ can be obtained. Using these state vectors, we can then construct a
high-dimensional recurrence network and a corresponding low-dimensional recurrence network,
respectively. A node of the L-dimensional recurrence network is defined by the sequence of
L consecutive state vectors, for example, YL

i = {Ri, Ri+1, · · · , Ri+L−1} is the i-th node in the
L-dimensional recurrence network. Each node represents a segment of the phase space trajectory. The
distance matrix DL = (dij

L) between nodes can be obtained by the equation below:

dij
L = max

(∥∥Ri − Rj
∥∥

∞,
∥∥Ri+1 − Rj+1

∥∥
∞, . . . ,

∥∥Ri+L−1 − Rj+L−1
∥∥

∞

)
(2)

where ‖ ‖∞ denotes the maximum norm. For all nodes in the network, this generates a distance
matrix, DL = (dij

L), which reflects the distance between segments of the phase space trajectories
with length L. By choosing a threshold ∆L for the L-dimensional recurrence network, we obtain the
adjacency matrix, AL = (aij

L): aij
L = 1 if dij

L ≤ ∆L, while aij
L = 0 if dij

L > ∆L. The conditions aij
L = 1 and

aij
L = 0 correspond to connection and disconnection, respectively. The constructed network contains

N = N′ − L + 1 nodes.
Subsequently, a corresponding low-dimensional recurrence network, with the same number of

nodes N as the L-dimensional network, is constructed. Each node of the low-dimensional recurrence
network is defined as a state vector in the reconstructed phase space, for example, Y1

i = Ri (i =

1, 2, . . . , N) is the i-th node in the network. The connection between nodes i and j is determined by
their distance, which is defined below:

dij
1 =

∥∥Ri − Rj
∥∥

∞ (3)

A threshold ∆1 is set for the low-dimensional recurrence network. The distance matrix, D1 = (dij
1 ),

can then be converted to an adjacency matrix, A1 = (aij
1 ): aij

1 = 1 if dij
1 ≤ ∆1, while aij

1 = 0 if dij
1 > ∆1.

Similar to the high-dimensional case, aij
1 = 1 and aij

1 = 0 correspond to connection and disconnection,
respectively. To avoid self-connection of nodes, we defined aii

1 = aii
L = 0.

The construction of the network is highly dependent on the threshold, ∆, which should be tailored
to specific questions that need to be solved. Several strategies for the selection of the threshold have
been proposed. It was suggested that choosing a fixed link density is helpful for the estimation of
the dynamical properties in many systems [23–25]. Therefore, we determined the threshold for the
L-dimensional recurrence network, ∆L, by setting a fixed link density, ρL, which is defined as follows:

ρL =
1

N(N − 1)

N

∑
i,j=1

aij
L (4)

According to the procedures for network construction introduced above, it is known that
the nodes Y1

i in low-dimensional recurrence networks correspond to the first components of the
state vectors—represented by the nodes YL

i in high-dimensional recurrence networks. For chaotic
(deterministic) systems, the evolution trajectories of two close state vectors remain close together
for several time steps, thus the high-dimensional recurrence network and the corresponding
low-dimensional network are similar. As for random systems, the evolution trajectories starting
from nearby initial conditions diverge rapidly over time, leading to a large difference between the
high-dimensional network and corresponding low-dimensional network. Therefore, the similarity
between the two networks can reflect the evolution properties of the studied dynamical systems that are
captured in a single observational time series. In this study, the link densities of the high-dimensional
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recurrence network and the corresponding low-dimensional recurrence network were set at the same
value, so that the two networks were comparable.

According to the analysis above, it can be seen that the similarity between the high-dimensional
recurrence network and the corresponding low-dimensional recurrence network is related to the
evolution properties of dynamical systems. A quantitative measure is thus proposed to characterize
the similarity between networks by considering the correlation of node degrees. The degree of node i
in an L-dimensional recurrence network represents the number of nodes that are directly connected
with i, as represented below:

Ei
L =

N

∑
j=1

aij
L (5)

The correlation coefficient of the node degree between an L-dimensional recurrence network and
the corresponding low-dimensional recurrence network is defined as follows:

CCND =

N
∑

i=1
[Ei

L − 〈EL〉] · [Ei
1 − 〈E1〉]√

N
∑

i=1
[Ei

L − 〈EL〉]
2 ·

√
N
∑

i=1
[Ei

1 − 〈E1〉]
2

(6)

where 〈EL〉 = ∑N
i=1 Ei

L/N and 〈E1〉 = ∑N
i=1 Ei

1/N represent the average node degrees of an
L-dimensional recurrence network and the corresponding low-dimensional recurrence network,
respectively. The correlation measure correlation coefficient of node degrees (CCND) is restricted
to the range [−1, 1] and CCND = 1, 0, and −1 represent perfect correlation, no correlation, and
perfect anti-correlation, respectively. It should be noted that in a low-dimensional recurrence network
(i.e., Y1

i = Ri (i = 1, 2, . . . , N)), only the first N nodes are considered. This is because of the fact that
the main purpose of Equation (6) is to study to what extent the node degrees of an L-dimensional
recurrence network are related to their initial states (corresponding low-dimensional recurrence
network) after L− 1 time steps. Because of the finite length of the studied time series, there were no
corresponding nodes in L-dimensional recurrence networks for nodes Y1

i (i > N), therefore, these
nodes could be neglected.

The degree of a node in low-dimensional recurrence networks reflects the local phase space density,
while the degree of a node in high-dimensional recurrence networks represents the density of state
vectors in the high-dimensional phase space. For a deterministic system, two close state vectors remain
close together during the evolution for several time steps, so the node degrees of high-dimensional
recurrence networks are strongly correlated with those of the corresponding low-dimensional
recurrence networks. However, if the system is uncorrelated or weakly correlated, the evolution
trajectories are random and unpredictable. This results in a smaller correlation of node degrees
between the high-dimensional recurrence network and the corresponding low-dimensional recurrence
network. Therefore, the CCND can characterize the evolution properties of dynamical systems.

Another measure called the edge similarity is proposed to study the relationship between
the distance of the state vectors and the similarity of their evolution trajectories, which cannot be
characterized by CCND. For an edge between two nodes i and j in the low-dimensional recurrence
network, a weight, wij, is assigned according to its distance, dij

1 . The weighted edges are partitioned
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into n groups according to a mapping rule, f , and each group is labeled by an index, I. The mapping
rule, f , is defined as follows:

f (wij) =



1 0 ≤ (wij −min(wij))/w ≤ 1
· · · · · ·
I I − 1 < (wij −min(wij))/w ≤ I
· · · · · ·
n n− 1 < (wij −min(wij))/w ≤ n

(7)

where w = (max(wij)−min(wij))/n indicates the size of each group. The index, I, reflects the values
of edge weights that belong to that group (i.e., an edge with a smaller weight is assigned to a group
with a smaller index and vice versa). The edge similarity between the L-dimensional recurrence
network and the low-dimensional recurrence network in the I-th group is then defined as follows:

η(I) =
C(I)
N(I)

(8)

where N(I) is the number of edges that belong to the I-th group and C(I) is the number of edges that
satisfy aij

1 = aij
L = 1 in the I-th group. Thus, the edge similarity, η(I), represents the probability that an

edge in the low-dimensional recurrence network will also remain in the high-dimensional recurrence
network within group I. The dynamic properties of time series are characterized by the differences of
edge similarities between different groups.

3. Analysis of Synthetic Data

We first illustrated the potential of the proposed method by several typical dynamic systems;
namely, the (1) Hénon map, (2) lkeda map, (3) folded-towel map, and (4) white noise.

The Hénon map [26] is a discrete-time dynamical system. It is one of the examples of dynamical
systems that exhibit chaotic behavior, which has been studied the most. The Hénon map takes a point
(xi, yi) in the plane and maps it to a new point, as shown below:{

xi+1 = 1− ax2
i + yi

yi+1 = bxi
(9)

The map depends on two parameters a and b. We chose a = 1.43 and b = 0.3, which determined
that the Hénon map is chaotic.

The lkeda map was first proposed by lkeda [27] as a model of light going around a nonlinear
optical resonator, which is defined as follows:{

xi+1 = 1 + µ(xi cos ti − yi sin ti)

yi+1 = µ(xi sin ti + yi cos ti)
(10)

where µ is a parameter and ti = 0.4− 6/(1 + x2
i + y2

i ). For µ ≥ 0.6, this system has a chaotic attractor.
In this study, we chose µ = 0.7.

We also considered the following folded-towel map, introduced by Rössler [28]:
xi+1 = axi(1− xi)− 0.05(yi + 0.35)(1− 2zi)

yi+1 = 0.1((yi + 0.35)(1 + 2zi)− 1)(1− 1.9xi)

zi+1 = 3.78zi(1− zi) + byi

(11)

For a = 1.9 and b = 0.2, this map is hyper-chaotic with two positive Lyapunov exponents, so it
can generate more complex dynamics than the Hénon map and lkeda map.
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We applied the proposed method to time series from different models and characterized the
system dynamics by the network-based measures proposed in the last section. All the data were
derived from the x components of the chaotic maps. For each case, we computed a time series of
length 6000 and the first 1000 data points were removed in order to exclude transient dynamics.
Moreover, the mutual information method [29] was used to determine the time delay τ and a large
embedding dimension m = 5 was chosen to reliably unfold the fine structure [19]. It should be
noted that the mutual information method cannot be directly applied to the discrete chaotic time
series. This is because the sampling interval of the discrete chaotic time series is large, which causes
rapid variations in the mutual information with respect to τ. The resulting curves of the mutual
information calculated from the discrete chaotic series are thus similar to the curves from the white
noise series. Thus, the discrete chaotic time series should be interpolated before determining its
time delay. For any two adjacent data points, T data points were interpolated with a spline function
in this study. The data and the reconstructed state vectors after interpolation can be represented
as {ri} (i = 1, 2, . . . , M) and Ri =

{
ri, ri+τ , . . . , ri+(m−1)τ

}
(i = 1, 2, . . . , M′), respectively, where

M = (N − 1)T + N and M′ = M − (m − 1)τ. Thus, each node of an L-dimensional recurrence
network is formed by L′ = (L − 1)T + L consecutive state vectors, which can be represented as
YL

i =
{

Ri, Ri+1, . . . , Ri+L′−1
} (

i = 1, 2, . . . , M
)
, where M = M′ − L′ + 1. In this study, we chose

T = 9. As the white noise series has no attractor structure, its time delay was set to 1, while for other
dynamical systems, the time delay was determined by the mutual information method [29].

According to previous studies [25,30], a small distance threshold may be preferable for the
construction of recurrence networks from a time series. Because a large threshold may obscure
or conceal the local characteristics by over-connecting the nodes, we began the analysis with a
relatively small link density by setting ρ to 0.05. Figure 2a shows the CCND as a function of the
network dimension L. The CCNDs derived from different systems all decreased with the increase of L.
This indicates that higher-dimensional recurrence networks are less correlated with the corresponding
low-dimensional recurrence networks. Moreover, the CCNDs generated from different types of time
series exhibited distinct decreasing patterns. For chaotic series, an exponential behavior was observed
between the CCND and L (i.e., CCND ∝ e−γL). The parameter γ is an exponential scaling factor, which
indicates the rate of decrease of the CCND. It was found that the scaling factor, γ, resulting from the
folded-towel map, was larger than those from the lkeda map and the Hénon map. In comparison, the
CCND resulting from white noise series was smaller than that of the chaotic series, especially for small
values of L, and no exponential relationship was observed.

These observations indicate that the dynamic properties of the system under study play an
important role in shaping the corresponding network properties. The findings can be explained by
the evolutionary processes of different systems. One possible reason for the exponential decrease
of the CCND is its dependence on the variation in the number of nearby trajectories of nodes over
time. For chaotic systems, it is largely dominated by the characteristic of the exponential divergence
of nearby state vectors, so the CCND derived from chaotic series also shows a similar exponential
behavior. However, the reasoning is heuristic and not yet supported by some deep theories, which
needs further research in the future. The semi-logarithmic plot ln(CCND) ∝ L can be observed as
being approximate to a straight line, with a slope that exhibits a statistical relationship with the largest
Lyapunov exponent, λ. The largest Lyapunov exponents of time series derived from the lkeda map,
Hénon map, and folded-towel map were 0.453, 0.418, and 0.693, respectively, which were calculated
by the Time Series Analysis (TISEAN) software (TISEAN 2.1) package [31]. It is clear that a chaotic
series with larger λ results in a steeper slope of the CCND because the chaotic series with a larger
λ is less regular and less predictable, leading to a rapid decrease in the correlation of node degrees
between a high-dimensional recurrence network and the corresponding low-dimensional recurrence
network. As for white noise series, the process is completely stochastic and unrelated to its previous
state. The irregularity and unpredictability imply that there is no statistical relationship between
the distance of the two state vectors and the similarity of their evolution trajectories. Hence, the
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CCND resulting from the white noise series decreased rapidly with the increase of L. It should be
noted that the CCNDs derived from different time series tended to saturate for the high-dimensional
recurrence network. This is because higher-dimensional recurrence networks change fewer and fewer
of the distance values between the nodes [24], which was also observed in numerical investigations
associated with the false nearest neighbor method [32]. In addition, the saturation behavior observed
was also partially the result of the finite sample size.
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We then considered the choice of the link density in order to make sure that the constructed
networks can truly represent the characteristics of dynamical systems. To study this, we further
calculated the CCNDs from different systems by varying ρ from 0.1 to 0.4, as shown in Figure 2b–e.
It was found that for ρ = 0.1, the differences between the curves of CCNDs from various time series
were large, which was similar to the case of ρ = 0.05. This indicates that the results are robust for a
relatively small ρ. However, if ρ continues to increase, the curves of CCNDs for different series will
approach each other and gradually become difficult to distinguish. This is because, with the increase
of ρ, many nodes that are far away from each other are connected. This results in obscuration or
concealment of the evolution properties of dynamical systems [33]. Therefore, a value of link density ρ

that does not exceed 0.1 is preferable for a feasible analysis of the constructed network.
The effectiveness of the CCND analysis for the evaluation of the evolution properties of dynamical

systems was confirmed. We also illustrated that the edge similarity introduced in Section 2 can further
characterize different time series. In Figure 3a, we show the edge similarities of different I with
network dimension L = 2, link density ρ = 0.1, and number of groups n = 30. The edge similarities, η,
derived from the lkeda map and the Hénon map remained around 1 until I = 15 and then decreased
rapidly with I, while the edge similarity, η, resulting from the folded-towel map remained at around
1 for I < 11 and decreased at smaller I (I = 11). As for white noise series, the edge similarity, η,
was independent of I and remained stable at around 0.681. These interesting results are relevant to
the evolutionary processes of different dynamical systems. It is well known that a chaotic map is a
deterministic system, with the nature of sensitivity to initial conditions. The short-term evolution of
trajectories starting from nearby initial conditions is strongly correlated. Thus, for chaotic systems,
close state vectors remain close together for several time steps and the edge similarities for small I are
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large. In comparison, the trajectories evolving from far away state vectors will decrease in similarity,
resulting in small edge similarities η for large I. The edge similarities, η, resulting from the folded-towel
map were obviously smaller than those from the lkeda and the Hénon maps for I ∈ (11, 30), because
the time series derived from the folded-towel map was more chaotic and unpredictable. As for the
white noise series, the evolution was totally random and independent of the previous states, so the
edge similarities of different groups were similar.

From the above analysis, it can be seen that the evolution properties of different dynamical systems
can be well characterized by the edge similarity. Moreover, the effect of the network dimension, L, on
the edge similarity was further evaluated. The edge similarities of different I resulting from various
time series with L = 3, 4, 5 are shown in Figure 3b–d, respectively. The edge similarity was found to
decrease with an increase of the network dimension, L, because close state vectors diverge quickly
over time as a result of the randomness of the studied dynamical systems. For chaotic series, the edge
similarities of smaller I remained relatively large for higher-dimensional recurrence networks, because
state vectors with smaller distances were more similar during the evolutionary process and their
trajectories remained close for a longer period of time. As for white noise series, the edge similarities
of different groups decreased to a similar extent with the increase of L. The distance threshold ∆L
of the L-dimensional recurrence networks from white noise series corresponding to ρL is equal to
the maximum distance of the nearest Ñ pairs of sampling data, where Ñ =

[
(L+m−1)

√
ρLN(N − 1)

]
and [x] denotes the largest integer no more than x. The edge similarity of white noise series for the
network dimension, L, can then be represented as η =

(
(L+m−1)

√
ρL
)L−1. Thus, for L = 2, 3, 4, 5, the edge

similarities resulting from the white noise series were around 0.681, 0.518, 0.422, and 0.359, respectively.
According to Figure 3, the distinctions of edge similarities between chaotic time series and white noise
time series were maintained when L changed from 2 to 5.
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It should be noted that the results shown above were dependent of the number of groups, n,
so the choice of this parameter needs to be studied carefully. As introduced in Section 2, the edge
similarity was proposed to study the relationship between the distances of the connected state vectors
and the similarity of their evolution trajectories. The aim of the grouping is a simplification of
the distances between connected state vectors. It is clear that increasing the number of groups, n,
leads to the increase of the resolution of edge weights (i.e., the distances between connected state
vectors). However, because of the finite sample size, the number of edges in each group deceases in
accordance with the increase of ∆1, which may cause a large statistical fluctuation in the edge similarity.
Considering that the edges in adjacent groups have similar weights, the edge similarities of adjacent
groups were also supposed to be similar. In this study, we defined the maximum fluctuation (MF) of
edge similarities for neighboring edge groups as follows:

MF(n) = max(|η(1)− η(2)|, |η(2)− η(3)|, . . . , |η(n− 1)− η(n)|) (12)

The choice of n should make the value of MF small, which indicates that there is a higher resolution
of the edge weights and a small statistical fluctuation in edge similarities. Figure 4 shows the MFs
derived from different time series as a function of n with sample length N = 5000, network dimension
L= 2, and link density ρ= 0.1. For the chaotic series, the MFs decreased rapidly when n increased from
5 to 20. This is because the edges in adjacent groups tend to have greater similarity in weight with the
increase of n, leading to a smaller difference of edge similarities between adjacent groups. In the range
20 ≤ n ≤ 40, the MFs resulting from chaotic series were stable at a relatively small value. The small
difference of edge similarities between adjacent groups indicates that the resolution of edge weights
was relatively high. However, when continuing to increase n, the MFs increased. This is because a
large n causes a decrease in the number of edges in each group, which leads to increased statistical
fluctuations. As for the white noise series, the MF increased monotonously with n. This is because the
edge similarities in different groups are similar and increasing n simply leads to fewer edges in each
group, which results in larger statistical fluctuations. According to the results shown in Figure 4, it
was concluded that the number of groups, n, should be set at [20, 40]—where the MFs derived from
different time series exhibited relatively small values.
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Because empirical data were contaminated by noise, in this section, we also studied the robustness
of the proposed method against noise by analyzing the chaotic series corrupted by white noise.
The corrupted signal, s, was formed by the composition of the normalized time series, x (µ = 0, σ = 1),
and Gaussian white noise, ξ, i.e., s = x + oξ, where µ is the mean, σ is the standard deviation, and o is
the noise level. We numerically studied the variations in the CCND with L under different noise levels,
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o, by fixing ρ = 0.1. The results for the lkeda, Hénon, and folded-towel maps are shown in Figure 5a–c,
respectively. When the noise level, o, was lower than 0.1, the variations in the CCND as a function
of L were similar to those derived from the time series without noise and the exponential behaviors
between the CCND and L were maintained when the noise level, o, was less than 0.2. However, when
the noise level increased to 0.3, the corresponding topological structures of networks were distorted
from the original series and the exponential relationships were weakened. This is because high levels
of noise obscure the dynamic characteristics of chaotic systems, which causes the decline patterns of
CCND derived from the chaotic series to approach that obtained from the white noise.
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Figure 5. Variations in the CCNDs as a function of network dimension, L, resulting from chaotic series
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The influence of noise on the edge similarity was also evaluated. Figure 6 depicts the edge
similarities derived from different chaotic maps in the presence of various levels of noise, where the
network dimension was set as L = 2 and the link density was set as ρ = 0.1. With the increase of o,
edge similarities in different groups decreased, especially for small values of I. The edge similarities
generated from the lkeda map and the Hénon map without noise were about 1 for I < 16, but they
decreased to below 0.9 when the noise level, o, increased to 0.3 (Figure 6a,b). As for the folded-towel
map, the edge similarities for I < 11 had large values when o = 0 and decreased to less than 0.86 when
the noise level, o, increased to 0.3 (Figure 6c). This was because two state vectors that are nearby in
phase space may become distant from each other for the next time step because of the influence of
Gaussian white noise. However, there remains an obvious dependence of the edge similarity, η, on the
group index, I, in the presence of noise with level o = 0.3, which is distinct from a white noise series.
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We also studied the robustness of the CCND and edge similarity against noise with ρ = 0.05.
The time series from the lkeda map was used as an example and the results are shown in Figure 7.
According to Figure 7a, although the exponential behavior between the CCND and L was maintained
for noise level o = 0.1, the variations in the CCND as a function of L deviated obviously from
those without noise. When o further increased to 0.2, the exponential relationship weakened and
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no exponential behavior was observed for o = 0.3. The edge similarity, η, as shown in Figure 7b,
decreased significantly with the increase of o. When o increased to 0.3, the edge similarities were small
even for small values of I. From Figure 5b, Figure 6b, and Figure 7, it can be seen that both the CCND
and edge similarity with ρ = 0.05 were more sensitive to noise compared with those of ρ = 0.1. This is
because when choosing a small link density, the connections between nodes are more easily affected
by noise. Therefore, the proposed topological statistics are more robust under additive noise when the
link density, ρ, is set to 0.1.
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4. Analysis of Human ECG Data

Finally, the proposed method was applied to the human ECG based on the Massachusetts
Institute of Technology human heartbeat database, which is a large archive of well-characterized
digital recordings of physiological signals, time series, and related data for use by the biomedical
research community. Two well-studied cases were considered, namely normal sinus rhythm (NSR)
data and ventricular tachycardia data (Figure 8) in the database [34], to illustrate the effectiveness of the
proposed method. The database has a total of 35 subjects and for each subject, 127,000 data points were
recorded. We randomly selected 50 NSR episodes and 50 VT episodes from all 35 subjects and each
episode contained 5000 data points. The embedding dimension, m, and time delay, τ, were determined
by the false nearest neighbors method [32] and the mutual information method [29], respectively.
The CCNDs of all 100 episodes were calculated under different network dimensions, L. The average
CCNDs as a function of L for both the NSR data and the VT data are shown in Figure 9a. The results
show that the CCND decreased exponentially with the network dimension, L, which is consistent
with the qualitative behavior of chaotic systems. This finding indicates that human cardiac signals
have chaotic properties, which is consistent with several previous studies [11,35]. Moreover, it should
be noted that the scaling factors, γ, were different for the two types of ECG recordings. For VT, the
cardiac system presented a more orderly and predictable behavior resulting in a smaller scaling factor,
γ, while the NSR signal was more chaotic and unpredictable, which led to a rapid decrease of CCND
with the increase of L. Moreover, the decay rates of the CCND derived from both the NSR and the VT
recordings decreased for larger network dimensions L. This was related to the expected saturation of
distances between nodes as mentioned above.



Entropy 2019, 21, 45 12 of 14

Entropy 2019, 21, x FOR PEER REVIEW  12 of 14 

 

1 for VT when 23I   and dropped rapidly for 23I  . In comparison, the edge similarities for the 
NSR signals were relatively large until 16I   and became smaller than those for the VT signals for 

16I  . This is because the cardiac system tends to be more uncorrelated in the healthy state [37]. 
Based on the results above, it was concluded that the proposed method can be used to classify and 
characterize the human ECG data from a novel perspective.  

 
Figure 8. Two representative recordings used in this study. (a) Normal sinus rhythm (NSR); (b) 
ventricular tachycardia (VT). 

 
Figure 9. The network-based measures derived from the NSR and the VT recordings. (a) The average 
CCNDs as a function of the network dimension L , with 0.1  ; (b) the average edge similarities 
of different I , with 2L  , 30n  , and 0.1  . 

5. Conclusions 

In summary, a simple and straightforward analysis method was proposed for recurrence 
networks derived from time series, which can characterize the evolution properties of dynamical 
systems. For each time series, a high-dimensional recurrence network and a corresponding 
low-dimensional recurrence network were constructed. The CCND was proposed to study the 
correlation of node degrees between the networks. It was found that calculating the CCND for time 

Figure 8. Two representative recordings used in this study. (a) Normal sinus rhythm (NSR); (b)
ventricular tachycardia (VT).

Entropy 2019, 21, x FOR PEER REVIEW  12 of 14 

 

1 for VT when 23I   and dropped rapidly for 23I  . In comparison, the edge similarities for the 
NSR signals were relatively large until 16I   and became smaller than those for the VT signals for 

16I  . This is because the cardiac system tends to be more uncorrelated in the healthy state [37]. 
Based on the results above, it was concluded that the proposed method can be used to classify and 
characterize the human ECG data from a novel perspective.  

 
Figure 8. Two representative recordings used in this study. (a) Normal sinus rhythm (NSR); (b) 
ventricular tachycardia (VT). 

 
Figure 9. The network-based measures derived from the NSR and the VT recordings. (a) The average 
CCNDs as a function of the network dimension L , with 0.1  ; (b) the average edge similarities 
of different I , with 2L  , 30n  , and 0.1  . 

5. Conclusions 

In summary, a simple and straightforward analysis method was proposed for recurrence 
networks derived from time series, which can characterize the evolution properties of dynamical 
systems. For each time series, a high-dimensional recurrence network and a corresponding 
low-dimensional recurrence network were constructed. The CCND was proposed to study the 
correlation of node degrees between the networks. It was found that calculating the CCND for time 

Figure 9. The network-based measures derived from the NSR and the VT recordings. (a) The average
CCNDs as a function of the network dimension L, with ρ = 0.1; (b) the average edge similarities of
different I, with L = 2, n = 30, and ρ = 0.1.

The average edge similarities for different I for the NSR data and the VT data also showed some
differences (Figure 9b). Specifically, the edge similarities, η, were stable and remained around 1 for VT
when I ≤ 23 and dropped rapidly for I > 23. In comparison, the edge similarities for the NSR signals
were relatively large until I = 16 and became smaller than those for the VT signals for I > 16. This is
because the cardiac system tends to be more uncorrelated in the healthy state [36]. Based on the results
above, it was concluded that the proposed method can be used to classify and characterize the human
ECG data from a novel perspective.

5. Conclusions

In summary, a simple and straightforward analysis method was proposed for recurrence networks
derived from time series, which can characterize the evolution properties of dynamical systems.
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For each time series, a high-dimensional recurrence network and a corresponding low-dimensional
recurrence network were constructed. The CCND was proposed to study the correlation of node
degrees between the networks. It was found that calculating the CCND for time series can lead
to the effective distinction between various types of time series. Specifically, for chaotic series,
there was an exponential relationship between the CCND and the network dimension, L, while no
exponential relationship was observed for the white noise series. Moreover, the edge similarity between
high-dimensional recurrence networks and corresponding low-dimensional recurrence networks was
studied. Each edge in the low-dimensional recurrence network was weighted according to its distance
and the edges were partitioned into n groups based on their weights. For chaotic time series, the edge
similarities were found to be dependent on the group index, I. In comparison, the edge similarities
resulting from white noise series had small values for all groups. A method based on the fluctuation
of edge similarities for neighboring edge groups was proposed to determine the number of groups
that edges should be partitioned into. In addition, we tested the proposed topological statistics by
analyzing chaotic series contaminated by noise. The results revealed that our method exhibits good
robustness against noise. Finally, the application of the proposed method to human electrocardiograms
demonstrated its effectiveness in differentiating between healthy subjects and VT patients.
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