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Abstract: The plastic deformation of bulk metallic glasses (BMGs) depends significantly on applied
stress states, and more importantly, in practical applications of BMGs as structural materials,
they always deform under complex stress fields. The understanding of deformation behavior of BMGs
under complex stress fields is important not only for uncovering the plastic deformation mechanisms
of BMGs, but also for developing BMG components with excellent mechanical performance. In this
article, we briefly summarize the recent research progress on the deformation behavior of BMGs under
complex stress fields, including the formation and propagation of shear bands, tunable macroscopic
plasticity, and serrated plastic flows. The effect of complex stress fields on the plastic deformation
mechanisms of BMGs is discussed from simple stress gradient to tailored complex stress fields.
The deformation behavior of high entropy alloys (HEAs) under complex stress states has also been
discussed. Challenges, potential implications and some unresolved issues are proposed.

Keywords: bulk metallic glass; complex stress field; shear band; flow serration; deformation
mechanism; high entropy alloy

1. Introduction

As a new class of structural materials, bulk metallic glasses (BMGs) are considered poised for
widespread engineering applications [1]. With non-ordered atomic structures, plastic deformation
in BMGs is accommodated by initiation and propagation of shear bands, rather than dislocation
movements as in crystalline alloys [2–4]. Under applied stress, plastic strain is localized within a thin
layer of atoms with a width of about 2–210 nm, forming a shear band [5–10]. Extensive studies have
shown that the initiation and propagation of shear bands are significantly dependent on applied
stress fields. For example, the burst of a shear band relies on applied shear stress, and a shear band
can be initiated only when the applied shear stress exceeds a critical value [5,11–14]. In addition,
in practical applications of BMGs as structural materials, they always deform under complex
stress states [15]. Studies have shown that BMGs can demonstrate more plastic deformation under
complex stress states [16–18]. This implies that although some BMGs are brittle under conventional
compression/tension tests with relatively-uniform stress fields, they can still have large capability
to deform plastically in practical structural applications. For example, BMG foams can exhibit large
nominal plasticity, which is much larger than solid BMG specimens [19–21]. BMG honeycombs
and cellular BMG structures also demonstrate similar behavior [22–24]. The understanding of the
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deformation behavior of BMGs under complex stress fields is therefore important not only for
uncovering the plastic deformation mechanisms of BMGs, but also for developing BMG components
with excellent mechanical performance. Although many papers have reviewed the atomic structures,
mechanical and physical properties, and functional and structural applications of BMGs [2–4,25–40],
a comprehensive review on the plastic deformation behavior of BMGs under complex stress fields
has not been reported. In this work, the research progress on the plastic deformation behavior of
BMGs under complex stress fields is reviewed, including the initiation and propagation of shear bands,
macroscopic plastic deformation behavior, criticality of plastic flows, and transition of deformation
modes. The recent contributions on the deformation behavior of high entropy alloys (HEAs) under
complex stress fields have also been discussed. The challenges, unresolved issues as well as future
research directions are proposed.

2. Initiation of Shear Bands under Complex Stress Fields

Driven by applied shear stress, the dilatancy of atoms, associated with excess free volume,
results in the decrease of viscosity localized in thin layers of shear bands [41,42]. The localization
process causes local heating/softening, which was evidenced by experimental observations through
fusible coatings [43–45]. The initiation of shear bands in BMGs was studied extensively during
the past decades. Greer et al. [4] have summarized the formation mechanisms into three scenarios:
the percolation of homogeneous nucleated shear transformation zones (STZs), stemming from the
intrinsic structural fluctuations; the nucleation from the sites with extrinsically introduced stress
concentrators, such as casting defects; and a two-consecutive-stage formation, including the burst
of a viable band from activated STZs at stress-concentrated sites and a following rapid sliding
process. Although the shear-banding mechanisms in BMGs are still under debate, all three kinds of
scenarios share a common point that the initiation of shear bands is significantly dependent on applied
stress fields. Johnson and Samwer [46] have shown that the potential barrier for activating STZs at
a given shear stress, τ, can be expressed as Wτ = 4RG0γC

2[(τC − τ)/τC]3/2ζΩ, where τC is the critical
shear stress of the BMG, γC is the critical shear strain, R is a constant parameter, G0 is the shear modulus
of unstressed BMGs at 0 K, Ω is the volume of STZs, and ζ is a correction factor. With the change
of applied shear stress (τ) under complex stress fields, the activation process of STZs will be varied
accordingly, resulting in differences in the initiation of shear bands. On the other hand, the annealing of
stressed MGs can be used to shape MG films without embrittlement, where the change of free volume in
stressed BMGs may also cause different deformation behavior [47]. Hufnagel et al. [48] have indicated
that although many previous studies have focused on the deformation behavior of BMGs under
uniaxial stress states, the understanding of the deformation behavior as well as structural evolution
under more complex stress states is urgently needed to uncover the shear-banding mechanisms, such
as the shear localization process. The research progress on the formation mechanisms of shear bands
in BMGs has been summarized in many review papers [4,27,30,34,35,48–54], however, the formation
of shear bands under complex stress fields has rarely been emphasized. Here, the initiation of shear
bands under more complex stress fields is summarized.

With well-known size effect, MGs demonstrate different deformation behavior at submicron
scales, for example, larger elastic limit, higher ductility, and more homogeneously plastic deformation
with necking effect [55–59]. The introducing of stress concentrators in submicron-sized specimens will
facilitate the initiation of shear bands, giving better insight into the shear band formation mechanisms.
A simple method to introduce stress concentrators is to create notches in testing specimens. Based on
MD simulations of some notched CuZr MGs, Sha et al. [60] have reported that shear bands emanate
from the notch root when the plastic zone size ahead of the notches increases beyond a critical value.
As shown in Figure 1, the notches can serve as stress concentrators to facilitate the localization of
plastic zones, leading to the initiation of shear bands. Following studies have examined the effect
of notch geometries and sizes on the formation of shear bands [61–63]. They have shown that the
initiation of shear bands can be tailored by introducing notches with appropriate geometries and sizes,



Entropy 2019, 21, 54 3 of 20

which can serve as stress concentrators for highly localized shear strains. By creating surface roughness
in MG nano-pillars can also achieve similar localized shear strains [64]. It can then be concluded
that under complex stress fields, stress concentrators serve as origin sites for the initiation of shear
bands due to higher localized shear strains. The authors would like to point out that at sub-micron
scales, the formation of localized shear bands can also be suppressed till fracture due to the change of
deformation modes [65]. This phenomenon has also been observed in notched MG specimens with
sub-micron sizes, where the change of notch sizes can tune the deformation modes from localized
shear-banding to homogeneous softening and necking [61–63]. A summary on the homogeneous
deformation behavior of BMGs under complex stress fields will be given in Section 5 in this paper,
and thus not described in detail here.
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Despite the efforts to understand the initiation of shear bands in BMGs under complex stress
fields, some problems are still unresolved. For example, how to control the propagation of shear bands
through the design of complex stress distributions? With well-known size effect, what’s the difference
between the mechanisms on the formation of shear bands at submicron scales and macroscopic scales?
Further understandings of the initiation and propagation of shear bands under complex stress fields
could add more knowledge to the plastic deformation mechanisms of BMGs.

3. Macroscopic Deformation Behavior under Gradient Stress Distribution

The macroscopic plastic deformation in BMGs is accommodated by the initiation and propagation
of shear bands. The rapid propagation of shear bands causes catastrophic failures, while the
confinement of the propagation of shear bands can enhance the macroscopic plasticity. Moreover,
the impeding of the propagation of shear bands is also beneficial for the initiation and bifurcation of
more shear bands, leading to more plastic deformation. The applied complex stress fields in BMGs
not only bring to stress concentrators, serving as sites for the initiation of shear bands, but also
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influence the propagation of shear bands, even under simple gradient stress distributions. Studies on
the deformation behavior of BMGs under gradient stress distributions, for example, the specimens
with tailored sample geometries and surface treatments, are discussed here.

3.1. Stress Gradient Resulting from Tailored Sample Geometry (Loading Angle)

Under compression tests of BMGs, by tailoring a tilted angle between the end surface and loading
platen, as shown in Figure 2a inset, significant improvement in the macroscopic plasticity, associated
with work-hardening-like behavior, was observed [16]. Based on the scanning electron microscopy
(SEM) observations and Finite Element Modeling (FEM) results, Chen et al. [16] have shown that the
propagation of shear bands can be stopped in the regions with relatively lower stress concentration
orders, leading to the multiplication of more shear bands associated with greatly enhanced macroscopic
plasticity. Similar large nominal plasticity was also observed in some other BMG samples with tilted
surface angles [17,66,67]. The tilted geometry constrained the initiation of shear bands in the regions
with localized strains, and at the same time hindered the propagation of shear bands, leading to
the multiplication of more shear bands. Despite the brittleness, some BMG communities still have
certain plasticity under compression tests. However, almost all communities of BMGs are brittle
under tensile loadings. The investigations on the plastic deformation behavior of the tensile side of
bending BMG specimens have indicated that more plastic deformation was found due to the presence
of tensile stress gradient [68,69]. The gradient stress distributions may also be possible to be used
to improve the plastic deformation behavior of BMGs under tensile loadings. Chen et al. [70] have
then introduced gradient stress distribution into some tensile specimens by tailoring tilted angles in
Z-shaped BMG specimens, as shown in Figure 2b. It is interesting to find that the tilted BMG specimens
have demonstrated more plastic deformation in the stress-concentrated regions, similar to compressive
testing results. This implies that although BMGs are brittle in conventional compression/tension tests
with relatively uniform stress distributions, they may still demonstrate more plastic deformation in
practical engineering applications, where they always deform under complex stress fields. Additionally,
with the presence of stress gradients, BMGs can also exhibit attractive performance for engineering
applications, such as higher reliability in nominal strains [71] and less dependence on the change of
loading rates [72]. The understanding of the deformation behavior of BMGs under stress gradients
opens a new window for the practical applications of BMGs.
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Figure 2. (a) Effect of stress gradient on the compressive plastic deformation behavior of BMGs, where
the gradient stress distribution was introduced by tailoring a loading angle between the plateau and
the specimen surface. A and B are macroscopic nominal stress-strain curves of the specimens without
and with stress gradient, respectively (adapted from [16] with permission of 2008 AIP Publishing LLC.);
(b) Effect of stress gradient on the deformation behavior of BMGs under tensile loadings, where the
gradient stress distribution was introduced by designing Z-shaped specimens (adapted from [70] with
permission of Elsevier).
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3.2. Effect of Surface Residual Stress

In engineering applications of structural materials, residual stress is usually created to improve
the mechanical performance. In BMG communities, the introducing of surface residual stress using
techniques, such as shot peening, laser melting and mechanical attrition, has also been investigated to
improve the macroscopic plastic deformation behavior. For example, Zhang et al. [73] have treated
some Zr-based BMGs using shot peening, and enhanced the bending plasticity significantly (Figure 3).
A maximum surface plastic strain of about 0.35% was obtained while the as-cast BMG specimen
only has a limited value of about 0.15%. They have shown that the compressive residual stress
on the surface of shot-peened specimens can suppress the propagation of shear bands and cracks.
Combined with the pre-existed shear bands nucleated underneath the surface, more shear bands will
be initiated to achieve larger macroscopic plasticity. By laser surface melting, gradient distribution
of both tensile and compressive residual stresses as well as atomic structural changes can also be
employed to improve the macroscopic plasticity of BMGs [74,75]. In addition, Wang et al. [76] have
obtained an obvious enhancement in the tensile plasticity of BMGs by surface mechanical attrition
treatment. Gradient atomic structures were formed during the mechanical attrition process, resulting
in a gradient distribution of residual stress with both compressive and tensile stresses. They have
shown that the gradient distribution of residual stress can cause the formation of more shear bands,
and at the same time, delay the cavitation effect, resulting in a work-hardening mechanism associated
with enhanced plasticity [76].
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Figure 3. Three-point bending behavior of BMGs with surface treatment by shot peening. Reprinted
from [73] with permission of Springer Nature.

Despite the use of different methods/techniques to introduce gradient stress distributions to
BMGs, it can be concluded that the localized regions with high orders of stress concentration can
promote the initiation of more shear bands, and the regions with less stress concentrations impede
their propagations. This will further induce the bifurcation and multiplication of shear bands, leading
to better macroscopic plasticity. By design of appropriate distributions of more complex stress fields,
it is able to tailor the formation and propagation of shear bands, achieving controllable plastic
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deformation behavior. In fact, many studies have been devoted to achieving tunable plastic deformation
behavior of BMGs by designing complex stress fields, which are given in the following section.

4. Tunable Plastic Deformation Behavior under Tailored Complex Stress Fields

During the past decade, tunable plastic deformation behavior has been widely achieved by
extensive studies based on the design of complex stress fields, for example, to guide the propagation
of shear bands and cracks, to tune the criticality of the plastic-flow dynamics, and to obtain
large apparent plasticity/elongations. The studies are of significance for giving more insight into
the shear-banding mechanisms of BMGs, and obtaining better macroscopic plastic deformation
performance for engineering applications.

4.1. Guiding the Propagation of Shear Bands and Cracks

The initiation of shear bands emanating from notch roots was widely studied to evaluate the
fracture behavior of BMGs [77,78]. Tandaiya et al. have shown that by changing the mixity of loading
modes (I/II) of bending specimens can tune the plastic zone sizes as well as their distributions [79,80].

Under mixed mode loading conditions, the notch root deforms as that one part sharpens and the
other part blunts. The increase of mode II component can enlarge the plastic zone sizes and enhance
the localized strain levels ahead of the notch tips, resulting in controllable directions for shear-banding
and micro cracks. For some notched BMGs, Yi et al. [81] have demonstrated that by creating pre-existed
shear bands can change the plastic deformation behavior as well as the crack propagations around
the notch root. To guide and deflect the cracks in those notched BMGs can improve the fracture
resistance behavior, which is useful for toughening BMG components with stress concentrations in
engineering applications. The controlled shear-banding behavior of notched BMGs was understood
by Yang et al. from a perspective of “multiple shear band deformation mechanisms”, differing from
the conventional materials fracture mechanics [82]. The proposed fracture mechanisms agree well the
fracture morphologies of notched BMGs, giving more theoretical understandings on the controlling
of shear-banding in notched BMGs. Li et al. [83] have also conducted theoretical analysis on the
controlling of shear-banding in BMGs using an instability theory. As shown in Figure 4, the formation
of shear bands in notched specimens with mode mixities of 0.5 and 0.75 was successfully predicted by
instability analysis, which is highly in line with the FEM results and experimental observations [83].
Such a theory may be further used to predict the shear-banding behavior of BMGs under complex
stress fields in practical engineering applications.
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4.2. Tunable Criticality in Flow Serrations

The discontinuous plastic flows in crystalline alloys display serrations or jerky flows
in stress-strain curves, which are known as the Portevin-Le Chatelier (PLC) effect [84,85].
Although BMGs have vanished crystalline lattices, the plastic deformation in BMGs is limited to
inhomogeneously-localized shear bands, which also results in discontinuous stress-strain behavior
similar to the PLC effect in crystalline alloys, i.e., serrated plastic flows. A great consideration of
research has shown that the serrated plastic flows of BMGs can evolve to a power-law scaling
criticality [40,86–94]. The criticality of the plastic-flow dynamics is usually correlated to larger
macroscopic plasticity [86]. The criticality of the flow serrations can be attributed to the multiplication
and intersections of shear bands, which suggests that the burst of shear bands may be intrinsically
correlated [86,95]. However, for BMGs under tensile loadings, the catastrophic failures lead to limited
serrations where the understanding of the plastic-flow dynamics is very challenging. By designing
complex stress fields through double-side notches, Chen et al. [96] have reported tunable criticality
in the plastic flows of BMGs under mixed mode (I/II) loading conditions. As shown in Figure 5,
by the multiplication of shear bands within the regions with complex stress fields, a stable plastic flow
stage was observed, resulting in the delay of catastrophic failures [96]. The two-stage plastic flows
were also observed under compression tests, where the formation of new shear bands tends to delay
catastrophic failures [97]. For the notched specimens with complex stress fields (Figure 5), the flow
serrations during the stable plastic flow stages have smaller magnitudes, and evolve to a power-law
scaling. The findings suggest that it may be possible to obtain more flow serrations in tensile BMGs
by introducing of complex stress fields, where enough serration data could be collected to give more
insight into the plastic-flow dynamics of BMGs under tensile loadings.

Thereafter, by tailoring single-side notches with varying radii, complex stress fields with varying
stress concentration factors have been introduced to some tensile BMG specimens [76]. Despite
different trends in the evolution of amplitudes from compression tests, the flow serrations of the
single-side notched BMG specimens also demonstrate power-law criticality within the stable plastic
flow stages, similar to the results under compression and nano-indentation tests [76]. The power-law
criticality in BMGs might be a universal rule for all kinds of loading conditions. Based on such
assumption, the catastrophic failures in BMGs can then be delayed or avoided in practical applications
by designing complex stress fields, regardless of loading conditions. Additionally, under complex stress
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fields, BMGs can also have high uniformity for accumulating elastic energy during the stress-arising
process of the flow serrations [98]. By tailoring of complex stress fields is helpful for uncovering the
mechanisms of the plastic flow serrations in BMGs and to achieve better plastic performance.
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4.3. Achieving Large Macroscopic Plasticity/Axial Elongation

The improved macroscopic plastic deformation behavior of BMGs under complex stress fields
can be observed in some specimens with casting defects, such as voids [99]. In order to create complex
stress fields to block the propagation of shear bands, Zhao et al. [100–103] have introduced notches
into BMGs and obtained greatly enhanced nominal strains. An example showing the improvement of
nominal strains of notched BMGs was shown in Figure 6a. The introducing of symmetrical notches
can result in stable plastic flows confined within the regions between notches. With high orders of
stress concentrations, shear bands are easier initiated from the notch bottoms. However, only the
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stress fields between two symmetrical notches can effectively confine the propagation of shear bands.
In the specimens with single notches or two asymmetric notches, significant improvement in nominal
plasticity was not observed due to the rapid propagation of shear bands [100–103]. By tailoring the
distribution of more notches is useful for achieving larger macroscopic plasticity of BMGs, especially
in practical applications of BMGs [104]. Moreover, such a strategy may be particular useful for BMGs
due to the unique atomic orders. The notched high-strength steel and ceramic specimens exhibited no
obvious improvement or even decreased nominal strains (Figure 6b) [102].
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As compared with the plastic deformation behavior of BMGs under compressive loadings,
it is challenging to obtain plasticity under tensile loadings due to catastrophic failures. With vanishing
of crystalline lattices and boundaries, the rapid propagation of shear bands cannot be impeded, and
leads to brittle failures. Nevertheless, it is fortunately to find that the introducing of complex stress
fields can be employed to improve the plastic deformation behavior of the stress-concentrated regions.
Qu et al. [105,106] have reported that the complex stress field created by double-side notches can
prevent the unstable propagation of shear bands, and result in a stable plastic zone. Li et al. [107]
have further examined the effect of notch sizes and shapes on the formation and propagation
of shear bands in the stress-concentrated regions, based on FEM simulations, and identified the
notch conditions which are beneficial for plastic deformation. By tailoring the plastic deformation
in stress-concentrated regions, tunable axial elongations have also been obtained in some curved
specimens, as shown in Figure 7 [108]. With both compressive and tensile stresses, the curved segment
forms a shear band multiplication stage during tensile loading process [18,108]. Although the large
plastic deformation was localized in the stress-concentrated regions, the straightening of the curved
segments results in large axial elongations along the loading directions. Despite the brittleness under
uniform stress distributions, large axial elongations can still be achieved in BMGs and BMG structures
through the geometry design, laying a sound foundation for the practical applications of BMGs as
structural materials.

Additionally, tensile ductility in BMGs has also been achieved by introducing complex
stress states onto the surface of BMG specimens, such as imprinting method [109,110] and laser
surface treatment [111,112]. The enhancement of macroscopic tensile ductility was attributed to
the heterogeneities on the specimen surface, such as the mechanical properties and geometries,
resulting from tailored complex stress fields [109,110]. The heterogeneities cause the formation of
plastic zones with multiple shear bands. The multiplication and intersection of shear bands limit the
rapid propagation of shear bands, and therefore enhance the macroscopic ductility. Gao et al. [111] have
found that with complex stress fields introduced by laser surface treatment, the shear band propagation
was impeded, leading to a relatively homogeneous deformation mode. Dong et al. [112] have further
shown that the tensile ductility may be ascribed to the large scale flow, driven by the complex stress
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fields introduced by laser engraving. Although the mechanisms on the enhancement of macroscopic
ductility of BMGs under complex stress fields are still being debated, in fact, complex stress fields have
been widely employed to investigate the deformation mechanisms of BMGs, i.e., under indentation
tests. For example, indentation tests have been used to investigate the shear band formation and
propagation mechanisms [113,114], and the transition of deformation modes from serrated flows to
homogeneous deformation [115,116]. However, since the specimens do not fracture during indentation
tests and the studies mainly focused on the corresponding deformation mechanisms, these studies on
the indentation tests of BMGs are therefore not discussed in detail here.Entropy 2019, 21, x 10 of 20 
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Up to date, complex stress fields have been used to characterize the shear band formation and
propagation mechanisms, as well as the global deformation behavior, such as the plasticity and fracture.
However, theories on how to control the propagation of shear bands and cracks, and subsequently
control the macroscopic plastic deformation behavior of BMGs are still urgently needed. In the practical
applications of BMGs as structural materials, most of the parts of BMG structures may deform under
complex stress fields. The understanding of the macroscopic deformation behavior of BMGs under
complex stress fields is also useful for designing BMG structures with better mechanical performance,
for example, the development of BMG foams [20], BMG honeycombs [22] and cellular BMGs [117].

5. Transition of Deformation Modes under Complex Stress Fields

Attributed to the amorphous atomic structures, homogeneous plastic flow in BMGs is usually
observed at high temperature [42]. However, at room temperature, the introducing of complex stress
fields can also result in the transition of deformation modes from highly localized shear-banding
to relatively homogeneous deformation. A pioneered work by Flores and Dauskardte [118] on the
strain localization behavior of some notched BMG bars has suggested that the stress states may affect
the deformation and failure behavior of BMGs. Want et al. [119] have then examined the plastic
deformation behavior of a Zr64.13Cu15.75Ni10.12Al10 (at. %) BMG under multi-axial tensile stress states,
introduced by circumferential deep notches. It was surprising to find that the notched BMG specimens
demonstrate strain hardening behavior at room temperature, as can be seen in Figure 8. This unusual
phenomenon was attributed to the diffusional relaxation driven by multiaxial stress states, where
obviously shear-banding behavior was not observed. Further studies have shown that the change of
the notch dimensions can cause BMGs to deform plastically through the nucleation and coalescence of
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voids/cavies, where shear-banding behavior is suppressed [120]. Since the formation of shear bands
occurs from very localized regions into sub-micron scales, the examination of homogeneous plastic
deformation at sub-micron scales brings more understandings to the transition of deformation modes
from localized shear-banding to homogeneous deformation.
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Gu et al. have examined the shear-banding and fracture behavior of some notched Ni-P/Fe-P MGs
of about 70 nm in diameter, as shown in Figure 9a [121]. Combined with experimental observations
and molecular dynamics (MD) simulations, they showed that plastic deformation in these notched
MG specimens initiated from the notch root by forming microscopic voids, and the coalescence of
voids resulted in cavitation and final brittle failures. Narayan et al. [122] have studied the deformation
mechanisms of some double-side-notched CuZr MGs with varying sharpness (Figure 9b). They have
found that the specimens with sharper notches can delay the formation of shear bands, resulting from
a higher degree of triaxiality in stress distributions. When the cavitation stress reaches a threshold
value, plastic deformation in MGs can transit from shear-banding to microscopic voids coalescence,
similar to the MD simulation results reported by Gu et al. [121]. On the other hand, Narayan et al. [122]
have also examined the effect of notch depth on the plastic deformation mechanisms of MGs. It was
shown that a deeper notch tends to facilitate homogeneously activated STZs and then suppress
shear-banding. However, to date the experimental studies on the formation of STZs and shear bands in
notched MG specimens are not sufficient enough to make a consensus conclusion on the formation and
evolution mechanisms of STZs/shear bands. Since STZs only involve a small cluster of atoms, it is still
challenging but necessary to investigate the initiation of STZs under complex stress fields directly
through in-situ TEM observations, and how these STZs evolve to shear bands/cracks. MD simulations
are therefore more feasible to be employed to investigate the formation of shear bands under complex
stress fields.

Based on MD simulations, many previous studies focused on the effect of notch sizes and
geometries on the plastic deformation behavior of nanoscaled MG specimens, aiming to shed more
light into the transition of deformation modes. Sha et al. have shown that the design of notches
with increased depth and sharpness can suppress shear-banding and result in more homogeneous
defamation with presence of necking [61]. Similar transition of deformation modes can also be observed
in nanopillars with tailored surface roughness [64]. Pan et al. [123] have investigated the physical
origin of the homogenous deformation, and found that voids and cavitations were initiated at the
notch root when the stress triaxiality exceeds a critical value. On the other hand, Dutta et al. [62] have
also observed the transition of deformation modes from shear-banding (Figure 10a,b) to homogeneous
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deformation with necking (Figure 10c,d). With a relatively sharper notch (Figure 10c), plastic zones
first initiated from the notch root due to stress concentrations, and then evolved to incipient shear
bands (Figure 10d). However, due to the rapid expansion and coalesce of plastic zones, the formation
of shear bands was finally suppressed, showing a necking effect (Figure 10e,f). It is reasonable to see
the initiation of some incipient shear bands, where stress concentrators can also serve as sites for the
nucleation of STZs, as discussed in Section 2. There may exist a competing process for the formation of
localized shear bands and the coalescence of plastic zones, where the rapid coalesce of plastic zones
can suppress the initiation of shear bands and result in different plastic deformation mechanisms.
This phenomenon is also highly in line with the in-situ TEM observations on the plastic deformation
behavior of some nanosized MG specimens [122]. The change of atomic packing in a shear band was
observed in a Ni-based MG [124]. More recently, Cui et al. [63] have examined the structural evolution
of CuZr MGs during the transition of deformation modes from shear-banding to homogeneously
necking in notched MGs. They have shown that the Voronoi volume recovery can be dominant in
the localized regions with triaxial stress state, differing from the unnotched specimens. Nevertheless,
more effort is still needed for revealing the underlying physical origins of the homogeneous plastic
deformation within the localized regions with complex stress fields, such as the movements of atoms,
atomic structural evolutions as well as the formation and coalesce of microscopic voids.Entropy 2019, 21, x 12 of 20 
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6. Deformation Behavior of HEAs under Complex Stress Fields

HEAs are a new class of alloys, having at least five elements with equal or near equal atomic
percentages, where the solvent and solute elements are not easily distinguished [125]. The mixing of
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multi component in the solution states results in very high entropy associated with unique properties.
For example, they can have high strength comparable to BMGs [125]. More importantly, in conventional
metallurgical methods, the increase of strength leads to the decrease of ductility, and it seems that
the strength and ductility are usually mutually exclusive in conventional alloys [126]. However,
some HEAs can exhibit both high strength and ductility [127]. The plastic deformation behavior of
HEAs shares similar characteristics as compared with BMGs. For example, differing from conventional
alloys, HEAs also have serrated plastic flows, resulting in challenges to accurately predict and
control the plastic deformation behavior [40,128]. The serrated plastic flows of HEAs are also
significantly dependent on the change of strain rates, temperature and sample dimensions [125,128,129].
For instance, Zou et al. [129] have examined the plastic deformation behavior of some HEAs with Ar+
ion beam-assisted deposition, where flow serrations were obviously observed in the pillar of 70 nm
diameter, while the pillars with larger diameters tend to have smooth plastic flows (Figure 11).
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Recent research has shown that the residual strains may cause the instability of phases and result in
the transition of phases [130]. This may further change the mechanical properties of HEAs, for example,
transition induced plasticity [127]. Joseph et al. [131] have reported that some laser-fabricated
Al0.3CoCrFeNi HEAs exhibited tension/compression asymmetric deformation behavior, without/with
mechanical twining. Therefore, the change of applied stress fields could also affect the evolution
of microstructures in HEAs, such as the phase transition and mechanical twining, and the resultant
flow serrations and mechanical properties. The tailoring of complex stress fields can be used to
improve the plasticity and tune the criticality of plastic flows in BMGs, while some research has
also shown that the notches can reduce the nominal strains of crystalline high-strength steels [102].
Whether the introducing of complex stress fields is helpful for improving the plasticity and tuning the
criticality of flow serrations in HEAs is still a mystery. Up to date, a study focused on the deformation
behavior of HEAs under complex stress fields has yet been reported. Regarding that the evolution
of microstructures of HEAs is significantly affected by applied stress states, it should be worthy of
further investigations on the deformation behavior/mechanisms of HEAs under complex stress fields.

7. Conclusions and Future Directions

The change of applied stress fields can significantly affect many aspects of the plastic
deformation in BMGs, such as the shear band initiation and propagation, evolution of flow serration,
and macroscopic plastic performance. Varying complex stress fields have been employed to investigate
the mechanisms on the burst of shear bands, guiding the propagation of shear bands/cracks, tunable
plastic-flow dynamics, transition of deformation modes and better plastic performance. On one hand,
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complex stress fields play a significant role for elucidating the mechanisms on the plastic deformation
in BMGs. For example, how STZs are initiated and when the formation of STZs is suppressed?
On the other hand, complex stress fields can be tailored to achieve controllable plastic deformation
behavior for practical engineering applications. A case in point is to design BMG structures/devices
with enhanced mechanical properties. However, the understanding on the deformation behavior of
BMGs under complex stress fields still faces challenges, and some unresolved issues are summarized
and given below:

• Although studies have been devoted to investigating the formation of shear bands under complex
stress fields, how to control the formation of a shear band under a given complex stress fields is still
challenging, especially under experimental observations. The localization of plastic deformation
in BMGs at submicron scales involves size effect and transition of deformation modes. Due to
different mechanical/physical properties, differences may exist during the formation of shear
bands when characterized in specimens with varying sample dimensions. With complex stress
fields, the formation and propagation of shear bands can be tailored, and even be eliminated by
homogeneous deformation. The mechanisms on the plastic deformation of BMGs under complex
stress fields are worthy of further attention to uncover the fundamental deformation/fracture
mechanisms of BMGs.

• Extensive studies have shown that the burst of shear bands is not an independent event and
affected by previously existing shear bands [73,96]. The flow serrations in BMGs, which are related
to the formation of shear bands, may also have intrinsic links. Despite the well-known tunable
power-law criticality, how to predict and control the serrated plastic flows in BMGs is still very
difficult and challenging. The control of the initiation and propagation of shear bands under
complex stress fields could be helpful for shedding more light into the underlying relationships
among the bursts of flow serrations.

• The engineering applications of BMGs still have many challenges due to catastrophic
failures and metastable microstructures, associated with uncertainty in mechanical properties.
The achievement of controllable plastic deformation behavior under complex stress fields may
not only improve the macroscopic mechanical performance, but also lead to more reliable
behavior. Combining with tailored complex stress fields, BMG devices/structures with enhanced
performance as well as predictable properties can be further developed, exploring the engineering
applications of BMGs.

• HEAs have some characteristics similar to BMGs, for example, the serrated plastic flows which
are difficult to predict/control. The introducing of complex stress fields can result in the evolution
of microstructures, such as phase transition and mechanical twining, which may also be beneficial
for uncovering the deformation mechanisms of HEAs. Furthermore, with controllable evolution
of microstructures, the outstanding mechanical properties of HEAs could be further improved
and optimized.

Author Contributions: S.C. prepared the manuscript. S.C. and J.W. collected the data. S.C., L.X. and Y.W. designed
the scope of the paper. All authors discussed the conclusions and reviewed the manuscript.

Funding: This research was funded by National Natural Science Foundation of China grant number 51801049.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Plummer, J.; Johnson, W.L. Is metallic glass poised to come of age? Nat. Mater. 2015, 14, 553–555. [CrossRef]
[PubMed]

2. Wang, W.H.; Dong, C.; Shek, C.H. Bulk metallic glasses. Mater. Sci. Eng. R 2004, 44, 45–89. [CrossRef]
3. Yavari, A.R.; Lewandowski, J.J.; Eckert, J. Mechanical properties of bulk metallic glasses. MRS Bull. 2007, 32,

635–638. [CrossRef]

http://dx.doi.org/10.1038/nmat4297
http://www.ncbi.nlm.nih.gov/pubmed/25990901
http://dx.doi.org/10.1016/j.mser.2004.03.001
http://dx.doi.org/10.1557/mrs2007.125


Entropy 2019, 21, 54 15 of 20

4. Greer, A.L.; Cheng, Y.Q.; Ma, E. Shear bands in metallic glasses. Mater. Sci. Eng. R 2013, 74, 71–132. [CrossRef]
5. Chen, M.W.; Inoue, A.; Zhang, W.; Sakurai, T. Extraordinary plasticity of ductile bulk metallic glasses.

Phys. Rev. Lett. 2006, 96, 245502. [CrossRef] [PubMed]
6. Hieronymus-Schmidt, V.; Rosner, H.; Wilde, G.; Zaccone, A. Shear banding in metallic glasses described by

alignments of eshelby quadrupoles. Phys. Rev. B 2017, 95, 134111. [CrossRef]
7. Wang, J.G.; Pan, Y.; Song, S.X.; Sun, B.A.; Wang, G.; Zhai, Q.J.; Chan, K.C.; Wang, W.H. How hot is a shear

band in a metallic glass? Mater. Sci. Eng. A 2016, 651, 321–331. [CrossRef]
8. Dai, L.H.; Jiang, M.Q.; Wang, W.H. Prediction of shear-band thickness in metallic glasses. Scripta Mater. 2009,

60, 1004–1007. [CrossRef]
9. Joshi, S.P.; Ramesh, K.T. Stability map for nanocrystalline and amorphous materials. Phys. Rev. Lett. 2008,

101, 025501. [CrossRef]
10. Liu, C.; Roddatis, V.; Kenesei, P.; Maass, R. Shear-band thickness and shear-band cavities in a Zr-based

metallic glass. Acta Mater. 2017, 140, 206–216. [CrossRef]
11. Han, Z.H.; Yang, W.; Wu, F.; Li, Y. Invariant critical stress for shear banding in a bulk metallic glass.

Appl. Phys. Lett. 2008, 93, 231912. [CrossRef]
12. Cao, A.J.; Cheng, Y.Q.; Ma, E. Structural processes that initiate shear localization in metallic glass. Acta Mater.

2009, 57, 5146–5155. [CrossRef]
13. Ketov, S.V.; Louzguine-Luzgin, D.V. Localized shear deformation and softening of bulk metallic glass: Stress

or temperature driven? Sci. Rep. 2013, 3, 02798. [CrossRef] [PubMed]
14. Joo, S.H.; Kato, H.; Gangwar, K.; Lee, S.; Kim, H.S. Shear banding behavior and fracture mechanisms of

Zr55Al10Ni5Cu30 bulk metallic glass in uniaxial compression analyzed using a digital image correlation
method. Intermetallics 2013, 32, 21–29. [CrossRef]

15. Kumar, G.; Desai, A.; Schroers, J. Bulk metallic glass: The smaller the better. Adv. Mater. 2011, 23, 461–476.
[CrossRef] [PubMed]

16. Chen, L.Y.; Ge, Q.; Qu, S.; Jiang, Q.K.; Nie, X.P.; Jiang, J.Z. Achieving large macroscopic compressive
plastic deformation and work-hardening-like behavior in a monolithic bulk metallic glass by tailoring stress
distribution. Appl. Phys. Lett. 2008, 92, 211905. [CrossRef]

17. Wu, W.F.; Zhang, C.Y.; Zhang, Y.W.; Zeng, K.Y.; Li, Y. Stress gradient enhanced plasticity in a monolithic bulk
metallic glass. Intermetallics 2008, 16, 1190–1198. [CrossRef]

18. Chen, S.H.; Chan, K.C.; Xia, L. Deformation behavior of a Zr-based bulk metallic glass under a complex
stress state. Intermetallics 2013, 43, 38–44. [CrossRef]

19. Brothers, A.H.; Dunand, D.C. Ductile bulk metallic glass foams. Acta Mater. 2005, 17, 484–486. [CrossRef]
20. Brothers, A.H.; Dunand, D.C. Plasticity and damage in cellular amorphous metals. Adv. Mater. 2005, 53,

4427–4440. [CrossRef]
21. Louzguine-Luzgin, D.V.; Inoue, A.; Wada, T. Improved mechanical properties of bulk glassy alloys containing

spherical pores. Mater. Sci. Eng. A 2007, 471, 144–150. [CrossRef]
22. Sarac, B.; Ketkaew, J.; Popnoe, D.O.; Schroers, J. Honeycomb structures of bulk metallic glasses. Adv. Funct.

Mater. 2012, 22, 3161–3169. [CrossRef]
23. Chen, W.; Liu, Z.; Robinson, H.M.; Schroers, J. Flaw tolerance vs. performance: A tradeoff in metallic glass

cellular structures. Acta Mater. 2014, 73, 259–274. [CrossRef]
24. Chen, S.H.; Chan, K.C.; Wu, F.F.; Xia, L. Pronounced energy absorption capacity of cellular bulk metallic

glasses. Appl. Phys. Lett. 2014, 104, 111907. [CrossRef]
25. Wang, W.H. Bulk metallic glasses with functional physical properties. Adv. Mater. 2009, 21, 4524–4544.

[CrossRef]
26. Ma, E.; Cheng, Y.Q. Atomic-level structure and structure-property relationship in metallic glasses.

Prog. Mater. Sci. 2011, 56, 379–473. [CrossRef]
27. Takeuchi, S.; Edagawa, K. Atomistic simulation and modeling of localized shear deformation in metallic

glasses. Prog. Mater. Sci. 2011, 56, 785–816. [CrossRef]
28. Nieh, T.G.; Yang, Y.; Lu, J.; Liu, C.T. Effect of surface modifications on shear banding and plasticity in metallic

glasses: An overview. Prog. Nat. Sci. 2012, 22, 355–363. [CrossRef]
29. Yu, H.B.; Wang, W.H.; Samwer, K. The beta relaxation in metallic glasses: An overview. Mater. Today 2013, 16,

183–191. [CrossRef]

http://dx.doi.org/10.1016/j.mser.2013.04.001
http://dx.doi.org/10.1103/PhysRevLett.96.245502
http://www.ncbi.nlm.nih.gov/pubmed/16907252
http://dx.doi.org/10.1103/PhysRevB.95.134111
http://dx.doi.org/10.1016/j.msea.2015.10.125
http://dx.doi.org/10.1016/j.scriptamat.2009.02.039
http://dx.doi.org/10.1103/PhysRevLett.101.025501
http://dx.doi.org/10.1016/j.actamat.2017.08.032
http://dx.doi.org/10.1063/1.3048869
http://dx.doi.org/10.1016/j.actamat.2009.07.016
http://dx.doi.org/10.1038/srep02798
http://www.ncbi.nlm.nih.gov/pubmed/24100784
http://dx.doi.org/10.1016/j.intermet.2012.08.013
http://dx.doi.org/10.1002/adma.201002148
http://www.ncbi.nlm.nih.gov/pubmed/20922805
http://dx.doi.org/10.1063/1.2937141
http://dx.doi.org/10.1016/j.intermet.2008.07.004
http://dx.doi.org/10.1016/j.intermet.2013.07.006
http://dx.doi.org/10.1002/adma.200400897
http://dx.doi.org/10.1016/j.actamat.2005.06.002
http://dx.doi.org/10.1016/j.msea.2006.10.172
http://dx.doi.org/10.1002/adfm.201200539
http://dx.doi.org/10.1016/j.actamat.2014.04.026
http://dx.doi.org/10.1063/1.4869229
http://dx.doi.org/10.1002/adma.200901053
http://dx.doi.org/10.1016/j.pmatsci.2010.12.002
http://dx.doi.org/10.1016/j.pmatsci.2011.01.007
http://dx.doi.org/10.1016/j.pnsc.2012.09.006
http://dx.doi.org/10.1016/j.mattod.2013.05.002


Entropy 2019, 21, 54 16 of 20

30. Louzguine-Luzgin, D.V.; Louzguina-Luzgina, L.V.; Churyumov, A.Y. Mechanical properties and deformation
behavior of bulk metallic glasses. Metals 2013, 3, 1–22. [CrossRef]

31. Liu, L.; Zhang, C. Fe-based amorphous coatings: Structures and properties. Thin Solid Films 2014, 561, 70–86.
[CrossRef]

32. Lin, Y.C.; Tsai, Y.C.; Ono, T.; Liu, P.; Esashi, M.; Gessner, T.; Chen, M.W. Metallic glass as a mechanical
material for microscanners. Adv. Funct. Mater. 2015, 25, 5677–5682. [CrossRef]

33. Sarac, B.; Sopu, D.; Park, E.; Hufenbach, J.K.; Oswald, S.; Stoica, M.; Eckert, J. Mechanical and structural
investigation of porous bulk metallic glasses. Metals 2015, 5, 920–933. [CrossRef]

34. Sun, B.A.; Wang, W.H. The fracture of bulk metallic glasses. Prog. Mater. Sci. 2015, 74, 211–307. [CrossRef]
35. Trexler, M.M.; Thadhani, N.N. Mechanical properties of bulk metallic glasses. Prog. Mater. Sci. 2010, 55,

759–839. [CrossRef]
36. Chen, S.H.; Cheng, H.Y.; Chan, K.C.; Wang, G. Metallic glass structures for mechanical-energy-dissipation

purpose: A review. Metals 2018, 8, 689. [CrossRef]
37. Schroers, J. Processing of bulk metallic glass. Adv. Mater. 2010, 22, 1566–1597. [CrossRef] [PubMed]
38. Jafary-Zadeh, M.; Kumar, G.P.; Branicio, P.S.; Seifi, M.; Lewandowski, J.J.; Cui, F. A critical review on metallic

glasses as structural materials for cardiovascular stent applications. J. Funct. Biomater. 2018, 9, 19. [CrossRef]
39. Khan, M.M.; Nemati, A.; Rahman, Z.U.; Shah, U.H.; Asgar, H.; Haider, W. Recent advancements in bulk

metallic glasses and their applications: A review. Crit. Rev. Solid State 2018, 43, 233–268. [CrossRef]
40. Zhang, Y.; Liu, J.P.; Chen, S.Y.; Xie, X.; Liaw, P.K.; Dahmen, K.A.; Qiao, J.W.; Wang, Y.L. Serration and noise

behaviors in materials. Prog. Mater. Sci. 2017, 90, 358–460. [CrossRef]
41. Argon, A.S.; Shi, L.T. Development of visco-plastic deformation in metallic glasses. Acta Metall. 1983, 31,

499–507. [CrossRef]
42. Spaepen, F. A microscopic mechanism for steady-state inhomogeneous flow in metallic gasses. Acta Metall.

1977, 25, 407–415. [CrossRef]
43. Lewandowski, J.J.; Greer, A.L. Temperature rise at shear bands in metallic glasses. Nat. Mater. 2006, 5, 15–18.

[CrossRef]
44. Leamy, H.J.; Chen, H.S.; Wang, T.T. Plastic-flow and fracture of metallic glass. Metall. Trans. 1972, 3, 699–708.

[CrossRef]
45. Steif, P.S.; Spaepen, F.; Hutchinson, J.W. Strain Localization in Amorphous Metals. Acta Metall. 1982, 30,

447–455. [CrossRef]
46. Johnson, W.L.; Samwer, K. A universal criterion for plastic yielding of metallic glasses with a (T/T-g)(2/3)

temperature dependence. Phys. Rev. Lett. 2005, 95, 195501. [CrossRef] [PubMed]
47. Yavari, A.R.; Aljerf, M.; Georgarakis, K. Shaping of metallic glasses by stress-annealing without thermal

embrittlement. Acta Mater. 2011, 59, 3817–3824. [CrossRef]
48. Hufnagel, T.C.; Schuh, C.A.; Falk, M.L. Deformation of metallic glasses: Recent developments in theory,

simulations, and experiments. Acta Mater. 2016, 109, 375–393. [CrossRef]
49. Chen, M.W. Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility.

Annu. Rev. Mater. Res. 2008, 38, 445–469. [CrossRef]
50. Schuh, C.A.; Hufnagel, T.C.; Ramamurty, U. Mechanical behavior of amorphous alloys. Acta Mater. 2007, 55,

4067–4109. [CrossRef]
51. Wang, W.H.; Yang, Y.; Nieh, T.G.; Liu, C.T. On the source of plastic flow in metallic glasses: Concepts and

models. Intermetallics 2015, 67, 81–86. [CrossRef]
52. Maaß, R.; Loffler, J.F. Shear-band dynamics in metallic glasses. Adv. Funct. Mater. 2015, 25, 2353–2368.

[CrossRef]
53. Qiao, J.W.; Jia, H.L.; Liaw, P.K. Metallic glass matrix composites. Mater. Sci. Eng. R 2016, 100, 1–69. [CrossRef]
54. Tian, L.; Wang, X.L.; Shan, Z.W. Mechanical behavior of micronanoscaled metallic glasses. Mater. Res. Lett.

2016, 4, 63–74. [CrossRef]
55. Guo, H.; Yan, P.F.; Wang, Y.B.; Tan, J.; Zhang, Z.F.; Sui, M.L.; Ma, E. Tensile ductility and necking of

metallic glass. Nat. Mater. 2007, 6, 735–739. [CrossRef] [PubMed]
56. Luo, J.H.; Wu, F.F.; Huang, J.Y.; Wang, J.Q.; Mao, S.X. Superelongation and Atomic Chain Formation in

Nanosized Metallic Glass. Phys. Rev. Lett. 2010, 104, 215503. [CrossRef] [PubMed]
57. Jang, D.C.; Greer, J.R. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of

metallic glasses. Nat. Mater. 2010, 9, 215–219. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/met3010001
http://dx.doi.org/10.1016/j.tsf.2013.08.029
http://dx.doi.org/10.1002/adfm.201502456
http://dx.doi.org/10.3390/met5020920
http://dx.doi.org/10.1016/j.pmatsci.2015.05.002
http://dx.doi.org/10.1016/j.pmatsci.2010.04.002
http://dx.doi.org/10.3390/met8090689
http://dx.doi.org/10.1002/adma.200902776
http://www.ncbi.nlm.nih.gov/pubmed/20496386
http://dx.doi.org/10.3390/jfb9010019
http://dx.doi.org/10.1080/10408436.2017.1358149
http://dx.doi.org/10.1016/j.pmatsci.2017.06.004
http://dx.doi.org/10.1016/0001-6160(83)90038-X
http://dx.doi.org/10.1016/0001-6160(77)90232-2
http://dx.doi.org/10.1038/nmat1536
http://dx.doi.org/10.1007/BF02642754
http://dx.doi.org/10.1016/0001-6160(82)90225-5
http://dx.doi.org/10.1103/PhysRevLett.95.195501
http://www.ncbi.nlm.nih.gov/pubmed/16383993
http://dx.doi.org/10.1016/j.actamat.2011.02.039
http://dx.doi.org/10.1016/j.actamat.2016.01.049
http://dx.doi.org/10.1146/annurev.matsci.38.060407.130226
http://dx.doi.org/10.1016/j.actamat.2007.01.052
http://dx.doi.org/10.1016/j.intermet.2015.08.004
http://dx.doi.org/10.1002/adfm.201404223
http://dx.doi.org/10.1016/j.mser.2015.12.001
http://dx.doi.org/10.1080/21663831.2015.1124298
http://dx.doi.org/10.1038/nmat1984
http://www.ncbi.nlm.nih.gov/pubmed/17704779
http://dx.doi.org/10.1103/PhysRevLett.104.215503
http://www.ncbi.nlm.nih.gov/pubmed/20867114
http://dx.doi.org/10.1038/nmat2622
http://www.ncbi.nlm.nih.gov/pubmed/20139966


Entropy 2019, 21, 54 17 of 20

58. Tian, L.; Cheng, Y.Q.; Shan, Z.W.; Li, J.; Wang, C.C.; Han, X.D.; Sun, J.; Ma, E. Approaching the ideal elastic
limit of metallic glasses. Sci. Rep. 2012, 3, 609. [CrossRef]

59. Liontas, R.; Jafary-Zadeh, M.; Zeng, Q.S.; Zhang, Y.W.; Mao, W.L.; Greer, J.R. Substantial tensile ductility in
sputtered Zr-Ni-Al nano-sized metallic glass. Acta Mater. 2016, 118, 270–285. [CrossRef]

60. Sha, Z.D.; Pei, Q.X.; Sorkin, V.; Branicio, P.S.; Zhang, Y.W.; Gao, H.J. On the notch sensitivity of CuZr
metallic glasses. Appl. Phys. Lett. 2013, 103, 253104. [CrossRef]

61. Sha, Z.D.; Pei, Q.X.; Liu, Z.S.; Zhang, Y.W.; Wang, T.J. Necking and notch strengthening in metallic glass
with symmetric sharp-and-deep notches. Sci. Rep. 2015, 5, 10797. [CrossRef] [PubMed]

62. Dutta, T.; Chauniyal, A.; Singh, I.; Narasimhan, R.; Thamburaja, P.; Ramamurty, U. Plastic deformation and
failure mechanisms in nano-scale notched metallic glass specimens under tensile loading. J. Mech. Phys. Solids
2018, 111, 393–413. [CrossRef]

63. Cui, W.; Pan, J.; Blackwood, D.J.; Li, Y. Voronoi volume recovery during plastic deformation in deep-notched
metallic glasses. J. Alloys Compd. 2019, 776, 460–468. [CrossRef]

64. Adibi, S.; Branicio, S.P.; Liontas, R.; Cheng, D.Z.; Greer, J.R.; Scrolovitz, D.J.; Joshi, S.P. Surface roughness
imparts tensile ductility to nanoscale metallic glasses. Extreme Mech. Lett. 2015, 5, 88–95. [CrossRef]

65. Deng, Q.S.; Cheng, Y.Q.; Yue, Y.H.; Zhang, L.; Zhang, Z.; Han, X.D.; Ma, E. Uniform tensile elongation in
framed submicron metallic glass specimen in the limit of suppressed shear banding. Acta Mater. 2011, 59,
6511–6518. [CrossRef]

66. Tariq, N.H.; Akhter, J.I.; Hasan, B.A.; Hyder, M.J. Design induced plastic deformation in Zr-based bulk
metallic glass. J. Alloys Compd. 2010, 507, 414–418. [CrossRef]

67. Wu, W.F.; Li, Y.; Schuh, C.A. Strength, plasticity and brittleness of bulk metallic glasses under compression:
Statistical and geometric effects. Philos. Mag. 2008, 88, 71–89. [CrossRef]

68. Chen, S.H.; Chan, K.C.; Xia, L. Deformation evolution of a Zr-based bulk metallic glass under three-point
bending tests. Adv. Mater. Res. 2014, 939, 31–38. [CrossRef]

69. Chen, S.H.; Chan, K.C.; Xia, L. Fracture morphologies of Zr-based bulk metallic glasses under different stress
states. Adv. Eng. Mater. 2015, 17, 366–373. [CrossRef]

70. Chen, S.H.; Chan, K.C.; Xia, L. Effect of stress gradient on the deformation behavior of a bulk metallic glass
under uniaxial tension. Mater. Sci. Eng. A 2013, 574, 262–265. [CrossRef]

71. Fan, J.J.; Yan, Y.F.; Chen, S.H.; Ng, C.H.; Wu, F.F.; Chan, K.C. Reliability of the plastic deformation behavior
of a Zr-based bulk metallic glass. Intermetallics 2016, 74, 25–30. [CrossRef]

72. Chen, S.H.; Yue, T.M.; Tsui, C.P.; Chan, K.C. Effect of external disturbances on the strain-rate dependent
plastic deformation behavior of a bulk metallic glass. Mater. Sci. Eng. A 2016, 669, 103–109. [CrossRef]

73. Zhang, Y.; Wang, W.H.; Greer, A.L. Making metallic glasses plastic by control of residual stress. Nat. Mater.
2006, 5, 857–860. [CrossRef] [PubMed]

74. Chen, B.Q.; Li, Y.; Yi, M.; Li, R.; Pang, S.J.; Wang, H.; Zhang, T. Optimization of mechanical properties of bulk
metallic glasses by residual stress adjustment using laser surface melting. Scripta Mater. 2012, 66, 1057–1060.
[CrossRef]

75. Wu, G.J.; Li, R.; Liu, Z.Q.; Chen, B.Q.; Li, Y.; Cai, Y.; Zhang, T. Induced multiple heterogeneities and related
plastic improvement by laser surface treatment in CuZr-based bulk metallic glass. Intermetallics 2012, 24,
50–55. [CrossRef]

76. Chen, S.H.; Yue, T.M.; Tsui, C.P.; Chan, K.C. Flaw-induced plastic-flow dynamics in bulk metallic glasses
under tension. Sci. Rep. 2016, 6, 36130. [CrossRef]

77. Kimura, H.; Masumoto, T. Plastic constraint and ductility in tensile notched specimens of amorphous
Pd78Cu6Si16. Metall. Trans. A 1983, 14, 709–716. [CrossRef]

78. Demetriou, M.D.; Launey, M.E.; Garrett, G.; Schramm, J.P.; Hofmann, D.C.; Johnson, W.L.; Ritchie, R.O.
A damage-tolerant glass. Nat. Mater. 2011, 10, 123–128. [CrossRef]

79. Tandaiya, P.; Ramamurty, U.; Narasimhan, R. Mixed mode (I and II) crack tip fields in bulk metallic glasses.
J. Mech. Phys. Solids 2009, 57, 1880–1897. [CrossRef]

80. Tandaiya, P.; Narasimhan, R.; Ramamurty, U. On the mechanism and the length scales involved in the ductile
fracture of a bulk metallic glass. Acta Mater. 2013, 61, 1558–1570. [CrossRef]

81. Yi, J.; Wang, W.H.; Lewandowski, J.J. Guiding and deflecting cracks in bulk metallic glasses to increase
damage tolerance. Adv. Eng. Mater. 2015. [CrossRef]

http://dx.doi.org/10.1038/ncomms1619
http://dx.doi.org/10.1016/j.actamat.2016.07.050
http://dx.doi.org/10.1063/1.4819099
http://dx.doi.org/10.1038/srep10797
http://www.ncbi.nlm.nih.gov/pubmed/26022224
http://dx.doi.org/10.1016/j.jmps.2017.11.011
http://dx.doi.org/10.1016/j.jallcom.2018.10.238
http://dx.doi.org/10.1016/j.eml.2015.08.004
http://dx.doi.org/10.1016/j.actamat.2011.05.035
http://dx.doi.org/10.1016/j.jallcom.2010.07.202
http://dx.doi.org/10.1080/14786430701762619
http://dx.doi.org/10.4028/www.scientific.net/AMR.939.31
http://dx.doi.org/10.1002/adem.201300426
http://dx.doi.org/10.1016/j.msea.2013.03.035
http://dx.doi.org/10.1016/j.intermet.2016.05.001
http://dx.doi.org/10.1016/j.msea.2016.05.090
http://dx.doi.org/10.1038/nmat1758
http://www.ncbi.nlm.nih.gov/pubmed/17041581
http://dx.doi.org/10.1016/j.scriptamat.2012.02.046
http://dx.doi.org/10.1016/j.intermet.2012.01.022
http://dx.doi.org/10.1038/srep36130
http://dx.doi.org/10.1007/BF02643787
http://dx.doi.org/10.1038/nmat2930
http://dx.doi.org/10.1016/j.jmps.2009.07.006
http://dx.doi.org/10.1016/j.actamat.2012.11.033
http://dx.doi.org/10.1002/adem.201400209


Entropy 2019, 21, 54 18 of 20

82. Yang, G.N.; Shao, Y.; Yao, K.F. The shear band controlled deformation in metallic glass: A perspective from
fracture. Sci. Rep. 2016, 6, 21852. [CrossRef] [PubMed]

83. Li, W.D.; Gao, Y.F.; Bei, H.B. Instability analysis and free volume simulations of shear band directions and
arrangements in notched metallic glasses. Sci. Rep. 2016, 6, 34878. [CrossRef] [PubMed]

84. Kubin, L.P.; Estrin, Y. The Portevin-Le Chatelier effect in deformation with constant stress rate. Acta Metall.
1985, 33, 397–407. [CrossRef]

85. Lebyodkin, M.A.; Brechet, Y.; Estrin, Y.; Kubin, L.P. Statistics of the catastrophic slip events in the
Portevin—Le Châtelier effect. Phys. Rev. Lett. 1995, 74, 4758–4761. [CrossRef] [PubMed]

86. Wang, G.; Chan, K.C.; Xia, L.; Yu, P.; Shen, J.; Wang, W.H. Self-organized intermittent plastic flow in bulk
metallic glasses. Acta Mater. 2009, 57, 6146–6155. [CrossRef]

87. Sarmah, R.; Ananthakrishna, G.; Sun, B.A.; Wang, W.H. Hidden order in serrated flow of metallic glasses.
Acta Mater. 2011, 59, 4482–4493. [CrossRef]

88. Ren, J.L.; Chen, C.; Liu, Z.Y.; Li, R.; Wang, G. Plastic dynamics transition between chaotic and self-organized
critical states in a glassy metal via a multifractal intermediate. Phys. Rev. B 2012, 86, 134303. [CrossRef]

89. Bian, X.L.; Wang, G.; Chan, K.C.; Ren, J.L.; Gao, Y.L.; Zhai, Q.J. Shear avalanches in metallic glasses
under nanoindentation: Deformation units and rate dependent strain burst cut-off. Appl. Phys. Lett. 2013,
103, 101907. [CrossRef]

90. Wang, Z.; Qiao, J.W.; Wang, G.; Dahmen, K.A.; Liaw, P.K.; Wang, Z.H.; Wang, B.C.; Xu, B.S. The mechanism
of power-law scaling behavior by controlling shear bands in bulk metallic glass. Mater. Sci. Eng. A 2015, 639,
663–670. [CrossRef]

91. Li, J.J.; Wang, Z.; Qiao, J.W. Power-law scaling between mean stress drops and strain rates in bulk metallic
glasses. Mater. Des. 2016, 99, 427–432. [CrossRef]

92. Antonaglia, J.; Antonaglia, J.; Wright, W.J.; Gu, X.J.; Byer, R.R.; Hufnagel, T.C.; LeBlanc, M.; Uhl, J.T.;
Dahmen, K.A. Bulk metallic glasses deform via slip avalanches. Phys. Rev. Lett. 2014, 112, 155501. [CrossRef]
[PubMed]

93. Krisponeit, J.O.; Pitikaris, S.; Avila, K.E.; Kuchemann, S.; Kruger, A.; Samwer, K. Crossover from random
three-dimensional avalanches to correlated nano shear bands in metallic glasses. Nat. Commun. 2014, 5, 3616.
[CrossRef] [PubMed]

94. Antonaglia, J.; Xie, X.; Schwarz, G.; Wraith, M.; Qiao, J.; Zhang, Y.; Liaw, P.K.; Uhl, J.T.; Dahmen, K.A. Tuned
critical avalanche scaling in bulk metallic glasses. Sci. Rep. 2014, 4, 4382. [CrossRef] [PubMed]

95. Sun, B.A.; Pauly, S.; Tan, J.; Stoica, M.; Wang, W.H.; Kuehn, U.; Eckert, J. Serrated flow and stick-slip
deformation dynamics in the presence of shear-band interactions for a Zr-based metallic glass. Acta Mater.
2012, 60, 4160–4171. [CrossRef]

96. Chen, S.H.; Chan, K.C.; Wang, G.; Wu, F.F.; Xia, L.; Ren, J.L.; Li, J.; Dahmen, K.A.; Liaw, P.K.
Loading-rate-independent delay of catastrophic avalanches in a bulk metallic glass. Sci. Rep. 2016, 6, 21967.
[CrossRef]

97. Louzguine-Luzgin, D.V.; Zadorozhnyy, V.Y.; Chen, N.; Ketov, S.V. Evidence of the existence of
two deformation stages in bulk metallic glasses. J. Non-Cryst. Solids 2014, 396, 20–24. [CrossRef]

98. Tang, H.H.; Cai, Y.C.; Zuo, Q.; Chen, S.H.; Liu, R.P. Achieving high uniformity of the elastic strain energy
accumulation rate during the serrated plastic flows of bulk metallic glasses. Mater. Sci. Eng. A 2018, 736,
269–275. [CrossRef]

99. Bei, H.; Lu, Z.P.; Shim, S.; Chen, G.; George, E.P. Specimen size effects on Zr-based bulk metallic glasses
investigated by uniaxial compression and spherical nanoindentation. Metall. Mater. Trans. A 2010, 41A,
1735–1742. [CrossRef]

100. Zhao, J.X.; Qu, R.T.; Wu, F.F.; Li, S.X.; Zhang, Z.F. Deformation behavior and enhanced plasticity of Ti-based
metallic glasses with notches. Philos. Mag. 2010, 90, 3867–3877. [CrossRef]

101. Zhao, J.X.; Qu, R.T.; Wu, F.F.; Li, S.X.; Zhang, Z.F. Enhanced plastic deformation in a metallic glass induced
by notches. Philos. Mag. Lett. 2010, 90, 875–882. [CrossRef]

102. Zhao, J.X.; Wu, F.F.; Qu, R.T.; Li, S.X.; Zhang, Z.F. Plastic deformability of metallic glass by artificial
macroscopic notches. Acta Mater. 2010, 58, 5420–5432. [CrossRef]

103. Zhao, J.X.; Zhang, Z.F. Comparison of compressive deformation and fracture behaviors of Zr- and Ti-based
metallic glasses with notches. Mater. Sci. Eng. A 2011, 528, 2967–2973. [CrossRef]

http://dx.doi.org/10.1038/srep21852
http://www.ncbi.nlm.nih.gov/pubmed/26899145
http://dx.doi.org/10.1038/srep34878
http://www.ncbi.nlm.nih.gov/pubmed/27721462
http://dx.doi.org/10.1016/0001-6160(85)90082-3
http://dx.doi.org/10.1103/PhysRevLett.74.4758
http://www.ncbi.nlm.nih.gov/pubmed/10058591
http://dx.doi.org/10.1016/j.actamat.2009.08.040
http://dx.doi.org/10.1016/j.actamat.2011.03.071
http://dx.doi.org/10.1103/PhysRevB.86.134303
http://dx.doi.org/10.1063/1.4820782
http://dx.doi.org/10.1016/j.msea.2015.05.074
http://dx.doi.org/10.1016/j.matdes.2016.03.092
http://dx.doi.org/10.1103/PhysRevLett.112.155501
http://www.ncbi.nlm.nih.gov/pubmed/24785049
http://dx.doi.org/10.1038/ncomms4616
http://www.ncbi.nlm.nih.gov/pubmed/24717842
http://dx.doi.org/10.1038/srep04382
http://www.ncbi.nlm.nih.gov/pubmed/24632786
http://dx.doi.org/10.1016/j.actamat.2012.04.013
http://dx.doi.org/10.1038/srep21967
http://dx.doi.org/10.1016/j.jnoncrysol.2014.04.014
http://dx.doi.org/10.1016/j.msea.2018.09.003
http://dx.doi.org/10.1007/s11661-009-9994-y
http://dx.doi.org/10.1080/14786435.2010.498777
http://dx.doi.org/10.1080/09500839.2010.512573
http://dx.doi.org/10.1016/j.actamat.2010.06.017
http://dx.doi.org/10.1016/j.msea.2010.12.020


Entropy 2019, 21, 54 19 of 20

104. Zhao, J.X. Achieving the desirable compressive plasticity by installing notch cluster in metallic glass.
Mater. Sci. Eng. A 2015, 634, 134–140. [CrossRef]

105. Qu, R.T.; Calin, M.; Eckert, J.; Zhang, Z.F. Metallic glasses: Notch-insensitive materials. Scr. Mater. 2012, 66,
733–736. [CrossRef]

106. Qu, R.T.; Zhao, J.X.; Stoica, M.; Eckert, J.; Zhang, Z.F. Macroscopic tensile plasticity of bulk metallic glass
through designed artificial defects. Mater. Sci. Eng. A 2012, 534, 365–373. [CrossRef]

107. Li, W.D.; Bei, H.B.; Gao, Y.F. Effects of geometric factors and shear band patterns on notch sensitivity in bulk
metallic glasses. Intermetallics 2016, 79, 12–19. [CrossRef]

108. Chen, S.H.; Chan, K.C.; Xia, L. Deformation behavior of bulk metallic glass structural elements. Mater. Sci.
Eng. A 2014, 606, 196–204. [CrossRef]

109. Qu, R.T.; Zhang, Q.S.; Zhang, Z.F. Achieving macroscopic tensile plasticity of monolithic bulk metallic glass
by surface treatment. Scripta Mater. 2013, 68, 845–848. [CrossRef]

110. Scudino, S.; Bian, J.J.; Shahabi, H.S.; Sopu, D.; Sort, J.; Eckert, J.; Liu, G. Ductile bulk metallic glass by
controlling structural heterogeneities. Sci. Rep. 2018, 8. [CrossRef] [PubMed]

111. Gao, M.; Dong, J.; Huan, Y.; Wang, Y.T.; Wang, W.H. Macroscopic tensile plasticity by scalarizating stress
distribution in bulk metallic glass. Sci. Rep. 2016, 6, 21929. [CrossRef]

112. Dong, J.; Gao, M.; Huan, Y.; Feng, Y.H.; Liu, W.; Wang, W.H. Enhanced tensile plasticity of Zr based bulk
metallic glasses by a stress induced large scale flow. J. Alloys Compd. 2017, 727, 297–303. [CrossRef]

113. Wu, F.F.; Zhang, Z.F.; Shen, J.; Mao, S.X. Shear deformation and plasticity of metallic glass under multiaxial
loading. Acta Mater. 2008, 56, 894–904. [CrossRef]

114. Jana, S.; Ramamurty, U.; Chattopadhyay, K.; Kawamura, Y. Subsurface deformation during vickers
indentation of bulk metallic glasses. Mater. Sci. Eng. A 2004, 375, 1191–1195. [CrossRef]

115. Schuh, C.A.; Nieh, T.G. A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 2003,
51, 87–99. [CrossRef]

116. Schuh, C.A.; Argon, A.S.; Nieh, T.G.; Wadsworth, J. The transition from localized to homogeneous plasticity
during nanoindentation of an amorphous metal. Philos. Mag. 2003, 83, 2585–2597. [CrossRef]

117. Chen, S.H.; Chan, K.C.; Wu, F.F.; Xia, L. Achieving high energy absorption capacity in cellular bulk metallic
glasses. Sci. Rep. 2015, 5, 10302. [CrossRef] [PubMed]

118. Flores, K.M.; Dauskardt, R.H. Mean stress effects on flow localization and failure in a bulk metallic glass.
Acta Mater. 2001, 49, 2527–2537. [CrossRef]

119. Wang, Z.T.; Pan, J.; Li, Y.; Schuh, C.A. Densification and strain hardening of a metallic glass under tension at
room temperature. Phys. Rev. Lett. 2013, 111, 135504. [CrossRef] [PubMed]

120. Pan, J.; Wang, Y.X.; Li, Y. Ductile fracture in notched bulk metallic glasses. Acta Mater. 2017, 136, 126–133.
[CrossRef]

121. Gu, X.W.; Jafary-Zadeh, M.; Chen, D.Z.; Wu, Z.X.; Zhang, Y.W.; Srolovitz, D.J.; Greer, J.R. Mechanisms of
failure in nanoscale metallic glass. Nano Lett. 2014, 14, 5858–5864. [CrossRef] [PubMed]

122. Narayan, R.L.; Tian, L.; Zhang, D.L.; Dao, M.; Shan, Z.W.; Hsia, K.J. Effects of notches on the deformation
behavior of submicron sized metallic glasses: Insights from in situ experiments. Acta Mater. 2018, 154,
172–181. [CrossRef]

123. Pan, J.; Zhou, H.F.; Wang, Z.T.; Li, Y.; Gao, H.J. Origin of anomalous inverse notch effect in bulk
metallic glasses. J. Mech. Phys. Solids 2015, 84, 85–94. [CrossRef]

124. Lesz, S.; Griner, S.; Nowosielski, R. Deformation mechanisms and fracture of Ni-based metallic glasses.
Arch. Metall. Mater. 2016, 61, 791–795. [CrossRef]

125. Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties
of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [CrossRef]

126. Ritchie, R.O. The conflicts between strength and toughness. Nat. Mater. 2011, 10, 817–822. [CrossRef]
[PubMed]

127. Li, Z.M.; Pradeep, K.G.; Deng, Y.; Raabe, D.; Tasan, C.C. Metastable high-entropy dual-phase alloys overcome
the strength-ductility trade-off. Nature 2016, 534, 227–230. [CrossRef]

128. Carroll, R.; Lee, C.; Tsai, C.W.; Yeh, J.W.; Antonaglia, J.; Brinkman, B.A.W.; LeBlanc, M.; Xie, X.; Chen, S.Y.;
Liaw, P.K.; et al. Experiments and model for serration statistics in low-entropy, medium-entropy, and
high-entropy alloys. Sci. Rep. 2015, 5, 16997. [CrossRef]

http://dx.doi.org/10.1016/j.msea.2015.03.057
http://dx.doi.org/10.1016/j.scriptamat.2012.01.044
http://dx.doi.org/10.1016/j.msea.2011.11.082
http://dx.doi.org/10.1016/j.intermet.2016.09.001
http://dx.doi.org/10.1016/j.msea.2014.03.094
http://dx.doi.org/10.1016/j.scriptamat.2013.02.005
http://dx.doi.org/10.1038/s41598-018-27285-5
http://www.ncbi.nlm.nih.gov/pubmed/29907778
http://dx.doi.org/10.1038/srep21929
http://dx.doi.org/10.1016/j.jallcom.2017.08.046
http://dx.doi.org/10.1016/j.actamat.2007.10.048
http://dx.doi.org/10.1016/j.msea.2003.10.068
http://dx.doi.org/10.1016/S1359-6454(02)00303-8
http://dx.doi.org/10.1080/1478643031000118012
http://dx.doi.org/10.1038/srep10302
http://www.ncbi.nlm.nih.gov/pubmed/25973781
http://dx.doi.org/10.1016/S1359-6454(01)00125-2
http://dx.doi.org/10.1103/PhysRevLett.111.135504
http://www.ncbi.nlm.nih.gov/pubmed/24116793
http://dx.doi.org/10.1016/j.actamat.2017.06.048
http://dx.doi.org/10.1021/nl5027869
http://www.ncbi.nlm.nih.gov/pubmed/25198652
http://dx.doi.org/10.1016/j.actamat.2018.05.041
http://dx.doi.org/10.1016/j.jmps.2015.07.006
http://dx.doi.org/10.1515/amm-2016-0133
http://dx.doi.org/10.1016/j.pmatsci.2013.10.001
http://dx.doi.org/10.1038/nmat3115
http://www.ncbi.nlm.nih.gov/pubmed/22020005
http://dx.doi.org/10.1038/nature17981
http://dx.doi.org/10.1038/srep16997


Entropy 2019, 21, 54 20 of 20

129. Zou, Y.; Ma, H.; Spolenak, R. Ultrastrong ductile and stable high-entropy alloys at small scales. Nat. Commun.
2015, 6, 7748. [CrossRef]

130. Ye, Y.F.; Liu, C.T.; Yang, Y. A geometric model for intrinsic residual strain and phase stability in high entropy
alloys. Acta Mater. 2015, 94, 152–161. [CrossRef]

131. Joseph, J.; Stanford, N.; Hodgson, P.; Fabijanic, D.M. Tension/compression asymmetry in additive
manufactured face centered cubic high entropy alloy. Scr. Mater. 2017, 129, 30–34. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/ncomms8748
http://dx.doi.org/10.1016/j.actamat.2015.04.051
http://dx.doi.org/10.1016/j.scriptamat.2016.10.023
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Initiation of Shear Bands under Complex Stress Fields 
	Macroscopic Deformation Behavior under Gradient Stress Distribution 
	Stress Gradient Resulting from Tailored Sample Geometry (Loading Angle) 
	Effect of Surface Residual Stress 

	Tunable Plastic Deformation Behavior under Tailored Complex Stress Fields 
	Guiding the Propagation of Shear Bands and Cracks 
	Tunable Criticality in Flow Serrations 
	Achieving Large Macroscopic Plasticity/Axial Elongation 

	Transition of Deformation Modes under Complex Stress Fields 
	Deformation Behavior of HEAs under Complex Stress Fields 
	Conclusions and Future Directions 
	References

