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Abstract: A quantum correlation NG,A
F for (n + m)-mode continuous-variable systems is introduced

in terms of local Gaussian unitary operations performed on Subsystem A based on Uhlmann
fidelity F. This quantity is a remedy for the local ancilla problem associated with the geometric
measurement-induced correlations; is local Gaussian unitary invariant; is non-increasing under any
Gaussian quantum channel performed on Subsystem B;and is an entanglement monotone when
restricted to pure Gaussian states in the (1 + m)-mode case. A concrete formula for (1 + 1)-mode
symmetric squeezed thermal states (SSTSs) is presented. We also compare NG,A

F with other quantum
correlations in scale, such as Gaussian quantum discord and Gaussian geometric discord, for
two-mode SSTSs, which reveals that NG,A

F has some advantage in detecting quantum correlations of
Gaussian states.
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1. Introduction

One of the main features of quantum mechanics in multipartite quantum systems is the presence
of quantum correlation (QC). Though the entanglement is surely the most important among the
QCs [1–4], the study and the characterization of QCs that go beyond the paradigm of entanglement
have recently attracted more and more attention since non-entangled quantum correlations also play
important roles in various quantum computing tasks and quantum communications [5–7].

Quantifying QCs for continuous-variable systems was carried out in various ways. G.Adesso and
A. Datta [8] and P. Giorda and M. G. A. Paris [9] independently proposed Gaussian quantum discord
(GQD). In [8], the authors analytically calculated the GQD for two-mode Gaussian states and claimed
that almost all two-mode Gaussian states have quantum correlations. In [9], for squeezed thermal states
(STSs), an entanglement threshold in terms of GQD was given. It is in general difficult to compute
GQD since it involves a minimization process over all possible local Gaussian positive operator-valued
measurements (GPOVMs) in a bipartition. The authors in [10] studied the computational complexity
of quantum discord (QD) for finite-dimensional systems and found it increasing exponentially with
the dimension of the Hilbert space. Many efforts have been made to find simpler methods to quantify
these correlations. For example, in [11], G. Adesso and D. Girolami gave Gaussian geometric discord
(GGD) for Gaussian states and provided an explicit formula for two-mode STSs, and in addition, they
discussed other approaches to quantify Gaussian quadrature correlations. In analogy with the GQD,
in [12], the measurement-induced disturbance (MID) of Gaussian states was studied by constraining
the optimization to all bi-local GPOVMs, and an explicit formula for some families of states was given.
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In [13], measurement-induced nonlocality (MIN) for Gaussian states was discussed, and analytic
formulas for two-mode STSs, as well as mixed thermal states were provided. Gaussian discord of
response (GDx

R) for two-mode Gaussian states can be found in [14]. For other related results, see [15–22]
and the references therein.

Despite some efforts, almost all known quantifications of various correlations for
continuous-variable systems are difficult to evaluate and can only be calculated for (1 + 1)-mode
Gaussian states or some special states. Thus, it is natural and important to find more reliable and
useful quantifications for QCs.

The purpose of this paper is to propose a correlation NG,A
F for continuous-variable systems

in terms of local Gaussian unitary operations based on Uhlmann fidelity. We show that NG,A
F is a

quantum correlation without the ancilla problem, is local Gaussian unitary invariant, is contained in
any non-product state, is monotonically non-increasing under Gaussian quantum channels acting on
the Subsystem B, and reduces to an entanglement measure for (1 + m)-mode pure Gaussian states.
Furthermore, we give a concrete formula for any two-mode symmetric squeezed thermal states (SSTSs)
and compare NG,A

F with some other QCs.
Uhlmann fidelity was firstly proposed as a measure of closeness between two arbitrary states ρ

and σ, defined as F(ρ, σ) = (Tr
√√

ρσ
√

ρ)2 [23]. Uhlmann fidelity itself has many good properties,
such as unitary invariance, monotonicity under quantum operations, and strong concavity [23–25]; and
so it has many applications; for example, see [26–31] and the references therein. Recently, Uhlmann
fidelity for Gaussian states was studied and some useful results were obtained in [32,33]. Though
Uhlmann fidelity itself is not a metric, one can define a metric based on it as D(ρ, σ) = g(F(ρ, σ)),
where g is a monotonically-decreasing function of F. Some well-known Uhlmann fidelity-induced
metrics are the sine metric C(ρ, σ) =

√
1− F(ρ, σ), Bures metric B(ρ, σ) = (2− 2

√
F(ρ, σ))

1
2 , and

Bures angle A(ρ, σ) = arccos
√

F(ρ, σ) [34].
Although we may use any metric D(ρ, σ) = g(F(ρ, σ)) to introduce the quantum correlation by

local unitary operations, in the present paper, we accept C(ρ, σ) as the metric for reasons of simplicity.

2. A Uhlmann Fidelity-Based Quantum Correlation and Its Properties

In this section, we define a QC NG,A
F by local unitary operations for (n + m)-mode states using

the sine metric based on Uhlmann fidelity and discuss its properties.
We first recall some notions and notations.
For convenience, we denote by S(H) the set of all states of the quantum system described by the

Hilbert space H. Assume that ρ ∈ S(H) is any state of an n-mode continuous-variable system with the
state space H = H1 ⊗ H2 ⊗ · · · ⊗ Hn (dim Hk = ∞ for each k = 1, 2, . . . , n). The characteristic function
of ρ is defined as χρ(α) = Tr(ρD(α)), where α = (α1, α2, · · · , αn) ∈ Cn, D(α) = ⊗n

k=1D(αk) is the Weyl
operator with D(αk) = exp(αk â†

k + α∗k âk) the Weyl operator of the kth mode. Here, âk = (Q̂k + iP̂k)/
√

2
and â†

k = (Q̂k − iP̂k)/
√

2 are respectively the annihilation and creation operators in the kth mode;
Q̂k and P̂k respectively stand for the position and momentum operators satisfying the canonical
commutation relations (CCR) [Q̂k, P̂l ] = iδkl I and [Q̂k, Q̂l ] = [P̂k, P̂l ] = 0, k, l = 1, 2, · · · , n. ρ is called a
Gaussian state if χρ(α) is of the form:

χρ(α) = exp[−1
4

λT
α JΓJλα + i JdTλα], (1)

where λα =
√

2(Reα1, Imα1, · · · , Reαn, Imαn) ∈ R2n, J = ⊕n
k=1 Jk = ⊕n

k=1

(
0 1
−1 0

)
, Γ = (γij) ∈

M2n(R) with γij = Tr[ρ((Ri − 〈Ri〉)(Rj − 〈Rj〉) + (Ri − 〈Rj〉)(Ri − 〈Ri〉)], d = Tr(ρR) ∈ R2n, and
R = (R1, R2, · · · , R2n) = (Q̂1, P̂1, · · · , Q̂n, P̂n). Here, Mk(R) stands for the algebra of all k× k matrices
over the real field R. Γ and d above are called respectively the covariance matrix (CM) and the mean of
ρ. Note that Γ is real symmetric and satisfies Γ + i J ≥ 0. In addition, ρ is pure if and only if det Γ = 1.
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If ρAB is an (n + m)-mode Gaussian state of a bipartite continuous-variable system HA ⊗ HB, its CM

Γ can be expressed as Γ =

(
A C

CT B

)
, where A ∈ M2n(R), B ∈ M2m(R) and C ∈ M2n×2m(R).

Particularly, when n = m = 1, up to a local Gaussian unitary operation (symplectic at the CM level),
Γ has a standard form:

Γ0 =

(
A0 C0

CT
0 B0

)
, (2)

where A0 =

(
a 0
0 a

)
, B0 =

(
b 0
0 b

)
, C0 =

(
c 0
0 d

)
, a, b ≥ 1, and ab− 1 ≥ c2(d2). Note that a

bipartite state ρAB is a product state, i.e., ρAB = σA ⊗ σB, if and only if C (C0) in its CM (the standard
form of its CM) is a zero matrix [8].

For any unitary operator U acting on H, the unitary operation ρ 7→ UρU† is said to be Gaussian
if it sends Gaussian states into Gaussian states, and such a U is called a Gaussian unitary operator.
It is well known that a unitary operator U is Gaussian if and only if U†RU = SR + m for some vector
m ∈ R2n and some S ∈ Sp(2n,R), the symplectic group of all 2n × 2n real matrices. Thus, every
Gaussian unitary operator U is determined by some affine symplectic map (S, m) acting on the phase
space and can be denoted by U = US,m [35,36].

Now, for any (n + m)-mode state ρAB ∈ S(HA ⊗ HB), denote by ρA = TrB(ρAB) the reduced state
of ρAB. Write:

UρAB = {U : U ∈ B(HA) is a Gaussian unitary operator satisfying UρAU† = ρA},

where B(H) stands for the set of all bounded linear operators acting on H. It is obvious that the
set UρAB is nonempty for any state ρAB; moreover, by [15], for any Gaussian state ρAB, UρAB contains
many nontrivial Gaussian unitary operators. Thus, we can define a quantum correlation NG,A

F by local
Gaussian unitary operations for any (n + m)-mode state.

Definition 1. For any (n + m)-mode state ρAB ∈ S(HA ⊗ HB), the quantity NG,A
F (ρAB) with respect to

Subsystem A is defined as:

NG,A
F (ρAB) = supU∈UρAB

C2(ρAB, (U ⊗ I)ρAB(U† ⊗ I))

= supU∈UρAB
{1− F(ρAB, (U ⊗ I)ρAB(U† ⊗ I))},

where F(ρAB, (U ⊗ I)ρAB(U† ⊗ I)) is the Uhlmann fidelity between the pre- and past-measured states, and the
supremum is taken over all Gaussian unitary operators U ∈ UρAB .

Similarly, one can define NG,B
F (ρAB) with respect to Subsystem B. Since the properties of NG,A

F
and NG,B

F are similar, we will focus on discussing the properties of NG,A
F . For the simplification, we will

use NGF (ρAB) by omitting the subsystem symbol A (B) unless otherwise specified.
Note that many quantum correlations have the ancilla problem, i.e., when an uncorrelated ancilla

System C is appended, the quantities will change due to the local Subsystem C. For example, in [15],
a kind of quantum correlation N for (n + m)-mode continuous-variable systems was defined as:

N (ρAB) =
1
2

sup
U
‖ρAB − (U ⊗ I)ρAB(U ⊗ I)†‖2

2,

where the supremum is taken over all unitary operators that maintain ρA invariant corresponding to
Part A. If we append an uncorrelated ancilla System C, the state ρABC = ρAB ⊗ ρC can be regarded as
a bipartite state with the partition A:BC. After some direct calculations, one has:

N (ρABC) = N (ρAB)trρ2
C.
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It is obvious that, as long as ρC is mixed, the quantityN differs arbitrarily due to local ancilla System C.
There are other quantum correlations with a similar ancilla problem, such as the quantum correlations
proposed in [11,16]. However, our quantity NGF keeps unchanged when appending an ancilla system;
that is, we have the following result.

Theorem 1. NGF is a quantum correlation without the ancilla problem.

Proof of Theorem 1. Suppose that ρAB is any bipartite state and C is an uncorrelated ancilla system.
Regarding the state ρABC = ρAB ⊗ ρC as a bipartite state with the partition A:BC, one has:

F(ρABC, (U ⊗ I ⊗ I)ρABC) = F(ρAB ⊗ ρC, (U ⊗ I)ρAB ⊗ ρC)

=F(ρAB, (U ⊗ I)ρAB) · F(ρC, ρC) = F(ρAB, (U ⊗ I)ρAB).

By Definition 1, we see that NGF (ρABC) = NGF (ρAB), completing the proof.

Theorem 2. NGF is locally Gaussian unitary invariant, that is, for any (n + m)-mode state ρAB of
continuous-variable system HA ⊗ HB, we have NGF ((W ⊗V)ρAB(W† ⊗V†)) = NGF (ρAB) for all Gaussian
unitary operators W ∈ B(HA) and V ∈ B(HB).

In the rest of this paper, we mainly consider the case that ρAB is any Gaussian state.

Theorem 3. For any (n + m)-mode Gaussian state ρAB ∈ S(HA ⊗ HB) and any Gaussian channel Φ
performed on the Subsystem B, we have NGF ((I ⊗Φ)ρAB) ≤ NGF (ρAB).

By Definition 1, it is easily checked that NGF (ρAB) = 0 holds for any (n + m)-mode product state
ρAB; but we do not know whether the converse is true. The following result reveals that the converse
holds for any Gaussian states.

Theorem 4. For any (n + m)-mode Gaussian state ρAB ∈ S(HA ⊗ HB), NGF (ρAB) = 0 if and only if ρAB is
a product state.

Any (1 + m)-mode pure Gaussian state can always be brought in the phase-space Schmidt
form [37]. The corresponding symplectic transformation S achieving the Schmidt decomposition is
the direct sum of two diagonalizing matrices acting on the single-mode and m-mode subsystems,
respectively, i.e., S = S1⊕ S2. Suppose Γ is the CM of a (1+m)-mode pure Gaussian state; accordingly,
the CM of its phase-space Schmidt form is:

ΓS = SΓST =


γ 0

√
γ2 − 1 0

0 γ 0 −
√

γ2 − 1√
γ2 − 1 0 γ 0

0 −
√

γ2 − 1 0 γ

⊕ Im−1 (3)

with γ ≥ 1 the single-mode mixedness factor. We also call ΓS the phase-space Schmidt form of Γ. It is
clear that the phase-space Schmidt form of a (1 + m)-mode pure Gaussian state is the tensor product
of a two-mode squeezed state and an (m− 1)-mode uncorrelated vacuum state [38].

The following result gives a computation formula of NGF for (1 + m)-mode pure Gaussian states.

Theorem 5. For any (1 + m)-mode pure Gaussian state ρAB with CM Γ, we have:

NGF (ρAB) = 1− 2
γ2 + 1

,
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where γ ≥ 1 is the single-mode mixedness factor in the phase-space Schmidt form of Γ.

Recall that a quantum state ρAB is separable if it belongs to the closed convex hull of the set of all
product states σA ⊗ σB under the trace norm topology. Note that a pure state |ψ〉〈ψ| is separable if and
only if it is a product state. The problem of how to quantify entanglement was studied extensively.
Generally speaking, an entanglement measure E should meet the following conditions [39]:

(i) E vanishes on separable states;
(ii) E does not increase under local operation and classic communications (LOCC);
(iii) E is locally unitary invariant.
The reader can refer to [1] for more details on entanglement measures.
In [39], a kind of entanglement measure DR for Gaussian states was proposed. It was shown

that, for any (1 + m)-mode pure Gaussian state ρAB with CM Γ, DR(ρAB) := minS(1 − F(Γ, Γ′)),
where F stands for the Uhlmann fidelity, Γ′ = (S⊗ Im)Γ(S⊗ Im)T , and S is any traceless symplectic
matrix performed on the single-mode. Furthermore, DR(ρAB) = 1− 2

γ2+1 with γ the single-mode

mixedness factor in the phase-space Schmidt form of Γ, which coincides with the quantity NGF (ρAB) by
Theorem 5. This reveals that NGF is an entanglement measure when it is restricted to (1 + m)-mode
pure Gaussian states.

According to [40–43], a bona fide quantum correlation GA for Gaussian states with respect to
Subsystem A should satisfy:

(i) GA(ρAB) = 0 if and only if ρAB is a product state;
(ii) (Locally Gaussian unitary invariant) GA((W ⊗ V)ρAB(W† ⊗ V†)) = GA(ρAB) holds for any

Gaussian unitary operators W ∈ B(HA), V ∈ B(HB) and any Gaussian state ρAB;
(iii) (Non-increasing under local Gaussian channels) GA((I ⊗Φ)ρAB) ≤ GA(ρAB) holds for any

Gaussian channel Φ performed on Subsystem B and any Gaussian state ρAB;
(iv) (Reducing to an entanglement measure for pure states) There exists an entanglement measure

E such that GA(|ψ〉〈ψ|) = E(|ψ〉〈ψ|) holds for any bipartite pure state |ψ〉〈ψ|.
By Theorems 2–4, NGF satisfies (i)–(iii); Theorem 5 says that NGF satisfies (iv) for any (1 + m)-mode

Gaussian pure state. Therefore, at least for (1 + m)-mode Gaussian states, NGF is a well-defined
Gaussian quantum correlation.

In the rest of this section, let us discuss the question of how to calculate NGF . Note that, for
any (n + m)-mode Gaussian states ρ and σ with its characteristic function defined as in Equation (1),
together with the formula established in [33], we have:

F(ρ, σ) = Tr(ρσ) ·Πn+m
j=1 (ηj +

√
η2

j − 1),

where ηjs (j = 1, 2, · · ·, n + m) are the symplectic roots of the CM of ρ̄ =
√

σρ
√

σ

Tr(
√

σρ
√

σ)
. In general, one can

use the above fidelity formula to compute NGF (ρAB) for any (n + m)-mode Gaussian state ρAB. Due to
the theoretical and experimental importance of two-mode symmetric squeezed thermal states (SSTSs),
as an example, we give an analytic computation formula for (1 + 1)-mode SSTSs here.

Recall that SSTSs are Gaussian states whose CMs as in Equation (2) are parameterized by µ and n
such that c = −d = 2µ

√
n(1 + n) and a = b = 1 + 2n, where µ is a mixing parameter with 0 ≤ µ ≤ 1

and n is the mean photon number for each part [44]. Thus, every SSTS can be parameterized as
ρAB(n̄, µ), and the standard form of its CM is:

Γ0 =


1 + 2n̄ 0 2µ

√
n̄(1 + n̄) 0

0 1 + 2n̄ 0 −2µ
√

n̄(1 + n̄)
2µ
√

n̄(1 + n̄) 0 1 + 2n̄ 0
0 −2µ

√
n̄(1 + n̄) 0 1 + 2n̄

 .
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Theorem 6. For any (1 + 1)-mode symmetric squeezed thermal state ρAB(n̄, µ), we have:

NGF (ρAB(n̄, µ)) = 1− 1

(
√

Ω +
√

Λ)−
√
(
√

Ω +
√

Λ)2 − Υ
, (4)

where:

Υ = 1
4 [−2(1 + 2n̄)2 + 4n̄(n̄ + 1)µ2]2,

Ω = [1− 2n̄(−2 + µ2) + 8n̄3(−1 + µ2)2 + 4n̄4(µ2 − 1)2 + 2n̄2(2µ4 − 5µ2 + 4)]2,
Λ = 16n̄4(1 + n̄)4(−1 + µ2)4.

Moreover,
lim

n̄→∞
NGF (ρAB(n̄, µ)) = 1 (5)

holds for any µ ∈ [0, 1].

The proofs of Theorems 2–6 will be given in the Appendix A.
Note that NGF (ρAB) ≤ 1 holds for any Gaussian state ρAB. However, unlike the Gaussian discord

case, there is no threshold in terms of NGF for separable states; that is, there is no positive number
d < 1 such that NGF (ρAB) ≤ d holds for all separable states ρAB. To see this, recall that a (1 + 1)-mode
Gaussian state ρAB is separable if and only if ṽ− ≥ 1, where ṽ− is the smallest symplectic eigenvalue
of the CM of the partial transpose ρTB

AB [45]. For any SSTS ρAB(n̄, µ) with CM Γ, we have:

ṽ− =

√
(det A+det B−2 det C)−

√
(det A+det B−2 det C)2−det Γ
2

=

√
2(1+2n̄)2+8n̄(1+n̄)µ2−

√
64n̄(1+n̄)(µ+2n̄µ)2

2 .

Thus, ṽ− ≥ 1 if and only if either n̄ = 0, 0 ≤ µ ≤ 1 or 0 < n̄, 0 ≤ µ ≤
√

n̄
n̄+1 . Given µ ∈ (0, 1), µ <√

n̄
n̄+1 for sufficiently large n̄, which guarantees the separability of ρAB(n̄, µ). However, by Theorem 6,

limn̄→∞ NGF (ρAB(n̄, µ)) = 1. Therefore, sup{NGF (ρAB) : ρAB is separable } = 1.

3. Comparing NGF with Other Quantum Correlations

As is seen, NGF describes the same correlation in Gaussian states as Gaussian quantum discord
(GQD) D, Gaussian geometric discord (GGD) DG, the quantum correlation Q proposed in [16], and
NGF proposed in [46]. In this section, we will compare NGF with these QCs for two-mode SSTSs in scale.
It is clear that, for any SSTS ρAB(n̄, µ), we have NGF (ρAB(n̄, 0)) = D(ρAB(n̄, 0)) = DG(ρAB(n̄, 0)) =

Q(ρAB(n̄, 0)) = NGF (ρAB(n̄, 0)) = 0. Hence, during the comparison process, we mainly focus our
attention on the case µ 6= 0.

Recall that an n-mode Gaussian positive operator-valued measurement (GPOVM) is a collection
of positive operators Π = {Π(z)} satisfying 1

π

∫
z Π(z)dz = I, where Π(z) = D(z)τD†(z), z ∈ R2n

with D(z) the Weyl operators and τ an n-mode Gaussian state, which is called the seed of the GPOVM
Π [47]. Let ρAB be an (n + m)-mode Gaussian state and Π = {Π(z)} be a GPOVM of the Subsystem
A. Denote by ρB(z) = 1

p(z)TrA(ρABΠ(z)⊗ I) the reduced state of the Subsystem B after the GPOVM Π
performed on the Subsystem A, where p(z) = Tr(ρABΠ(z)⊗ I). Then, the GQD of ρAB is defined as:

D(ρAB) = S(ρA)− S(ρAB) + inf
Π

∫
p(z)S(ρB(z))dz,
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where the infimum is taken over all GPOVMs Π = {Π(z)} performed on Subsystem A and S(ρ) =
−Tr(ρ log ρ) is the von Neumann entropy [8,9]. It is known that, if the standard form of the CM of a
(1 + 1)-mode Gaussian state ρAB is as in Equation (2), then:

D(ρAB) = f (
√

detA0 )− f (v−)− f (v+) + f (
√

inf
τ

det Eτ ),

where the infimum takes over all one-mode Gaussian states τ, f (x) = x+1
2 log x+1

2 −
x−1

2 log x−1
2 , v−

and v+ are the symplectic eigenvalues of the CM of ρAB, and Eτ = B0 − C0(A0 + Γτ)−1CT
0 with Γτ the

CM of τ. Denote by α = det A0, β = det B0, γ = det C0 and δ = det Γ0; then, we have [8]:

infτ det Eτ =


2γ2+(α−1)(δ−β)+2|γ|

√
γ2+(α−1)(δ−β)

(α−1)2 if (δ− βα)2 ≤ (1 + α)γ2(β + δ),
βα−γ2+δ−

√
γ4+(δ−βα)2−2γ2(βα+δ)

2α otherwise.

Particularly, if ρAB = ρAB(n̄, µ) is an SSTS, one can easily check that (δ− βα)2 ≤ (1 + α)γ2(β + δ)

always holds and v− = v+ =
√
(1 + 2n̄)2 − 4n̄(1 + n̄)µ2. In this case, we have:

D(ρAB(n̄, µ)) = f (1 + 2n̄ )− 2 f (
√
(1 + 2n̄)2 − 4n̄(1 + n̄)µ2) + f (

√
M ),

where:
M = 1

n̄(1+n̄) [8n̄3(−1 + µ2)2 + 4n̄4(−1 + µ2)2 + 2µ2
√

N
+n̄(1− 2µ2 + 2µ4) + n̄2(5− 10µ2 + 6µ4)]

with N = (n̄ + 3n̄2 + 2n̄3)2(−1 + µ2)2.
In the case µ = 1,

D(ρAB(n̄, 1)) = (n̄ + 1) log(n̄ + 1)− n log n = log((1 +
1
n̄
)n(n̄ + 1))

and hence, limn̄→∞ D(ρAB(n̄, 1)) = ∞. While,

NGF (ρAB(n̄, 1)) = 1− 1
1 + 2n̄ + 2n̄2 → 1 as n̄→ ∞,

therefore, when µ = 1, D is much greater than NGF for large n̄. However, when 0 < µ < 1, a numerical
method reveals that limn̄→∞ D(ρAB(n̄, µ)) = 0, and by Theorem 6, limn̄→∞ NGF (ρAB(n̄, µ)) = 1. This
means that, for 0 < µ < 1 and large n̄, we have NGF (ρAB(n̄, µ)) > D(ρAB(n̄, µ)). Therefore, when we
detect the correlation in SSTS, NGF is much better than D for the case 0 < µ < 1 and large n̄.

For small n̄, we display the image of NGF (ρAB)− D(ρAB) for SSTSs in Figure 1 with 0 ≤ n̄ ≤ 50.
It shows that NGF (ρAB) > D(ρAB) for most of the pairs (n̄, µ), and the inequality is invalid only when µ

is in a very small neighborhood of one. For example, by taking an SSTS ρAB with n = 45 and µ = 0.88,
we have D(ρAB(45, 0.88)) ≈ 0.05252, which is too small and difficult to judge whether or not ρAB is a
product state. However, NGF (ρAB(45, 0.88)) ≈ 0.864128 is much bigger than zero, which guarantees
that ρAB is not a product state. In addition, since NGF (ρAB(n̄, 1)) = 1− 1

1+2n̄+2n̄2 is big enough, we

conclude that, on the whole, NGF is better than D in detecting the correlation in SSTSs, and it is a good
choice if we take h(ρAB) = max{D(ρAB), NGF (ρAB)} as a quantification of this quantum correlation.

In [11], the Gaussian geometric discord (GGD) DG of any two-mode Gaussian state ρAB is
defined by:

DG(ρAB) = inf
ΠA
‖ρAB −ΠA(ρAB)‖2

2,
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where the infimum runs over all GPOVMs ΠA = {ΠA(α)} of Subsystem A and ΠA(ρAB) =∫
(ΠA(α)⊗ I)

1
2 ρAB(ΠA(α)⊗ I)

1
2 d2α. Moreover, it was shown that, for any SSTS ρAB,

DG(ρAB(n̄, µ)) =
1

(1 + 2n̄)2 − 4n̄(1 + n̄)µ2 −
9

(
√
(1 + 2n̄)2 + 2

√
(1 + 2n̄)2 − 3n̄(1 + n̄)µ2)2

.

For (n + m)-mode continuous-variable systems, in [16], Q(ρAB) is a quantum correlation defined
in terms of average distance between the reduced states under the LGPOVMs.

Q(ρAB) = sup
ΠA

∫
p(α)‖ρB − ρ

(α)
B ‖

2
2d2m

α ,

where the supremum is taken over all GPOVMs ΠA = {ΠA(α)} on the subsystem HA, ρB = TrA(ρAB),
p(α) = Tr[(ΠA(α)⊗ IB)ρAB], and ρ

(α)
B = 1

p(α)TrA[(ΠA(α)⊗ IB)
1
2 ρAB(ΠA(α)⊗ IB)

1
2 ].

For any SSTS ρAB(n̄, µ), [16] provided an analytical formula as:

Q(ρAB(n̄, µ)) =
1

1 + 2n̄(1− µ2)
− 1

1 + 2n̄
.

Figure 1. Behavior of z = NGF (ρAB(n̄, µ))−D(ρAB(n̄, µ)) for symmetric squeezed thermal states (SSTSs)
ρAB(n̄, µ) with 0 ≤ µ ≤ 1 and 0 ≤ n̄ ≤ 50. When µ is close to one, zis smaller than zero; otherwise, z is
bigger than zero.

Figure 2a,b shows that NGF (ρAB) > DG(ρAB) and NGF (ρAB(n̄, µ)) > Q(ρAB(n̄, µ)) for all SSTSs
with 0 < µ ≤ 1 and 0 ≤ n̄ ≤ 50. For example, taking n̄ = 45 and µ = 0.88, one sees that
DG(ρAB(45, 0.88)) ≈ 0.00033 ≈ 0, Q(ρAB(45, 0.88)) ≈ 0.02750 ≈ 0, while NGF (ρAB(45, 0.88)) ≈
0.86413� 0. This suggests that NGF (ρAB) is better at detecting whether or not a state is a product state
with small n̄.

When µ 6= 1, it is clear that limn̄→∞ DG(ρAB(n̄, µ)) = limn̄→∞ Q(ρAB(n̄, µ)) = 0. Hence, NGF (ρAB)

is much greater than both DG(ρAB) and Q(ρAB) for those SSTSs ρAB(n̄, µ) with large mean photon
number n̄ and 0 < µ < 1. To be specific, let (n̄, µ) = (1000, 0.7); one has NGF (ρAB(1000, 0.7)) = 0.54372,
while DG(ρAB(1000, 0.7)) = 1.5478× 10−7 and Q(ρAB(1000, 0.7)) = 4.7968× 10−4 are too small to
ensure that such a state is not a product state.
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Figure 2. For SSTSs ρAB(n̄, µ) with 0 ≤ µ ≤ 1 and 0 ≤ n̄ ≤ 50: (a) z = NGF (ρAB(n̄, µ))−DG(ρAB(n̄, µ));
(b) z = NGF (ρAB(n̄, µ))− Q(ρAB(n̄, µ)). Both figures are above the n̄oµ plane, and the peaks in both
figures are near one and 0.8, respectively.

Now, consider the case µ = 1. One has:

DG(ρAB(n̄, 1)) = 1− 9

(1 + 2n̄ + 2
√

1 + n̄ + n̄2)2
;

Q(ρAB(n̄, 1)) = 1− 1
1 + 2n̄

.

It is easy to verify that NGF (ρAB(n̄, 1)) > DG(ρAB(n̄, 1)) > Q(ρABn̄, 1)), even though
limn̄→∞ NGF (ρAB(n̄, 1)) = limn̄→∞ DG(ρAB(n̄, 1)) = limn̄→∞ Q(ρAB(n̄, 1)) = 1.

The discussions above together with Figure 2a,b suggest that NGF (ρAB) > DG(ρAB) and
NGF (ρAB(n̄, µ)) > Q(ρAB(n̄, µ)) hold for all SSTSs. The numerical analysis supports these assertions.

In [46], we proposed a quantum correlation NGF for (n + m)-mode Gaussian systems based on

another form of fidelity F (ρ, σ) = (Trρσ)2

Tr(ρ2)Tr(σ2)
introduced in [48], which is defined as:

NGF (ρAB) = sup
U∈UρAB

{1−F (ρAB, (U ⊗ I)ρAB(U ⊗ I)†)}.

The quantity NGF has several similar properties as NGF , but is easier to calculate. Particularly, for SSTS
ρAB(n̄, µ), one has:

NGF (ρAB(n̄, µ)) = 1− ((1 + 2n̄)2 − 4n̄(1 + n̄)µ2)2

((1 + 2n̄)2 − 2n̄(1 + n̄)µ2)2 .

In order to get the full graph of z = NGF − NGF for SSTSs, we have to use six figures since there
exist cutoffs caused by the drawing software. In Figure 3a, we plot the function of NGF (ρAB)−NGF (ρAB)

for SSTSs ρAB with 0 ≤ n̄ ≤ 50 and 0 < µ ≤ 1. It is clear that, when 15 ≤ n̄ ≤ 50, one has
0 ≤ NGF (ρAB) − NGF (ρAB) ≤ 0.003. Figure 3b shows that 0 ≤ NGF (ρAB) − NGF (ρAB) ≤ 0.025 if
5 ≤ n̄ ≤ 15 and 0 < µ ≤ 1. The cases when 0 ≤ n̄ ≤ 5 and 0 ≤ n̄ ≤ 2 are shown in Figure 4a and
Figure 4b, respectively. Accordingly, one can tell that 0 ≤ NGF (ρAB)− NGF (ρAB) ≤ 0.12 if 2 ≤ n̄ ≤ 5
and 0 ≤ NGF (ρAB)− NGF (ρAB) ≤ 0.25 when 0 ≤ n̄ ≤ 2. Hence, for any Gaussian state ρAB(n̄, µ) with
0 ≤ n̄ ≤ 50 and 0 < µ ≤ 1, one can conclude that 0 ≤ NGF (ρAB)− NGF (ρAB) ≤ 0.12. When the average
photon number gets bigger, as shown in Figure 5a,b, one has 0 ≤ NGF (ρAB)− NGF (ρAB) ≤ 0.0002 if
60 ≤ n̄ ≤ 100; when 50 ≤ n̄ ≤ 60, it holds that 0 ≤ NGF (ρAB) − NGF (ρAB) ≤ 0.0004. This means
that, though NGF (ρAB(n̄, µ)) < NGF (ρAB(n̄, µ)) for small n̄, the difference between them is very small.

For large n̄, as limn̄→∞ NGF (ρ(n̄, µ)) = 1− (1−µ2)2

(1− 1
2 µ2)2 < 1, while limn̄→∞ NGF (ρ(n̄, µ)) = 1, we see that
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NGF (ρAB(n̄, µ)) > NGF (ρAB(n̄, µ)) for large n̄ and 0 < µ < 1, and the difference between them may be

very big. This can be seen by the fact limµ→0(1− (1−µ2)2

(1− 1
2 µ2)2 ) = 0. For the special case µ = 1, we have:

NGF (ρ(n̄, 1)) = 1− 1
(1 + 2n̄ + 2n̄2)2 → 1 as n̄→ ∞.

It is clear that NGF (ρAB(n̄, 1)) is bigger than NGF (ρAB(n̄, 1)) for every n̄, but the difference between them
is very small.

In summary, we can conclude that, if 0 < µ < 1, on the whole, the behavior of NGF is better than
NGF in detecting correlation contained in an SSTS.

Figure 3. For SSTSs ρAB(n̄, µ): (a) z = NGF (ρAB(n̄, µ))− NGF (ρAB(n̄, µ)) with 0 ≤ µ ≤ 1 and 0 ≤ n̄ ≤ 50;
(b) z = NGF (ρAB(n̄, µ))− NGF (ρAB(n̄, µ)) with 0 ≤ µ ≤ 1 and 0 ≤ n̄ ≤ 15. The gray areas in the n̄oµ

plane are cutoffs caused by the drawing software.

Figure 4. (a) z = NGF (ρAB(n̄, µ)) − NGF (ρAB(n̄, µ)) with 0 ≤ µ ≤ 1 and 0 ≤ n̄ ≤ 5; (b) z =
NGF (ρAB(n̄, µ))− NGF (ρAB(n̄, µ)) with 0 ≤ µ ≤ 1 and 0 ≤ n̄ ≤ 2; for SSTSs ρAB(n̄, µ), respectively.

From the above analysis, for Gaussian states, the quantity NGF describes the same quantum
correlation as D, DG, and Q. Furthermore, the quantity NGF we proposed has no ancilla problem; for a
fixed SSTS ρAB(n̄, µ), NGF (ρAB(n̄, µ)) is bigger than that of DG and Q in scale, which makes it better
at detecting non-product Gaussian states; taking into consideration the physic resources consumed
during the measurement process, NGF consumes less and simpler resources compared with D, DG, and
Q, since we use only part of unitary measurements, while the other three use all GPOVMs. Therefore,
the quantity NGF is a reasonable choice to quantify such Gaussian quantum correlations.
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Figure 5. Comparing NGF with NGF for SSTSs ρAB(n̄, µ) by: (a) z = NGF (ρAB(n̄, µ))−NGF (ρAB(n̄, µ)) with
0 ≤ µ ≤ 1 and 0 ≤ n̄ ≤ 100; (b) z = NGF (ρAB(n̄, µ))− NGF (ρAB(n̄, µ)) with 0 ≤ µ ≤ 1 and 50 ≤ n̄ ≤ 60.
Numerically, the difference is very small.

Also notice that, in [14], for any two-mode Gaussian state ρAB with CM Γ, the quantum correlation
named Gaussian response of discord (GDx

R) is proposed, where the index x stands for trace, Hellinger,

or Bures distance. Precisely, with metrics dtr(ρ, σ) = ‖ρ− σ‖1, dHel =
√

tr(
√

ρ−
√

σ)2 and dBu(ρ, σ) =√
2(1−

√
F(ρ, σ)),

GDx
R(ρAB) := min

SA
Nxd2

x(ρAB, ρ̃AB),

where the minimum is taken over all local unitaries of which the corresponding local symplectic
transformations SA are traceless, the normalization factors Ntr =

1
4 and NHell = NBu = 1

2 , and ρ̃AB is
the transformed state with CM (SA ⊗ I)Γ(SA ⊗ I)T . Now, if the sine metric is applied, we can also get
a kind of Gaussian response of discord:

GDSin
R (ρAB) := min

SA
C2(ρAB, ρ̃AB).

One can verify that GDSin
R is an alternative quantification of the quantum correlation for Gaussian states.

Then, it is interesting to consider the relation between NGF and GDSin
R . We claim that NGF 6= GDSin

R
even for the two-mode case. To see this, consider the two-mode Gaussian state ρAB = ρ(a, b, c, d) with

CM Γ(a, b, c, d) =

(
A C

CT B

)
, where A =

(
a 0
0 a

)
, B =

(
b 0
0 b

)
and C =

(
c 0
0 d

)
satisfying

ab ≥ c2 (d2). Clearly,

UρAB = {USθ
: Sθ =

(
cos θ sin θ

− sin θ cos θ

)
, θ ∈ [0,

π

2
]}

and the set of all traceless symplectic matrices is:

S = {Sα,β,γ =

(
γ α + β

α− β −γ

)
: α2 + γ2 + 1 = β2}.

Let:
f (a, b, c, d, θ) = C2(ρAB, (USθ

⊗ I)ρAB(USθ
⊗ I)†)

and:
g(a, b, c, d, α, β, γ) = C2(ρAB, (USα,β,γ ⊗ I)ρAB(USα,β,γ ⊗ I)†).
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Then:
NGF (ρAB) = max

0≤θ≤π/2
f (a, b, c, d, θ)

and:
GDSin

R (ρAB) = min
(α,β,γ):α2+γ2+1=β2

g(a, b, c, d, α, β, γ).

Picking (a, b, c, d) = (2000, 2, 62, 2), one has NGF (ρAB) ≈ 0.5185 with the maximum value
achieved at θ = π/2; while GDSin

R (ρAB) ≈ 0.3024 with the minimum achieved at (α, β) ≈
(−0.9026002466, 1.3471033029). Therefore, NGF (ρAB) 6= GDSin

R (ρAB). However, for two-mode pure
Gaussian states, we find that NGF = GDSin

R because the extremal single-mode operation at the symplectic

level coincides for the two quantities, i.e., SA =

(
0 1
−1 0

)
.

4. Conclusions

Based on the Uhlmann fidelity F, a quantum correlation NG,A
F is proposed in terms of local

Gaussian unitary operations for any states in (n + m)-mode continuous-variable systems. NG,A
F has

several nice features: NG,A
F is a quantum correlation without the ancilla problem; is local Gaussian

unitary invariant; is zero for product states and vice versa for Gaussian states; is monotonically
non-increasing under Gaussian quantum channels acting on Subsystem B; and reduces to an
entanglement measure for (1 + m)-mode pure Gaussian states. However, evaluating NG,A

F is also
difficult. Computation formulas for any (1 + 1)-mode symmetric squeezed thermal states and
(1 + m)-mode pure Gaussian states are established. For general (n + m)-mode Gaussian states, an
approach to evaluate the quantity NG,A

F is provided. Comparing the behavior of NG,A
F in scale with

Gaussian quantum discord D, Gaussian geometric discord DG, and quantum correlations Q and NGF
for two-mode symmetric squeezed thermal states reveals that NG,A

F has some advantages in detecting
quantum correlation in Gaussian states.
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Appendix A

In this appendix, we present our proofs of Theorems 2–6.

Proof of Theorem 2. For any (n + m)-mode state ρAB ∈ S(HA ⊗ HB), by Definition 1, we have:

NGF (ρAB) = supU∈UρAB
C2(ρAB, (U ⊗ I)ρAB(U† ⊗ I))

= supU∈UρAB
{1− F(ρAB, (U ⊗ I)ρAB(U† ⊗ I))}

= 1− infU∈UρAB
F(ρAB, (U ⊗ I)ρAB(U† ⊗ I)).

For any Gaussian unitary operators W ∈ B(HA) and V ∈ B(HB), write σAB = (W ⊗V)ρAB(W† ⊗V†).
To prove that NGF (ρAB) is locally Gaussian unitary invariant, we have to check that:

inf
U∈UρAB

F(ρAB, (U ⊗ I)ρAB(U† ⊗ I)) = inf
U′∈UσAB

F(σAB, (U′ ⊗ I)σAB(U′† ⊗ I)). (A1)

Clearly, σA = TrB(σAB) = WρAW†. For any Gaussian unitary operator U′ ∈ UσAB , let U = Û† =
W†U′W. It is obvious that U is a Gaussian unitary operator satisfying UρAU† = W†U′WρAW†U′†W =
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W†σAW = ρA. Therefore, U ∈ UρAB . On the other hand, for any U ∈ UρAB , we have WUW† ∈ UσAB .
It follows that W†UσAB W = UρAB . Note that:

F(σAB, (U′ ⊗ I)σAB(U′† ⊗ I))

=Tr

√√
(U′ ⊗ I)σAB(U′† ⊗ I)σAB

√
(U′ ⊗ I)σAB(U′† ⊗ I)

=Tr
√
(U′ ⊗ I)

√
σAB(U′† ⊗ I)σAB(U′ ⊗ I)

√
σAB(U′† ⊗ I)

=Tr(U′ ⊗ I)(W ⊗V)
√√

ρAB(W†U′†W ⊗ I)ρAB(W†U′W ⊗ I)
√

ρAB(W† ⊗V†)(U′† ⊗ I)

=Tr
√√

ρAB(Û† ⊗ I)ρAB(Û ⊗ I)
√

ρAB = F((U ⊗ I)ρAB(U† ⊗ I), ρAB)

=F(ρAB, (U ⊗ I)ρAB(U† ⊗ I)).

This implies that Equation (A1) is true. The proof is completed.

Proof of Theorem 3. Suppose that Φ is a local Gaussian channel performed on System B. Note that,
for any local Gaussian unitary operation U performed on System A (i.e., there is some Gaussian unitary
operator U so that Uρ = UρU† for each state ρ), we have:

(I ⊗Φ) ◦ (U ⊗ I) = U ⊗Φ = (U ⊗ I) ◦ (I ⊗Φ).

So, for any Gaussian state ρAB ∈ S(HA ⊗ HB),

NGF ((I ⊗Φ)ρAB) = supU∈UρAB
C2((I ⊗Φ)ρAB, (U ⊗ I)(I ⊗Φ)ρAB(U† ⊗ I))

= supU∈UρAB
{1− F((I ⊗Φ)ρAB, (U ⊗ I)(I ⊗Φ)ρAB(U† ⊗ I))}

= supU∈UρAB
{1− F((I ⊗Φ)ρAB, (I ⊗Φ)(U ⊗ I)ρAB(U† ⊗ I))}

≤ supU∈UρAB
{1− F(ρAB, (U ⊗ I)ρAB(U† ⊗ I))}

= NGF (ρAB),

where the third inequality is due to the monotonicity of the fidelity F [25].

Proof of Theorem 4. By Definition 1, the “if” part is apparent. It is sufficient to check the “only if” part.
Assume that ρAB is any (n + m)-mode Gaussian state so that NGF (ρAB) = 0. Since the mean of

any Gaussian state can be transformed to zero by local Gaussian unitary operations, by Theorem 2,

we can always assume that the mean of ρAB is zero and has CM: Γ =

(
A C

CT B

)
. By [35], the

reduced states ρA and ρB have CMs A and B, respectively. According to the Williamson theorem, there
exists a symplectic matrix S0 such that S0 AST

0 = ⊕n
i=1vi I and U0ρAU†

0 = ⊗n
i=1ρi, where U0 = US0,0

and ρis are some thermal states. Write σAB = (U0 ⊗ I)ρAB(U†
0 ⊗ I). It follows from Theorem 2 that

NGF (σAB) = NGF (ρAB) = 0. Obviously, σAB has zero mean and CM of the form:

Γ′ =

(
⊕n

i vi I C′

C′T B′

)
.

Note that, by [15] and [35,36], for Gaussian unitary operator US,m ∈ B(HA) with m = 0 and S =

⊕n
i=1Sθi , where: Sθi =

(
cos θi sin θi
− sin θi cos θi

)
for some θi ∈ [0, π

2 ], we have US,mσAU†
S,m = σA =

TrB(σAB), that is US,m ∈ UσAB . By Definition 1, NGF (σAB) = 0 entails F(σAB, (U ⊗ I)σAB(U† ⊗ I)) = 1
for all U ∈ UσAB . Thus, F(σAB, (US,m ⊗ I)σAB(U†

S,m ⊗ I)) = 1, which forces:

σAB = (US,m ⊗ I)σAB(U†
S,m ⊗ I).
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Hence, σAB and (US,m ⊗ I)σAB(U†
S,m ⊗ I) have the same CMs, that is,(
⊕n

i=1vi I C′

C′T B′

)
=

(
⊕n

i=1vi I SC′

C′TST B′

)
.

If we take θi ∈ (0, π
2 ) for each i, then I − S is an invertible matrix. Therefore, we must have C′ = 0;

that is, σAB is a product state. It follows that ρAB = (U†
0 ⊗ I)σAB(U0 ⊗ I) is also a product state.

Proof of Theorem 5. By Theorem 2, NGF is locally Gaussian unitary invariant. Therefore, for any
(1 + m)-mode pure Gaussian state |ψ〉〈ψ|, it is sufficient to assume that the state is in phase-space
Schmidt form. Thus, its CM Γ has the form as in Equation (3) with single-mode mixedness factor γ ≥ 1.
Accordingly, the CM of the transformed pure state (U1 ⊗ Im)|ψ〉〈ψ|(U†

1 ⊗ Im) is (S1 ⊕ Im)Γ(S1 ⊕ Im)T ,
where U1 represents the Gaussian unitary operator performed on the single mode and Im stands for
the identity on the other m-mode. By the definition of NGF , U1 keeps the single-mode invariant, which

implies S1 = Sθ =

(
cos θ sin θ

− sin θ cos θ

)
with θ ∈ [0, π

2 ]. Notice that for n-mode pure Gaussian states ρ

and σ with CM Γρ and Γσ, respectively, the Uhlmann fidelity between them can be computed as [39,49]:

F(ρ, σ) =
2n√

det(Γρ + Γσ)
.

Applying this formula and after some straight-forward calculations, one gets:

det(Γ + (S1 ⊕ Im)Γ(S1 ⊕ Im)
T) = 22n−2(1 + γ2 − (γ2 − 1) cos θ)2.

Hence, NGF (|ψ〉〈ψ|) = maxθ∈[0, π
2 ]
(1− 2

1+γ2−(γ2−1) cos θ
) = 1− 2

1+γ2 .

Proof of Theorem 6. Assume that ρAB = ρAB(n̄, µ) is any (1 + 1)-mode SSTS with CM:

Γ0 =


a 0 c 0
0 a 0 d
c 0 b 0
0 d 0 b

 =


1 + 2n̄ 0 2µ

√
n̄(1 + n̄) 0

0 1 + 2n̄ 0 −2µ
√

n̄(1 + n̄)
2µ
√

n̄(1 + n̄) 0 1 + 2n̄ 0
0 −2µ

√
n̄(1 + n̄) 0 1 + 2n̄


and the mean d = (dA, dB). Take any Gaussian unitary operator US,m such that US,mρAU†

S,m =

ρA. Then, SA0ST = A0 and SdA + m = dA. As S∆ST = ∆, it is easily checked that there exists

some θ ∈ [0, π
2 ] such that S = Sθ =

(
cos θ sin θ

− sin θ cos θ

)
. Therefore, the CM and the mean of

(US,m ⊗ I)ρAB(U†
S,m ⊗ I) = σAB are respectively:

Γθ =


a 0 c cos θ d sin θ

0 a −c sin θ d cos θ

c cos θ −c sin θ b 0
d sin θ d cos θ 0 b


and:

(S⊕ I)(dA ⊕ dB) + m⊕ 0 = (SdA + m)⊕ dB = dA ⊕ dB = (dA, dB).
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Note that, if the characteristic function of the Gaussian state is defined as χρ(α) =

exp[− 1
2 λT

α JΓ̃Jλα + i Jd̃Tλα], then, for any (1 + 1)-mode Gaussian states ρ, σ with CMs Ṽρ, Ṽσ and
means d̃ρ, d̃σ, respectively, it was shown in [32,33] that:

F(ρ, σ) =
1

(
√

Ω̃ρσ +
√

Λ̃ρσ)−
√
(
√

Ω̃ρσ +
√

Λ̃ρσ)2 − Υ̃ρσ

exp[−1
2

δ〈d〉T det[(Ṽρ + Ṽσ)]
−1δ〈d〉], (A2)

where δ〈d〉 = d̃ρ − d̃σ, Υ̃ρσ = det(Ṽρ + Ṽσ), Ω̃ρσ = 24 det[(JṼρ)(JṼσ)− 1
4 I], and Λ̃ρσ = 24 det(Ṽρ +

i
2 J)det(Ṽσ + i

2 J); while in this paper, we accept the characteristic function of the Gaussian state as
χρ(α) = exp[− 1

4 λT
α JΓJλα + i JdTλα]. Hence, for a Gaussian state ρ, one has Γ = 2Γ̃. Especially, if the

CM of the state is of the standard form, i.e., Γ0 =


a 0 c 0
0 a 0 d
c 0 b 0
0 d 0 b

 and: Γ̃0 =


ã 0 c̃ 0
0 ã 0 d̃
c̃ 0 b̃ 0
0 d̃ 0 b̃

, then

a = 2ã, b = 2b̃, c = 2c̃, and d = 2d̃. Therefore, for any (1 + 1)-mode Gaussian states ρ, σ with CMs
Vρ, Vσ and means dρ, dσ, respectively, by substituting Ṽρ = 1

2 Vρ and Ṽσ = 1
2 Vσ into Equation (A2),

we get:

F(ρ, σ) =
1

(
√

Ωρσ +
√

Λρσ)−
√
(
√

Ωρσ +
√

Λρσ)2 − Υρσ

exp[−1
2

δ〈d〉T det[(
1
2

Vρ +
1
2

Vσ)]
−1δ〈d〉],

where δ〈d〉 = dρ − dσ, Υρσ = det( 1
2 Vρ +

1
2 Vσ), Ωρσ = 24 det[(J( 1

2 Vρ))(J( 1
2 Vσ)) − 1

4 I], and Λρσ =

24 det( 1
2 Vρ +

i
2 J)det( 1

2 Vσ +
i
2 J). Using this formula, it is easily checked that:

NGF (σAB) = max
θ∈[0, π

2 ]
(1− 1

(
√

Ωθ +
√

Λ)−
√
(
√

Ωθ +
√

Λ)2 − Υθ

),

where:
Υθ =

1
4
[−2(1 + 2n̄)2 + 4n̄(n̄ + 1)µ2 + 4n̄(n̄ + 1)µ2 cos θ]2,

Λ = 16n̄4(1 + n̄)4(−1 + µ2)4

and:

Ωθ = [1− 2n̄(−2 + µ2) + 8n̄3(−1 + µ2)2 + 4n̄4(µ2 − 1)2 + 2n̄2(2µ4 − 5µ2 + 4)− 2n̄(1 + n̄)µ2 cos θ]2.

Let:
f (n̄, µ, θ) =

√
Ωθ +

√
Λ

= 1− 2n̄(−2 + µ2) + 16n̄3(−1 + µ2)2 + 8n̄4(−1 + µ2)2

+2n̄2(6− 9µ2 + 4µ4)− 2n̄(1 + n̄)µ2 cos θ

and
g(n̄, µ, θ) = (

√
Ωθ +

√
Λ)2 − Υθ

= 16n̄2(1 + n̄)2(−1 + µ2)2(1− 2n̄(−2 + µ2) + 8n̄3(−1 + µ2)2

+4n̄4(−1 + µ2)2 + 2n̄2(4− 5µ2 + 2µ4)− 2n̄(1 + n̄)µ2 cos θ).

Then:
NGF (σAB) = max

θ∈[0, π
2 ]
(1− 1

f (n̄, µ, θ)−
√

g(n̄, µ, θ)
) = max

θ∈[0, π
2 ]
(1− 1

h(n̄, µ, θ)
),

where
h(n̄, µ, θ) = f (n̄, µ, θ)−

√
g(n̄, µ, θ)

with θ ∈ [0, π
2 ].
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We claim that h(n̄, µ, θ) is monotonically increasing in θ on the interval [0, π
2 ]. To see this, we need

only to check ∂h
∂θ > 0 on (0, π

2 ).
For θ ∈ (0, π

2 ), a direct calculation gives that:

∂h
∂θ

=
2 ∂ f

∂θ

√
g− ∂g

∂θ

2
√

g
=
{4n̄(1 + n̄)µ2√g− 32n̄3(1 + n̄)3µ2(−1 + µ2)2} sin θ

2
√

g
.

Since sin θ > 0, it suffices to show that:

4n̄(1 + n̄)µ2√g− 32n̄3(1 + n̄)3µ2(−1 + µ2)2 > 0. (A3)

Note that:
4n̄(1 + n̄)µ2√g− 32n̄3(1 + n̄)3µ2(−1 + µ2)2 > 0

⇔ √
g > 8n̄2(1 + n̄)2(−1 + µ2)2

⇔ g > 64n̄4(1 + n̄)4(−1 + µ2)4

⇔ cos θ < 1−2n̄(−2+µ2)−2n̄2(−2+µ2)
2n̄(1+n̄)µ2 .

Let:

ψ(n̄, µ) =
1− 2n̄(−2 + µ2)− 2n̄2(−2 + µ2)

2n̄(1 + n̄)µ2 .

It is easily checked that ψ(n̄, µ) > 1 holds for any n̄ ≥ 0 and 0 ≤ µ ≤ 1. Consequently, cos θ <

ψ(n̄, µ), which implies that Equation (A3) is true, as desired. Therefore, ∂h
∂θ > 0 and h(n̄, µ, θ) is a

monotonically-increasing function in θ. It follows that:

NGF (ρAB) = NGF (σAB) = max
θ∈[0, π

2 ]
(1− 1

(
√

Ωθ +
√

Λ)−
√
(
√

Ωθ +
√

Λ)2 − Υθ

)

= max
θ∈[0, π

2 ]
(1− 1

f (n̄, µ, θ)−
√

g(n̄, µ, θ)
)

=1− 1

f (n̄, µ, π
2 )−

√
g(n̄, µ, π

2 )

=1− 1

(
√

Ω π
2
+
√

Λ)−
√
(
√

Ω π
2
+
√

Λ)2 − Υ π
2

.

The proof is completed by taking Ω = Ω π
2

and Υ = Υ π
2

. Finally, it is easily checked that:

lim
n̄→∞

[(
√

Ω +
√

Λ)−
√
(
√

Ω +
√

Λ)2 − Υ] = ∞

and hence, limn̄→∞ NGF (ρAB(n̄, µ)) = 1.

References

1. Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009,
81, 865. [CrossRef]

2. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press:
Cambridge, UK, 2000.

3. Duan, L.M.; Giedke, G.; Cirac, J.I.; Zoller, P. Inseparability Criterion for Continuous Variable Systems.
Phys. Rev. Lett. 2000, 84, 2722–2725. [CrossRef] [PubMed]

4. Guhne, O.; Tóth, G. Entanglement detection. Phys. Rep. 2009, 474, 1–75. [CrossRef]
5. Banerjee, S.; Bera, S.; Singh, T.P. Quantum Discord as a tool for comparing collapse models and decoherence.

Phys. Lett. A 2016, 380, 3778–3785. [CrossRef]

http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/PhysRevLett.84.2722
http://www.ncbi.nlm.nih.gov/pubmed/11017309
http://dx.doi.org/10.1016/j.physrep.2009.02.004
http://dx.doi.org/10.1016/j.physleta.2016.09.036


Entropy 2019, 21, 6 17 of 18

6. Su, X.L. Applying Gaussian quantum discord to quantum key distribution. Chin. Sci. Bull. 2014, 59,
1083–1090. [CrossRef]

7. Liu, S.Y.; Zhang, Y.R.; Zhao, L.M.; Fan, H. General monogamy property of global quantum discord and the
application. Annals. of. Phys. 2014, 348, 256–269. [CrossRef]

8. Adesso, G.; Datta, A. Quantum versus Classical Correlations in Gaussian States. Phys. Rev. Lett. 2010,
105, 030501. [CrossRef] [PubMed]

9. Giorda, P.; Paris, M.G.A. Gaussian Quantum Discord. Phys. Rev. Lett. 2010, 105, 020503. [CrossRef] [PubMed]
10. Huang, Y. Computing quantum discord is NP-complete. New J. Phys. 2014, 16, 033027. [CrossRef]
11. Adesso, G.; Girolami, D. Gaussian geometric discord. Int. J. Quantum Inf. 2011, 09, 1773–1786. [CrossRef]
12. Mišta, L., Jr.; Tatham, R.; Girolami, D.; Korolkova, N.; Adesso, G. Measurement-induced disturbances and

nonclassical correlations of Gaussian states. Phys. Rev. A 2011, 83, 042325. [CrossRef]
13. Ma, R.F.; Hou, J.C.; Qi, X.F. Measurement-induced Nonlocality for Gaussian States. Int. J. Theor. Phys. 2017,

56, 1132–1140. [CrossRef]
14. Roga, W.; Buono, D.; Illuminati, J. Device-independent quantum reading and noise-assisted quantum

transmitters. New. J. Phys. 20015, 17, 1367–2630. [CrossRef]
15. Wang, Y.Y.; Hou, J.C.; Qi, X.F. Nonlocality by local Gaussian unitary operations for Gaussian states. Entropy

2018, 20, 266. [CrossRef]
16. Ma, R.F.; Hou, J.C.; Qi, X.F.; Wang, Y.Y. Quantum correlations for bipartite continuous-variable systems.

Quant. Inf. Process. 2018, 17, 98. [CrossRef]
17. Farace, A.; De Pasquale1, A.; Rigovacca, L.; Giovannetti, V. Discriminating strength: A bona fide measure of

non-classical correlations. New. J. Phys. 2014, 16, 073010. [CrossRef]
18. Gharibian, S. Quantifying nonclassicality with local unitary operations. Phys. Rev. A 2012, 86, 042106.

[CrossRef]
19. Adesso, G.; Girolami, D.; Serafini, A. Measuring Gaussian Quantum Information and Correlations Using the

Renyi Entropy of Order 2. Phys. Rev. Lett. 2012, 109, 190502. [CrossRef]
20. Pirandola, S.; Spedalieri, G.; Braunsrein, S.L.; Cerf, N.J.; Lloyd, S. Optimality of Gaussian discord. Phys. Rev.

Lett. 2014, 113, 140405. [CrossRef]
21. Wang, Z.X.; Wang, S.H.; Li, Q.T.; Wang, T.-J.; Wang, C. Quantum correlations in Gaussian states via Gaussian

channels: Steering, entanglement, and discord. Quantum Inf. Process. 2016, 15, 2441–2453. [CrossRef]
22. Giorda, P.; Allegra, M.; Paris, M.G.A. Quantum discord for Gaussian states with non-Gaussian measurements.

Phys. Rev. A 2012, 86, 052328. [CrossRef]
23. Jozsa, R.J. Fidelity for mixed quantum states. J. Mod. Opt. 1994, 41, 2315. [CrossRef]
24. Wang, L.; Hou, J.C.; Qi, X.F. Fidelity and entanglement fidelity for infinite-dimensional quantum systems.

J. Phys. A Math. Theor. 2014, 47, 335304. [CrossRef]
25. Hou, J.C.; Qi, X.F. Fidelity of states in infinite-dimensional quantum systems. Sci. China A 2012, 55, 1820–1827.

[CrossRef]
26. Bogdanov, Y.I.; Brida, G.; Genovese, M.; Kulik, S.P.; Moreva, E.V.; Shurupov, A.P. Statistical Estimation of the

Efficiency of Quantum State Tomography Protocols. Phys. Rev. Lett. 2010, 105, 010404. [CrossRef] [PubMed]
27. Dasgupta, S.; Agarwal, G.S. Improving the fidelity of quantum cloning by field-induced inhibition of the

unwanted transition. Phys. Rev. A 2001, 64, 022315. [CrossRef]
28. Emerson, J.; Weinstein, Y.S.; Lloyd, S.; Cory, D.G. Fidelity Decay as an Efficient Indicator of Quantum Chaos.

Phys. Rev. Lett. 2002 89, 284102. [CrossRef]
29. Banik, M.; Gazi, M.R. Classical communication and non-classical fidelity of quantum teleportation. Quantum

Inf. Process. 2013 12, 3607–3615. [CrossRef]
30. Mera, B.; Vlachou, C.; Paunkovi, N.; Vieira, V.R.; Viyuela, O. Dynamical phase transitions at finite

temperature from fidelity and interferometric Loschmidt echo induced metrics. Phys. Rev. B 2018, 97, 094110.
[CrossRef]

31. Gluza, M.; Kliesch, M.; Eisert, J.; Aolita, L. Fidelity Witnesses for Fermionic Quantum Simulations. Phys. Rev.
Lett. 2018, 120, 190501. [CrossRef]

32. Banchi, L.; Braunstein, S.L.; Pirandola, S. Quantum fidelity for Arbitrary Gaussian states. Phys. Rev. Lett.
2015, 115, 260501. [CrossRef] [PubMed]

33. Marian, P.; Marian, T.A. Uhlmann fidelity between two-mode Gaussian states. Phys. Rev. A 2012, 86, 1–6.
[CrossRef]

http://dx.doi.org/10.1007/s11434-014-0193-x
http://dx.doi.org/10.1016/j.aop.2014.05.015
http://dx.doi.org/10.1103/PhysRevLett.105.030501
http://www.ncbi.nlm.nih.gov/pubmed/20867753
http://dx.doi.org/10.1103/PhysRevLett.105.020503
http://www.ncbi.nlm.nih.gov/pubmed/20867693
http://dx.doi.org/10.1088/1367-2630/16/3/033027
http://dx.doi.org/10.1142/S0219749911008192
http://dx.doi.org/10.1103/PhysRevA.83.042325
http://dx.doi.org/10.1007/s10773-016-3255-9
http://dx.doi.org/10.1088/1367-2630/17/1/013031
http://dx.doi.org/10.3390/e20040266
http://dx.doi.org/10.1007/s11128-018-1866-1
http://dx.doi.org/10.1088/1367-2630/16/7/073010
http://dx.doi.org/10.1103/PhysRevA.86.042106
http://dx.doi.org/10.1103/PhysRevLett.109.190502
http://dx.doi.org/10.1103/PhysRevLett.113.140405
http://dx.doi.org/10.1007/s11128-016-1276-1
http://dx.doi.org/10.1103/PhysRevA.86.052328
http://dx.doi.org/10.1080/09500349414552171
http://dx.doi.org/10.1088/1751-8113/47/33/335304
http://dx.doi.org/10.1007/s11433-012-4840-4
http://dx.doi.org/10.1103/PhysRevLett.105.010404
http://www.ncbi.nlm.nih.gov/pubmed/20867427
http://dx.doi.org/10.1103/PhysRevA.64.022315
http://dx.doi.org/10.1103/PhysRevLett.89.284102
http://dx.doi.org/10.1007/s11128-013-0619-4
http://dx.doi.org/10.1103/PhysRevB.97.094110
http://dx.doi.org/10.1103/PhysRevLett.120.190501
http://dx.doi.org/10.1103/PhysRevLett.115.260501
http://www.ncbi.nlm.nih.gov/pubmed/26764978
http://dx.doi.org/10.1103/PhysRevA.86.022340


Entropy 2019, 21, 6 18 of 18

34. Gilchrist, A.; Langford, N.K.; Nielsen, M.A. Distance measures to compare real and ideal quantum processes.
Phys. Rev. A 2005, 71, 362–368. [CrossRef]

35. Wang, X.B.; Hiroshimab, T.; Tomitab, A.; Hayashi, M. Quantum information with Gaussian states. Phys. Rep.
2007, 448, 1–111. [CrossRef]

36. Weedbrook, C.; Pirandola, S.; García-Patrón, R.; Cerf, N.J.; Ralph, T.C.; Shapiro, J.H.; Lloyd, S. Gaussian
quantum information. Rev. Mod. Phys. 2012, 84, 621. [CrossRef]

37. Adesso, G.; Illuminati, J. Entanglement in continuous-variable systems: Recent advances and current
perspectives. J. Phys. A Math. Theor. 2007, 40, 7821. [CrossRef]

38. Holevo, A.S.; Werner, R.F. Evaluating capacities of bosonic Gaussian channels. Phys. Rev. A 2001, 63, 032312.
[CrossRef]

39. Adesso, G.; Giampaolo, S.M.; Illuminati, F. Geometry characterization of separability and entanglement in
pure Gaussian states by single-mode unitary operations. Phys. Rev. A 2007, 76, 042334. [CrossRef]

40. Modi, K.; Brodutch, A.; Cable, H.; Vedral, V. The classical-quantum boundary for correlations: Discord and
related measures. Rev. Mod. Phys. 2012, 84, 1655. [CrossRef]

41. Ciccaarello, F.; Tufarelli, T.; Giovannetti, V. Toward computability of trace distance discord. New. J. Phys.
2014, 16, 013038. [CrossRef]

42. Girolami, D.; Souza, A.M.; Giovannetti, V.; Tufarelli, T.; Filgueiras, J.G.; Sarthour, R.S.; Soares-Pinto, D.O.;
Oliveira, I.S.; Adesso, G. Quantum Discord Determines the Interferometric Power of Quantum States.
Phys. Rev. Lett. 2014, 112, 210401. [CrossRef]

43. Roga, W.; Giampaolo, S.M.; Illuminati, F. Discord of response. J. Phys. A Math. Theor. 2014, 47, 365301.
[CrossRef]

44. Bowen, W.P.; Schnabel, R.; Lam, P.K.; Ralph, T.C. Experimental characterization of continuous-variable
entanglement. Phys. Rev. A 2004, 69, 012304. [CrossRef]

45. Pirandola, S.; Serafini, A.; Lloyd, S. Correlation matrices of two-mode bosonic systems. Phys. Rev. A 2009,
79, 052327. [CrossRef]

46. Liu, L.; Hou, J.C.; Qi, X.F. Fidelity based measurement induced nonlocality for Gaussianstates. arXiv 2018,
arXiv:quant-ph/1808.08546v2 .

47. Giedke, G.; Cirac, J.I. Characterization of Gaussian operations and distillation of Gaussian states. Phys. Rev. A
2002, 66, 355–358. [CrossRef]

48. Wang, X.; Yu, C.S.; Yi, X.X. An alternative quantum fidelity for mixed states of qudits. Phys. Lett. A 2008, 373,
58–60. [CrossRef]

49. Scutaru, H. Fidelity for displaced squeezed thermal states and the oscillator semigroup. J. Phys. A 1998, 31,
3659–3663. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevA.71.062310
http://dx.doi.org/10.1016/j.physrep.2007.04.005
http://dx.doi.org/10.1103/RevModPhys.84.621
http://dx.doi.org/10.1088/1751-8113/40/28/S01
http://dx.doi.org/10.1103/PhysRevA.63.032312
http://dx.doi.org/10.1103/PhysRevA.76.042334
http://dx.doi.org/10.1103/RevModPhys.84.1655
http://dx.doi.org/10.1088/1367-2630/16/1/013038
http://dx.doi.org/10.1103/PhysRevLett.112.210401
http://dx.doi.org/10.1088/1751-8113/47/36/365301
http://dx.doi.org/10.1103/PhysRevA.69.012304
http://dx.doi.org/10.1103/PhysRevA.79.052327
http://dx.doi.org/10.1103/PhysRevA.66.032316
http://dx.doi.org/10.1016/j.physleta.2008.10.083
http://dx.doi.org/10.1088/0305-4470/31/15/025
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	A Uhlmann Fidelity-Based Quantum Correlation and Its Properties
	Comparing NFG with Other Quantum Correlations
	Conclusions
	
	References

