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Abstract: In the literature, we can find several blind adaptive deconvolution algorithms based on
closed-form approximated expressions for the conditional expectation (the expectation of the source
input given the equalized or deconvolutional output), involving the maximum entropy density
approximation technique. The main drawback of these algorithms is the heavy computational burden
involved in calculating the expression for the conditional expectation. In addition, none of these
techniques are applicable for signal-to-noise ratios lower than 7 dB. In this paper, I propose a new
closed-form approximated expression for the conditional expectation based on a previously obtained
expression where the equalized output probability density function is calculated via the approximated
input probability density function which itself is approximated with the maximum entropy density
approximation technique. This newly proposed expression has a reduced computational burden
compared with the previously obtained expressions for the conditional expectation based on
the maximum entropy approximation technique. The simulation results indicate that the newly
proposed algorithm with the newly proposed Lagrange multipliers is suitable for signal-to-noise
ratio values down to 0 dB and has an improved equalization performance from the residual
inter-symbol-interference point of view compared to the previously obtained algorithms based
on the conditional expectation obtained via the maximum entropy technique.

Keywords: Bayesian approach; deconvolution; maximum entropy density approximation technique

1. Introduction

In this paper, the blind adaptive deconvolution problem is addressed, which arises in
many applications, such as seismology, underwater acoustic, image restoration and digital
communication [1–35]. In digital communication applications, the problem is often called blind adaptive
equalization. Non-blind adaptive equalizers, unlike blind adaptive equalizers, require training symbols
to generate the error that is fed into the adaptive mechanism which updates the equalizer’s taps.
Therefore, blind adaptive equalizers have some important advantages compared with the non-blind
version: (1) Simplified protocols in point-to-point communications, avoiding the retransmission of
training symbols after abrupt changes of the channel. (2) Higher bandwidth efficiency in broadcast
networks. (3) Reduced interoperability problems derived from the use of different training symbols.
It is well known that inter-symbol interference (ISI) is a limiting factor in many communication
environments, where it causes an irreducible degradation of the bit error rate thus imposing an upper
limit on the data symbol rate [36]. In order to overcome the ISI problem, an equalizer is implemented
in those systems [34–41]. In this work, the T-spaced blind adaptive equalizer is considered for the
single-input-single-output (SISO) case where the sampling rate is equal to the symbol rate (thus referred
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to as T-spaced where T denotes the baud, or symbol, duration). Please note that a fractionally-spaced
equalizer (FSE) where the sampling rate is higher than the symbol rate can be modeled with a
single-input-multiple-output (SIMO) system. In addition, a SIMO system can be modeled with
a parallel combination of T-spaced blind adaptive equalizers. Thus, improving the equalization
performance of a T-spaced blind adaptive equalizer for the SISO case may also lead to equalization
performance improvement for the SIMO case. As already mentioned above, blind adaptive equalizers
do not use any training symbols to generate the error that is fed into the adaptive mechanism which
updates the equalizer’s taps. Instead of those training symbols, an estimate of the desired response is
obtained via the use of a nonlinear transformation to sequences involved in the adaptation process.
Now, very often, blind adaptive equalization algorithms are classified according to the location of their
nonlinearity in the algorithm chain [42]. According to Reference [42], there are three different types: (1)
polyspectral algorithms, (2) Bussgang-type algorithms, (3) probabilistic algorithms. In the first method,
the nonlinearity is located at the output of the channel, right before the equalizer. Thus, the nonlinearity
actually estimates the channel. This estimation is fed into the adaptive mechanism which updates
the equalizer’s taps. In the second type, the nonlinearity is situated at the output of the equalizer.
Here, the nonlinearity can just be the estimation of the source signal via the the use of the conditional
expectation (the expectation of the source input given the equalized or deconvolutional output),
or the nonlinearity can be a predefined cost function that holds some information of the ISI. Thus,
minimizing this predefined cost function with respect to the equalizer’s taps may lower the residual
ISI and help in the symbol recovery process. Since Bussgang-type algorithms often have shorter
convergence times than polyspectral methods, which need larger amounts of data for an equivalent
estimation variance, they are more popular [42]. In the third class of algorithms, directly locating the
nonlinearity is more problematic compared to the first two groups since the nonlinearity is combined
with the data detection process. While these algorithms can extract considerable information from
relatively little data, this is often accomplished at a huge computational cost [42]. In the following,
the Bussgang-type blind equalization algorithms are considered, where the conditional expectation
(the expectation of the source input given the equalized or deconvolutional output) is derived for
estimating the desired response. In the literature, we can find several approximated expressions for the
conditional expectation related to the blind adaptive deconvolutional problem [20,43–49]. However,
References [43–46] are valid only for a uniformly distributed source input and References [20,47,48]
were designed only for the noiseless case. Recently [49], a new blind adaptive equalization method was
proposed based on Reference [47] that is applicable for signal-to-noise ratio (SNR) values down to 7 dB.
However, the computational burden of the method in Reference [49] is relative high. The closed-form
approximated expression proposed in Reference [49] for the conditional expectation with Lagrange
multipliers up to order four (thus applicable for the 16QAM input case) is composed of a polynomial
function of the equalized output of order twenty one. Please note that the proposed expression for the
conditional expectation with Lagrange multipliers up to order four in Reference [47] is a polynomial
function of the equalized output of order thirteen while the proposed expression for the conditional
expectation with Lagrange multipliers up to order four in Reference [20] is a fraction where the
numerator and the denominator are a polynomial function of the equalized output of order thirteen
and twelve, respectively.

In this paper, I propose a new closed-form approximated expression for the conditional
expectation based on Reference [20] with Lagrange multipliers up to order four. This new proposed
expression has a reduced computational burden compared with the previously obtained expressions
for the conditional expectation proposed in Reference [20,47,49]. The new proposed expression for
the conditional expectation is composed of a fraction where the numerator and the denominator are a
polynomial function of the equalized output of order seven and six, respectively. Simulation results
show that the new proposed algorithm, with the new proposed Lagrange multipliers up to order four,
is suitable for SNR values down to 0 dB and has an improved equalization performance from the
residual ISI point of view compared with Reference [49].
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2. System Description

I consider the system from References [20,47,49], illustrated in Figure 1, where I make the following
assumptions as were done in References [20,47,49]:

1. The source signal x[n] is given by
x[n] = x1[n] + jx2[n] (1)

where x1[n] and x2[n] are the real and imaginary parts of x[n], respectively. It is assumed that x1[n]
and x2[n] are independent and that

E[x[n]] = 0 (2)

where E[·] stands for the expectation operation.
2. The unknown channel h[n] is possibly a non-minimum phase linear time-invariant filter in which

the transfer function has no “deep zeros”.
3. The filter c[n] is a tap-delay line.
4. The channel noise w[n] is an additive Gaussian white noise with variance σ2

w where σ2
wr and σ2

wi
are

the variances of the real and imaginary parts of w[n], respectively.
5. The function T[·] is a memoryless nonlinear function that satisfies the additivity condition:

T[z1[n] + jz2[n]] = T[z1[n]] + jT[z2[n]] (3)

where z1[n], z2[n] are the real and imaginary parts of the equalized output, respectively.

h[n]
x[n]

c[n]

w[n]

y[n] z[n]

Equalizer

T ]  [

d[n]

Adaptive Control

 Algorithm

c[n+1]

+

+

+

-

Figure 1. Block diagram of the system.

As was described in References [20,47,49], the source input x[n] is sent via the channel h[n] and is
corrupted with channel noise w[n]. The ideal equalized output is expressed in Reference [50] as

z[n] = x[n− D]ejθ (4)

where D is a constant delay and θ is a constant phase shift. Therefore, in the ideal case, we could write

c[n] ∗ h[n] = δ[n− D]ejθ (5)

where “∗” denotes the convolution operation and δ is the Kronecker delta function. In this paper,
I assume, as was also done in References [20,47,49], that D and θ are equal to zero (please refer to
Reference [49] for the explanation). The equalized output is given by

z [n] = x [n] + p̃ [n] + w̃ [n] (6)
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where p̃[n] is the convolutional noise and

w̃ [n] = w [n] ∗ c [n] . (7)

In this paper, the ISI is used to measure the performance of the deconvolution process, defined by

ISI = ∑m̃ |s̃[m̃]|2 − |s̃|2max
|s̃|2max

(8)

where |s̃|max is the component of s̃, given in (9), having the maximal absolute value.

s̃[n] = c [n] ∗ h [n] = δ [n] + ξ [n] (9)

where ξ[n] stands for some error not having the ideal case. The input sequence x[n] is estimated with
the function T[z[n]] and is denoted as d[n]. The difference between T[z[n]] and the equalized output
z [n] is denoted as ẽ [n]:

ẽ [n] = T [z [n]]− z [n] (10)

This error plays an important role in updating the equalizer’s taps:

c[n + 1] = c[n] + µẽ [n] y∗[n] (11)

where (·)∗ is the conjugate operation on (·), µ is the step size parameter, and c[n] is the equalizer vector,
where the input vector is y[n] = [y[n]...y[n− N + 1]]T . The operator ()T denotes the transpose of the
function (), and N is the equalizer’s tap length. Another way to update the equalizer’s taps is to use
the cost function approach [51]:

c[n + 1] = c[n]− µ
∂F[n]
∂z[n]

y∗[n] (12)

where F[n] is a predefined function that characterizes the ISI. In the literature [20,47,49,50], we may find
the conditional expectation (E[x[n]|z[n]]) as a proper option for T[z[n]]. According to Reference [20],
the conditional expectation for the real valued and noiseless case was obtained via Bayes rules:

E [x[n]|z[n]] =

∞∫
−∞

x[n] fz|x(z|x) fx(x)dx

fz (z)
(13)

where fz|x (z|x) was given by

fz|x (z|x) = 1√
2πσp̃

exp
(
− (z[n]−x[n])2

2σ2
p̃

)
(14)

and the source probability density function (pdf) ( fx(x)) was approximated by the maximum entropy
density approximation technique:

f̂x(x) = exp
(

∑K
k=0 λ̂kxk[n]

)
(15)

where f̂x(x) is the approximated probability density function and λ̂k (k = 0, 1, 2, ..., K) are the Lagrange
multipliers. In the following, for simplicity, I write x and z instead of x[n] and z[n], respectively.
By using (13)–(15), the conditional expectation obtained by Reference [20] for the real valued and
noiseless case is
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E [x|z] =
z+

ĝ′′1 (z)
2ĝ(z) σ2

p̃+
ĝ(4)1 (z)
8ĝ(z)

(
σ2

p̃

)2

1+ ĝ′′(z)
2ĝ(z) σ2

p̃+
ĝ(4)(z)
8ĝ(z)

(
σ2

p̃

)2
(16)

where

ĝ (z) =
{

exp
(

∑k=K
k=2 λ̂kxk

)}
x=z

ĝ′′(z) =
{

d2

dx2

[
exp

(
∑k=K

k=2 λ̂kxk
)]}

x=z
; ĝ(4)(z) =

{
d4

dx4

[
exp

(
∑k=K

k=2 λ̂kxk
)]}

x=z

ĝ′′1 (z) =
{

d2

dx2

[
x exp

(
∑k=K

k=2 λ̂kxk
s

)]}
x=z

; ĝ(4)1 (z) =
{

d4

dx4

[
x exp

(
∑k=K

k=2 λ̂kxk
)]}

x=z

(17)

and
σ2

p̃ = E[ p̃2[n]]. (18)

Please note that for λ̂k up to order four, ĝ′′(z), ĝ′′1 (z), ĝ(4)(z), and ĝ(4)1 (z) are polynomial functions
of order seven, six, thirteen, and twelve, respectively. According to Reference [20], the Lagrange
multipliers were obtained by minimizing the approximated obtained mean square error (MSE) [20]
with respect to the Lagrange multipliers. Namely, the Lagrange multipliers were obtained by

d
dλ̂k

(
E
[
(x̂− x)2

])
= 0

⇓

mk−2 (k− 1) k + 2λ̂km2k−2k2 + ∑K
L=3,L 6=k 2λ̂Lmk+L−2kL = 0 for k = 2, 4, 6, ..., K

(19)

where
mG = E

[
xG
]

, (20)

x̂ is the conditional expectation, E
[
(x̂− x)2

]
is the MSE and given by Reference [20] as

E
[
(x̂− x)2

]
' σ2

p̃

(
1− σ2

p̃

(
2E
[

ĝ
′′
(x)

2ĝ(x)

]))
. (21)

For the Lagrange multipliers λ̂k up to order four, based on (19), we obtain the following equations
for λ̂2 and λ̂4:

2 + 2λ̂2m24 + 2λ̂4m48 = 0

m212 + 2λ̂4m616 + 2λ̂2m48 = 0
(22)

3. The New Proposed Expression for the Conditional Expectation

In this section, I present my newly proposed approximated closed-form expression for the
conditional expectation based on Reference [20]. In the following, I adopt the assumptions made in
References [20,47,49]:

1. The convolutional noise p̃[n] is a zero mean, white Gaussian process with variance

σ2
p̃ = E[ p̃[n] p̃∗[n]]. (23)

2. The source signal x[n] is an independent non-Gaussian signal with known variance and
higher moments.



Entropy 2019, 21, 72 6 of 17

3. The convolutional noise p̃[n] and the source signal are independent.
4. The convolutional noise power σ2

p̃ is sufficiently low.

For justification of the above assumptions, please refer to Reference [49]. In the following, I first
consider the real valued case and then turn back to the case where the real and imaginary parts of the
input signal are independent (as is the case for the 16QAM source input). According to (19) and (21),
we may see that the obtained Lagrange multipliers are depending only on the second leading term
associated to the denominator of (16). This may imply that we can use a truncated version of (16) for
the approximated conditional expectation expression where the computational burden is automatically
reduced compared to (16).

Proposition 1. In this paper, I propose for the real valued and noisy case the following expression for the
conditional expectation with Lagrange multipliers up to order four:

E [x|z] =
z+

ĝ′′1 (z)
2ĝ(z) σ2

p

1+ ĝ′′(z)
2ĝ(z) σ2

p

(24)

where
σ2

p = σ2
p̃ + σ2

w̃

ĝ
′′
1 (z)

2ĝ(z) = z
(
8z6λ2

4 + 8z4λ2λ4 + 2z2λ2
2 + 10z2λ4 + 3λ2

)
ĝ
′′
(z)

2ĝ(z) = 8z6λ2
4 + 8z4λ2λ4 + 2z2λ2

2 + 6z2λ4 + λ2

(25)

and
λ2 = 1

4m̃2(64m̃2
4−64m̃2m̃6)

(
64m̃2m̃6 − 64m̃2

4 + 8m̃4
(
8m̃4 − 24m̃2

2
))

λ4 = − 1
64m̃2

4−64m̃2m̃6

(
8m̃4 − 24m̃2

2
)

with

m̃2 = m2

(
1 + 1

SNR ∑R−1
k=0 |hk |2

)

m̃4 = m2
2

(
3

(SNR ∑R−1
k=0 |hk |2)

2 +
6

SNR ∑R−1
k=0 |hk |2

+ m4
m2

2

)

m̃6 = m3
2

(
15

(SNR ∑R−1
k=0 |hk |2)

3 +
45

(SNR ∑R−1
k=0 |hk |2)

2 +
15

SNR ∑R−1
k=0 |hk |2

m4
m2

2
+ m6

m3
2

)

(26)

where R is the channel tap length, hk is the k-th tap of the channel h[n], and

SNR =
m2

σ2
w

; σ2
w̃ = E

[
w̃2
]

. (27)

Proof of the proposed Lagrange multipliers given in (26). According to Reference [20] (Appendix B),
the approximated MSE for the noisy case, valid at the latter stages of the deconvolutional process, may
be given as

E
[
(x̂− x)2

]
' σ2

p

(
1− σ2

p

(
2E
[

ĝ
′′
(x̃)

2ĝ(x̃)

]))
(28)
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where
x̃ = x + w̃. (29)

Thus, according to (19), we obtain the following equations for the Lagrange multipliers:

2 + 2λ2m̃24 + 2λ4m̃48 = 0

m̃212 + 2λ4m̃616 + 2λ2m̃48 = 0
(30)

where
m̃G = E[x̃G]. (31)

The solution of (30) for λ2 and λ4 as a function of m̃2, m̃4, and m̃6 is given in (26). Next, I find
closed-form approximated expressions for m̃2, m̃4, and m̃6. When the deconvolutional process has
converged and leaves the system with a convolutional noise that can be considered as very low, we may
write, according to Reference [52],

σ2
w̃ =

σ2
w

∑R−1
k=0 |hk|2

. (32)

Since x and w are independent, by using (32) and the expression for SNR (27) we have

m̃2 = E
[
(x + w̃)2

]
= m2 + σ2

w̃ = m2 +
σ2

w

∑R−1
k=0 |hk |2

= m2

(
1 + σ2

w
m2 ∑R−1

k=0 |hk |2

)
=

m2

(
1 + 1

SNR ∑R−1
k=0 |hk |2

)

m̃4 = E
[
(x + w̃)4

]
= 3σ4

w̃ + 6m2σ2
w̃ + m4 = 3

(
σ2

w

∑R−1
k=0 |hk |2

)2
+ 6m2

σ2
w

∑R−1
k=0 |hk |2

+ m4 =

m2
2

(
3

(SNR ∑R−1
k=0 |hk |2)

2 +
6

SNR ∑R−1
k=0 |hk |2

+ m4
m2

2

)

m̃6 = E
[
(x + w̃)6

]
= 15σ6

w̃ + 45σ4
w̃m2 + 15σ2

w̃m4 + m6 =

m3
2

(
15

(SNR ∑R−1
k=0 |hk |2)

3 +
45

(SNR ∑R−1
k=0 |hk |2)

2 +
15

SNR ∑R−1
k=0 |hk |2

m4
m2

2
+ m6

m3
2

)

(33)

This completes our proof.

Next, I turn to the 16QAM source input. For this case, according to Reference [44], I have that

E [x|z] = E [x1|z1] + jE [x2|z2] . (34)

4. Simulation

In this section, I show via simulation results the efficiency of the truncated expression for the
conditional expectation (24) combined with the Lagrange multipliers given in (26). Namely, I show
via simulation results the equalization performance from the residual ISI point of view of the new
proposed algorithm (with (24) and (26)) compared to the simulation results obtained by the maximum
entropy [49] method and Godard’s [53] algorithm. Godard’s [53] algorithm is used for comparison
since it is a very efficient algorithm from the equalization performance point of view [28]. In addition,
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it’s computational burden is very low [28]. For Godard’s algorithm [53], the equalizer’s taps were
updated as follows:

cl [n + 1] = cl [n]− µG

|z|2 − E
[
|x|4

]
E
[
|x|2

]
 y∗ [n− l] (35)

where µG is a positive step size parameter and l stands for the l-th tap of the equalizer. The update
mechanism of the equalizer’s taps associated with the recently obtained maximum entropy
algorithm [49] was as follows:

c̃l [n + 1] = cl [n]− µANEWWy∗[n− l] (36)

with

W =

E [x1|z1]

 (z1 [n] E [x1|z1])〈
(z1)

2
〉

n

+ jE [x2|z2]

 (z2 [n] E [x2|z2])〈
(z2)

2
〉

n

− z [n]

 (37)

and

E [x1|z1] '
(

1 + (ε1
0 + ε1

2z2
1 + ε1

4z4
1) +

1
2 (ε

1
0 + ε1

2z2
1 + ε1

4z4
1)

2
)(

z1 +
σ2

p1
2

g
′′
1 (z1)
g(z1)

+

(
σ2

p1

)2

8
g
′′′′
1 (z1)
g(z1)

)

E [x2|z2] '
(

1 + (ε2
0 + ε2

2z2
2 + ε2

4z4
2) +

1
2 (ε

2
0 + ε2

2z2
2 + ε2

4z4
2)

2
)(

z2 +
σ2

p2
2

g
′′
1 (z2)
g(z2)

+

(
σ2

p2

)2

8
g
′′′′
1 (z2)
g(z2)

)
where

s = 1, 2

g
′′
1 (zs)
g(zs)

= 2zs
(
8z6

s λ2
4 + 8z4

s λ2λ4 + 2z2
s λ2

2 + 10z2
s λ4 + 3λ2

)
g
′′′′
1 (zs)
g(zs)

= 4zs
(
64z12

s λ4
4 + 128z10

s λ2λ3
4 + 96z8

s λ2
2λ2

4 + 352z8
s λ3

4 + 32z6
s λ3

2λ4 + 432z6
s λ2λ2

4+

4z4
s λ4

2 + 168z4
s λ2

2λ4 + 348z4
s λ2

4 + 20z2
s λ3

2 + 180z2
s λ2λ4 + 15λ2

2 + 30λ4
)

σ2
ps = σ2

zs − σ2
xs

(38)

and
σ2

xs = E[x2
s ]. (39)

According to Reference [49],
σ2

zs = E[z2
s ], (40)

and given by 〈
z2

s

〉
= (1− βANEW)

〈
z2

s

〉
n−1

+ βANEW (zs)
2
n (41)

where 〈〉 stands for the estimated expectation,
〈
z2

s
〉

0 > 0, βANEW and µANEW are positive step size
parameters. εs

0, εs
2, εs

4, λ2, and λ4 were set according to Reference [49] as

εs
0 = −2λ2σ2

ps ; εs
2 = −σ2

ps

(
4λ2

2 + 12λ4
)

; εs
4 = −16λ2λ4σ2

ps (42)

λ2 ' 1
40m̄2(20 736m̄2

4+1280m̄2m̄6)

(
41 472m̄2

4 + 2560m̄2m̄6 − 144m̄4
(
480m̄2

2 + 288m̄4
))

λ4 ' 1
20 736m̄2

4+1280m̄2m̄6

(
480m̄2

2 + 288m̄4
) (43)
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where
E[xG

1 ] = m̄G. (44)

In order to get an equalization gain of one, the following gain control was used according to
Reference [49]:

cl [n] =
c̃l√

∑l |c̃l |2
(45)

where cl [n] is the vector of taps after iteration and cl [0] is some reasonable initial guess. The update
mechanism of the equalizer’s taps associated with the new proposed blind equalization method
involving the truncated version for the conditional expectation and the newly derived Lagrange
multipliers was as follows:

c̃l [n + 1] = cl [n]− µBNEWWy∗[n− l] (46)

with W given in (37), but with

E [x1|z1] =
z1+

ĝ′′1 (z1)
2ĝ(z1)

σ2
p1

1+ ĝ′′(z1)
2ĝ(z1)

σ2
p1

E [x2|z2] =
z2+

ĝ′′1 (z2)
2ĝ(z2)

σ2
p2

1+ ĝ′′(z2)
2ĝ(z2)

σ2
p2

where

s = 1, 2

ĝ
′′
1 (zs)

2ĝ(zs)
= zs

(
8z6

s λ2
4 + 8z4

s λ2λ4 + 2z2
s λ2

2 + 10z2
s λ4 + 3λ2

)
ĝ
′′
(zs)

2ĝ(zs)
= 8z6

s λ2
4 + 8z4

s λ2λ4 + 2z2
s λ2

2 + 6z2
s λ4 + λ2

σ2
ps = σ2

zs − σ2
xs

(47)

λ2 = 1
4m̂2(64m̂2

4−64m̂2m̂6)

(
64m̂2m̂6 − 64m̂2

4 + 8m̂4
(
8m̂4 − 24m̂2

2
))

λ4 = − 1
64m̂2

4−64m̂2m̂6

(
8m̂4 − 24m̂2

2
)

with

m̂2 = m̄2

(
1 + 1

SNR ∑R−1
k=0 |hk |2

)

m̂4 = m̄2
2

(
3

(SNR ∑R−1
k=0 |hk |2)

2 +
6

SNR ∑R−1
k=0 |hk |2

+ m̄4
m̄2

2

)

m̂6 = m̄3
2

(
15

(SNR ∑R−1
k=0 |hk |2)

3 +
45

(SNR ∑R−1
k=0 |hk |2)

2 +
15

SNR ∑R−1
k=0 |hk |2

m̄4
m̄2

2
+ m̄6

m̄3
2

)

(48)

where

SNR =
E[xx∗]

σ2
w

=
m̄2

σ2
wr

(49)



Entropy 2019, 21, 72 10 of 17

σ2
zs was estimated by 〈

z2
s

〉
= (1− βBNEW)

〈
z2

s

〉
n−1

+ βBNEW (zs)
2
n (50)

where
〈
z2

s
〉

0 > 0, βBNEW and µBNEW are positive step size parameters. The equalizer’s taps in (46)
were updated only if N̂s > ε, where ε is a small positive parameter and

N̂s = 1 +
ĝ′′(zs)

2ĝ(zs)
σ2

ps . (51)

I also used here a gain control according to (45).
In the following, I denote “MaxEntANEW”, “Godard”, and “MaxEntBNEW” as the algorithms

given in References [49,53], and (46), respectively. For the “MaxEntANEW” and “MaxEntBNEW”
algorithms, I used

E[z2
s ] = E[x2

s ] (52)

for initialization.
The following channels were considered:

Channel 1: (initial ISI = 0.44): Taken according to References [1,49]: hn ={
0 for n < 0; −0.4 for n = 0; 0.84 · 0.4n−1 for n > 0

}
.

Channel 2: Normalized Channel 1 with ∑k |hk|2 = 1.317.
Channel 3: Normalized Channel 1 with ∑k |hk|2 = 0.768.

In my simulation, the equalizer’s length was set to 13 taps. For initialization purposes, the
center tap of the equalizer was set to one while all others were set to zero. As a source input, I used
the 16QAM constellation. The equalization performance comparison between the new proposed
equalization method (“MaxEntBNEW” (46)), the maximum entropy [49], and Godard’s [53] algorithm
is given in Figures 2–4. The equalization performance comparison was carried out for a 16QAM
constellation input sent via Channel 1 with SNR values of 10 dB, 7 dB, and 0 dB, respectively.
It should be pointed out that the results in Figures 2 and 3 for “MaxEntANEW” and “Godard”
were reproduced from Reference [49]. In addition, please note that according to Reference [49],
“MaxEntANEW” is not applicable for SNR = 0 dB. According to Figures 2–4, the new proposed
algorithm (“MaxEntBNEW” (46)) has a better equalization performance from the residual ISI point
of view compared to “MaxEntANEW” and “Godard”. Next, I tested the proposed equalization
method (“MaxEntBNEW” (46)) with Channel 2 and Channel 3 where ∑k |hk|2 6= 1. Figures 5 and 6
show the equalization performance comparison between the new proposed equalization method
(“MaxEntBNEW” (46)) and Godard’s [53] algorithm for the 16QAM constellation input sent via
Channel 2 and Channel 3, respectively, with SNR = 7 dB. According to Figures 5 and 6, the new
proposed algorithm (“MaxEntBNEW” (46)) has a better equalization performance from the residual
ISI point of view compared to “Godard”. As a matter of fact, for the case of ∑k |hk|2 > 1 (Channel 2),
the improvement in the residual ISI compared to the results obtained by “Godard” is approximately
5 dB while the improvement in the residual ISI compared to the results obtained by “Godard” for
∑k |hk|2 < 1 (Channel 3) is only approximately 2 dB. Thus, we may say that the proposed algorithm
(“MaxEntBNEW” (46)) has a promising equalization performance from the residual ISI point of view
for channels with ∑k |hk|2 ≥ 1.
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Figure 2. Performance comparison between equalization algorithms for a 16QAM source input going
through Channel 1. The averaged results were obtained in 50 Monte Carlo trials for a signal-to-noise
ratio (SNR) = 10 dB. µG = 7 × 10−5, µANEW = 0.00009, βANEW = 1 × 10−5, µBNEW = 0.00008,
βBNEW = 1× 10−4, ε = 0.85.
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Figure 3. Performance comparison between equalization algorithms for a 16QAM source input going
through Channel 1. The averaged results were obtained in 50 Monte Carlo trials for an SNR = 7 dB.
µG = 2.5 × 10−5, µANEW = 0.00008, βANEW = 1 × 10−5, µBNEW = 0.00008, βBNEW = 1 × 10−4,
ε = 0.85.
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Figure 4. Performance comparison between equalization algorithms for a 16QAM source input going
through Channel 1. The averaged results were obtained in 50 Monte Carlo trials for an SNR = 0 dB.
µG = 4× 10−6, µBNEW = 0.00002, βBNEW = 6× 10−5, ε = 0.05.
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Figure 5. Performance comparison between equalization algorithms for a 16QAM source input going
through Channel 2. The averaged results were obtained in 50 Monte Carlo trials for an SNR = 7 dB.
µG = 2.5× 10−5, µBNEW = 0.00008, βBNEW = 1× 10−4, ε = 0.85.
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Figure 6. Performance comparison between equalization algorithms for a 16QAM source input going
through Channel 3. The averaged results were obtained in 50 Monte Carlo trials for an SNR = 7 dB.
µG = 2.5× 10−5, µBNEW = 0.00007, βBNEW = 2× 10−5, ε = 0.85.

Up to now, I have assumed that the SNR as well as the channel power are known. Thus, we could
calculate the required Lagrange multipliers via (48). When the SNR and the channel power are
unknown, the m̂2, m̂4, and m̂6 cannot be calculated anymore via (48). However, on the basis of (33),
we may calculate the required m̂2, m̂4, and m̂6 needed for the Lagrange multipliers in (48) from

m̂2 = m̄2 + σ2
w̃r

,

m̂4 = 3σ4
w̃r

+ 6m̄2σ2
w̃r

+ m̄4,

m̂6 = 15σ6
w̃r

+ 45σ4
w̃r

m̄2 + 15σ2
w̃r

m̄4 + m̄6,

(53)

where σ2
w̃r

is the variance of the real part of w̃[n] and may be simulated as

σ2
w̃r

= σ2
p1

. (54)

Please note that for the ideal case, when the equalizer has converged, the convolutional noise
power tends to zero. Thus, this makes (54) reasonable. In the following, I use (53) and (54) for
calculating the Lagrange multipliers related to the “MaxEntBNEW” algorithm. Figures 7 and 8 show
the equalization performance of the new proposed equalization method (“MaxEntBNEW” (46) with (53)
and (54)), namely the ISI as a function of iteration number for the 16QAM constellation input sent via
Channel 1 for SNR values of 10 dB and 7 dB, respectively, compared to the equalization performance
obtained from the maximum entropy [49] and Godard’s [53] algorithm. Please note that here the results
for “MaxEntANEW” and “Godard” were also reproduced from Reference [49]. According to Figures 7
and 8, the new proposed algorithm (“MaxEntBNEW” (46) with (53) and (54)) has better equalization
performance from the residual ISI point of view compared to the maximum entropy [49] and Godard’s
[53] algorithm even when the SNR and channel power are unknown.
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Figure 7. Performance comparison between equalization algorithms for a 16QAM source input going
through Channel 1. The averaged results were obtained in 50 Monte Carlo trials for an SNR = 10 dB.
µG = 7× 10−5, µANEW = 0.00009, βANEW = 1× 10−5, µBNEW = 0.00007, βBNEW = 7× 10−6, ε = 0.75.
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Figure 8. Performance comparison between equalization algorithms for a 16QAM source input going
through Channel 1. The averaged results were obtained in 50 Monte Carlo trials for an SNR = 7 dB.
µG = 2.5 × 10−5, µANEW = 0.00008, βANEW = 1 × 10−5, µBNEW = 0.00006, βBNEW = 6 × 10−6,
ε = 0.75.
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5. Conclusions

In this paper, I proposed a new closed-form approximated expression for the conditional
expectation (with Lagrange multipliers up to order four) which is actually a truncated version of the
expression obtained in Reference [20]. This new proposed expression has a reduced computational
burden compared with the previously obtained expressions for the conditional expectation proposed
in References [20,47,49]. In addition, I derived new approximated closed-form expressions for the
Lagrange multipliers (λ2, λ4). Simulation results have shown that my newly proposed equalization
algorithm, with my newly proposed expression for the conditional expectation and Lagrange
multipliers up to order four, is applicable for SNR values down to 0 dB and has an improved
equalization performance from the residual ISI point of view compared with References [49,53].
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