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Abstract: Partial discharge (PD) fault analysis is an important tool for insulation condition diagnosis
of electrical equipment. In order to conquer the limitations of traditional PD fault diagnosis, a novel
feature extraction approach based on variational mode decomposition (VMD) and multi-scale
dispersion entropy (MDE) is proposed. Besides, a hypersphere multiclass support vector machine
(HMSVM) is used for PD pattern recognition with extracted PD features. Firstly, the original PD
signal is decomposed with VMD to obtain intrinsic mode functions (IMFs). Secondly proper IMFs
are selected according to central frequency observation and MDE values in each IMF are calculated.
And then principal component analysis (PCA) is introduced to extract effective principle components
in MDE. Finally, the extracted principle factors are used as PD features and sent to HMSVM classifier.
Experiment results demonstrate that, PD feature extraction method based on VMD-MDE can extract
effective characteristic parameters that representing dominant PD features. Recognition results verify
the effectiveness and superiority of the proposed PD fault diagnosis method.

Keywords: PD; fault diagnosis; variational mode decomposition; multi-scale dispersion entropy;
HMSVM

1. Introduction

Partial discharge (PD) is an important symptom of insulation degradation for electrical equipment.
PD fault diagnosis plays an irreplaceable role in the evaluation of insulation condition [1]. PD feature
extraction is an important step in insulation fault diagnosis. The common methods include statistical
atlas (SA) [2], wave analysis (WA) [3] and wavelet transform (WT) [4]. However, SA has the limitations
of high request of sampling rate, large data size and slow speed of data processing which are not
suitable for on-line monitoring. Besides, it is difficult to extract PD phase information during statistical
atlas construction. WA is easily influenced by electromagnetic interference. WT has some inherent
limitations such as the difficulty of selection of the wavelet basis, wavelet thresholds, decomposition
levels, and so on [5].

Empirical mode decomposition (EMD), as an adaptive signal processing method that decomposes
a time series into some limited intrinsic mode functions (IMFs). It is widely used in the areas of
fault detection, signal processing and data compression [6–8]. However, due to the problems of
ending effects and mode mixing in non-stationary signal decomposition, EMD is limited in practical
applications. Variational mode decomposition (VMD) is a new signal decomposition method, which is
widely applied in electrical fault feature extraction [9]. It is a non-recursive variational decomposition
model. In VMD, the central frequency and bandwidth of each mode are determined by searching the
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optimal solution of the variation model. VMD can solve the problems of mode mixing and ending
effects in traditional EMD methods [10]. In this paper, VMD is employed for PD signal decomposition
to extract effective IMFs from PD signals.

In order to quantify the PD feature information extracted by VMD, entropy theory is introduced.
Entropy, as a measure of uncertainty or irregularity, was widely applied in fault diagnosis recently [11].
It was first introduced by Shannon in 1948 [12]. Afterwards, approximate entropy (AE) was put
forward by Pincus [13], which provided one dimensionless index representing signal features. It was
suitable for both deterministic and random signals. However, AE is heavily relied on the data length.
Moreover, its estimated value is uniformly lower than expected ones when processing the short
dataset [14]. To overcome the weakness of AE, Richman and Moorman proposed sample entropy
(SE) [15]. Due to the insensitivity to the data length and immunity to the noise in data, SE has attracted
a great deal of attention. However, SE is not fast enough for some real-time applications, especially
for long signals [16]. Another widely used regularity indicator is permutation entropy (PE), which is
based on the order relations among values of a signal [17]. Although PE is conceptually simple and
computationally fast, the method does not consider the mean value of amplitudes and differences
between amplitude values [18]. In this paper, a new irregularity indicator is introduced, named
dispersion entropy (DE) [19]. The method tackles the abovementioned PE and SE limitations [20].
Because of the relevance and the possible usefulness of DE in several signal analyses, it is important
to understand the behavior of the technique for various kinds of classical signal concepts such as
amplitude, frequency, noise power, and signal band-width. However, DE estimates the complexity at a
single scale [21], which gives rise to unacceptable result when applied to analyze the multiple time
scales data [22]. Regarding this disadvantage, a multi-scale dispersion entropy (MDE) procedure was
put forward to estimate the complexity of the original time series over a range of scales [23]. In this
work, MDE is employed to quantify the PD feature information.

In recent years, a great number of intelligent algorithms have been used in PD fault
diagnosis. Support vector machine (SVM) [24], as a learning machine based on kernel functions,
that has the property of global optimization and strong generalization ability. However, using
hyperplane recognition model, SVM can’t accurately classify the samples with nonuniform state
distribution. In addition, SVM is restricted in practical application for its inherent binary classification
properties [25].

Hypersphere Support Vector Machine (HSSVM), based on SVM, was first proposed by
Scholkopf [26]. Instead of the hyperplane, HSSVM uses a hypersphere for pattern recognition. HSSVM
can not only separate two different classes, but also divide the sample space into two different parts [27].
Moreover, in order to overcome the limitations of inherent binary classification properties, hypersphere
multiclass SVM (HMSVM) was introduced [28]. In HMSVM classification, the samples in same class are
assigned to a hypersphere, therefore, the data space is composed of several hyperspheres [29]. Using
HMSVM, the multi-class classification is realized directly. The quadratic programming calculation of
HMSVM is less than that of one-class SVM, which causes shorter training and testing time. In this paper,
particle swarm optimization (PSO) [30] is employed for parameter selection in HMSVM. Then the
optimized classification model is applied to PD fault pattern recognition, using extracted PD features.

In this work, the proposed PD fault diagnosis method is combined with the excellent properties of
both VMD and MDE. The characteristic parameters representing dominant PD features are effectively
extracted. Besides, it can solve the problems in traditional PD feature extraction methods, such as
the limitations of high request of sampling rate, slow speed of data processing, difficulties to extract
PD phase information, influences by electromagnetic interference, difficulty of selection of wavelet
basis, and so on. Finally, HMSVM is employed for PD pattern recognition with extracted parameters.
To verify the effectiveness and superiority of the proposed method, different PD feature extraction
methods and diverse classifiers are introduced. Results verify the exactness of the conclusion.

The rest of this paper is organized as follows: Section 2 describes the theories of VMD, MDE and
HMSVM, and presents the PD fault diagnosis procedure. Section 3 presents a brief introduction to the
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experimental setup used to generate PD signals. In Section 4 we show the results with their validation.
The paper ends with conclusions in Section 5.

2. PD Fault Diagnosis Based on VMD-MDE and HMSVM

2.1. VMD Algorithm

VMD decomposes one real signal into K independent sub-signal uk, which has specific sparsity.
This procedure gets the minimum bandwidth estimation of each modal [31]. The procedure of signal
decomposition is to solve the variational problem. The variational model with constraint condition is
as follows: 

min
{uk},{wk}

{∑
k

∥∥∥∂t[(δ(t) +
j

πt )uk(t)]e−jwkt
∥∥∥2

2
}

s.t. ∑
k

uk = f
(1)

where {uk} = {u1, u2, · · · , uK} demonstrates the modal components, {wk} = {w1, w2, · · · , wK} is the
center frequency of each modal component, δ(t) represents impulse function, ∂t means the partial
derivatives of t, and f is the original signal.

In order to obtain the optimal solution of such constrained variational problem, Lagrangian
multiplier λ(t) is introduced. The constrained variational problem is transformed into
non-constrained problem:

L({uk}, {ωk}, λ) = α∑
k

∥∥∥∂t[(δ(t) +
j

πt )uk(t)]e−jwkt
∥∥∥2

2
+

∥∥∥∥ f (t)−∑
k

uk(t)
∥∥∥∥2

2
+

〈
λ(t), f (t)−∑

k
uk(t)

〉
(2)

where α is the quadratic penalty factor. Alternate direction method of multipliers (ADMM) is
introduced to obtain the saddle point of such Lagrangian function, which is the optimal solution.

The procedure of VMD can be summarized in the following steps:

(1) Initialize each modal component
{

u1
k
}

, center frequency
{

ω1
k
}

and operators
{

λ1}. Set n = 0.
(2) Update uk in non-negative frequency intervals:

ûn+1
k (ω)←

f̂ (ω)− ∑
i<k

ûn+1
i (ω)− ∑

i>k
ûn

i (ω) + λ̂n(ω)
2

1 + 2α(ω−ωn
k )

2 (3)

(3) Update ωk.

ωn+1
k ←

∫ ∞
0 ω

∣∣∣ûn+1
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣ûn+1
k (ω)

∣∣∣2dω

(4)

(4) Update λ in non-negative frequency intervals:

λ̂n+1 ← λ̂n + τ( f̂ (ω)−∑
k

ûn+1
i (ω)) (5)

(5) For a given precision ε > 0, if
∑
k
‖ûn+1

k −ûn
k‖

2
2

‖ûn
k ‖

2
2

< ε, then stop iteration. Otherwise, return to (2).

2.2. Theory of Multiscale Dispersion Entropy

2.2.1. Dispersion Entropy

For a univariate signal x = x1, x2, · · · , xN , dispersion entropy method can be described in
following steps [32]:
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(1) Map xj(j = 1, 2, · · · , N) into y = {y1, y2, · · · , yN} from 0 to 1 with the normal cumulative
distribution function:

yj =
1

σ
√

2π

xj∫
−∞

e
−(t−µ)2

2σ2 dt (6)

where σ and µ represent the standard deviation and mean of x, respectively.
(2) Assign each yj to an integer from Label 1 to c using a linear algorithm. The mapped signal can be

defined as follows:
zc

j = round(c.yj + 0.5) (7)

(3) Define embedding vector zm,c
i with embedding dimension m and time delay d as:

zm,c
i =

{
zc

i , zc
i+d, · · · , zc

i+(m−1)d

}
, i = 1, 2, · · · , N − (m− 1)d (8)

Each time series zm,c
i is mapped to a dispersion pattern πv0v1···vm−1 , where:

zc
i = v0, zc

i+d = v1. · · · , zc
i+(m−1)d = vm−1

(4) For each dispersion pattern, the relative frequency can be obtained as:

p(πv0v1···vm−1) =
Number

{
i|i ≤ N − (m− 1)d, zm,c

i has type πv0v1···vm−1

}
N − (m− 1)d

(9)

where p(πv0v1···vm−1) represent the number of dispersion pattern πv0v1···vm−1 , which is assigned to
zm,c

i divided by the total number of embedding signals with embedding dimension m.
(5) Based on Shannon’s definition of entropy, dispersion entropy with embedding dimension m, time

delay d, and the number of classes c can be defined as

DE(x, m, c, d) = −
cm

∑
π=1

p(πv0v1···vm−1) · ln(p(πv0v1···vm−1)) (10)

2.2.2. Multiscale Dispersion Entropy

Multiscale Dispersion Entropy (MDE) is the combination of the coarse-graining with dispersion
entropy. In MDE, the original signal x = x1, x2, · · · , xN of length N is first divided into non-overlapping
scale factor τ. Then the new coarse-grained signals can be shown as follows:

x(τ)j =
1
τ

jτ

∑
i=(j−1)τ+1

xi, 1 ≤ j ≤ N/τ (11)

Calculate the entropy value of each coarse-grained signal of length N/τ with dispersion
entropy method:

MDE(x, τ, m, c, d) = DE(x(τ), m, c, d) (12)

2.3. Theory of HMSVM

2.3.1. HMSVM

HMSVM can classify the samples directly. Each type of samples needs only one-hypersphere
training. All training samples are mapped into high-dimension space. Each type of training samples
searches for one hypersphere that has small radius and more target samples. HMSVM classification
model is shown in Figure 1.
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Figure 1. Classification model of HMSVM.

For an M-class problem, a collection of elements Xm (m = 1, 2, . . . , M) is given. Assume that each
Xm contains m-dimension sample xmi, i = 1, 2 . . . lm, which represents i-th element in m-class.

Assign one hypersphere (am,Rm) for each sample Xm, where am is the center of sphere, Rm is the
radius of suprasphere. The objective function of m-th suprasphere can be defined as follows:

min
Rm

(R2
m + Cm

lm
∑

i=1
ξm,i)

s.t.‖Φ(xm,i)− am‖ ≤ R2
m + ξm,i, ξm,i ≥ 0

(13)

where Cm is the penalty factor, representing the trade-off between Rm and target samples. ξm,i is the
slack variable of HMSVM allowing remote samples staying outside the sphere.

Lagrange function can be obtained after Lagrange multiplier is introduced:

L(R, a, ξ, α, γ) = Rm
2 + Cm

lm

∑
i=1

ξmi −
lm

∑
i=1

αi{R2 + ξmi − (
∥∥∥x2
∥∥∥− 2a · xi +

∥∥∥a2
∥∥∥)} − lm

∑
i=1

γiξmi (14)

The derivative operation of Equation (14) is processed to obtain the dual optimization problem
as follows:

min
am

∑
i

∑
j

αm ,iαm,jK(xm,i, xm,j)−
lm

∑
i=1

αm,jK(xm,i, xm,j) (15)

The restricting condition that the target function should satisfy is shown as follows:

lm

∑
i=1

αm,i = 1, 0 ≤ αm,i ≤ Cm (16)

For an unknown fault sample d, we first calculate the square of the distance between d and am

using the formula below:

D2(d) = ‖d− am‖2 = (d · d)− 2
lm

∑
i=1

αi(d · xi) +
lm

∑
i=1

lm

∑
j=1

αiαj(xi · xj) (17)

The radius of the suprasphere is defined as Rm = D(xi), where xi represents the support vector.
Therefore, the category assigned to the unknown sample d can be determined according to the
comparison between Rm and D(d).

2.3.2. Kernel Function Selection

Due to the complexity among different PD fault samples, the spherical distribution will not appear
in low-dimensional space. PD fault samples need to be mapped into high-dimension space using
kernel functions to obtain the optimal hypersphere. In recent time, the common kernel functions
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include radial basic function (RBF) [33], polynomial kernel function and sigmoid function. After
repeating tests, RBF shows outstanding performance. Therefore, RBF is selected as the kernel function
for HMSVM. It can be defined in Equation (18):

K(x, xi) = exp{− |x− xi|2

σ2 } (18)

2.4. PD Fault Diagnosis Based on VMD-MDE and HMSVM

In this paper, the proposed PD fault diagnosis method combines feature extraction and pattern
recognition. Firstly, the original PD signal is decomposed using VMD to obtain the intrinsic mode
functions. Secondly MDE value of each intrinsic mode function is calculated. And then principal
component analysis (PCA) [34] is introduced to select principal components of MDE as PD feature
vectors. Finally, the extracted vectors are sent to HMSVM pattern classifier to recognize different PD
faults. The fault diagnosis procedure is as follows:

Step 1: Extract different types of PD signals in experimental environment, including floating discharge
(FD), needle-surface discharge (ND), ball-surface discharge (BD) and corona discharge (CD).

Step 2: Select proper initial number of IMF according to the center frequency observation and
decompose PD signals using VMD into intrinsic mode functions with different characteristic scales.

Step 3: Calculate the correlation coefficients between each IMF and original PD signal to select effective
IMFs [35,36]. If the coefficient is greater than the threshold value, then keep the IMF as effective one.
Otherwise, abandon the IMF. In this paper, the threshold value of the correlation coefficient is set to 0.3.

Step 4: Fix the decomposition scale for IMF and calculate the MDE value of extracted IMFs as original
PD feature vectors.

Step 5: Analyze the PD vectors by PCA and extract fewer representative principal components as PD
characteristic parameters.

Step 6: Send extracted PD characteristic parameters into HMSVM classifier to diagnose different PD
fault modes and obtain the final diagnosis result.

The flow chart of PD fault diagnosis with proposed method is shown in Figure 2.Entropy 2018, 20, x FOR PEER REVIEW  7 of 18 
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3. Experiments and Analysis

3.1. Experimental Setup

Different PD types can produce different effects in insulation materials, but the range may be
diverse. To analyze the characteristics of different PD types, PD signals of different models are extracted
in the laboratory [37]. According to the inner insulation structure of power transformers, there are
four possible different PD types, including FD, ND, BD and CD. PD models are shown in Figure 3.
The experimental setup is shown in Figure 4.
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PD signals are detected in the simulated transformer tank in the laboratory. The pulse current is
collected by a current sensor with a 500 kHz–16 MHz bandwidth. The UHF signal is extracted by a
UHF sensor with a 10–1000 MHz bandwidth. The signal received is imported into the PD analyzer.
The test condition is shown in Table 1 and the experimental connection diagram is shown in Figure 5.

Table 1. Test condition of PD models.

PD Types Initial Voltage/kV Breakdown Voltage/kV Testing Voltage/kV Sample Number

FD 2 7 3/4 50/50
ND 8.8 12 9/10 50/50
BD 3.5 10 5/6 50/50
CD 4.5 10 6/7 50/50
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3.2. Signal Extraction

In this paper, four different types of PD signals are extracted with above experimental setup.
The extracted PD waveforms are shown in Figure 6.
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4. Results and Analysis

4.1. VMD Decomposition

In this paper, float discharge is taken as an example for VMD decomposition. The number of
IMFs, represented as K, is determined according to the central frequency observation. The central
frequency of IMF with the variation of K is shown in Table 2.

Table 2. Central frequency.

Number of IMFs Central Frequency/MHz

2 0.0079 7.3682
3 0.0073 6.9573 12.3268
4 0.0059 6. 8232 11.9803 13.2581
5 0.0055 6. 8041 12.0256 13.1263 13.3572
6 0.0059 6. 7855 11.7785 13.5579 13.2602 13.9348
7 0.0053 6. 8034 12.1379 13.7877 13.9021 13.9975 14.2814

Table 2 shows that the IMFs with similar central frequency arise from K = 5, which means excessive
decomposition. Therefore K = 4 is selected as the number of IMF. In this paper, the balancing parameter
α = 2000 and bandwidth parameter τ = 0.1. The decomposition results with EMD and VMD are shown
in Figures 7 and 8.
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Figure 7 shows the EMD decomposition results containing IMF components and frequency
spectrum. From the figure we can see that eight IMF components and one remaining component
are obtained. However, the problem of mode mixing occurs in EMD decomposition. Besides, IMF
component in each decomposition level is different from that of original signal. Figure 8 describes the
results of VMD decomposition. It can be seen from this figure that the modal components in VMD
approach to the real signal. Figures 7 and 8 verify the effectiveness of VMD and the superiority over
EMD. It can be concluded that VMD is more suitable for PD signal decomposition.

4.2. IMF Selection

In order to obtain the effective IMF, the correlation coefficient (CC) between each IMF and original
PD signal is calculated. Given a threshold T, if the CC is greater than T, the IMF will be selected as
effective component; otherwise it will be regarded as false component and abandoned. In this work, T
is set to 0.3. The CC values of IMF for VMD and EMD are shown as Table 3.

Table 3. CC values.

u1 u2 u3 u4 u5 u6 u7 u8 u9

VMD 0.6809 0.5129 0.3583 0.0083 - - - - -
EMD 0.7362 0.6035 0.4231 0.3026 0.2092 0.1123 0.0365 0.0086 0.0025

Table 3 shows that the CC value of first three IMFs is larger than the given threshold, which means
these IMFs could represent the real components of PD signals. Therefore, the first three IMFs are
selected and analyzed for VMD decomposition. Similarly, we can see that the CC value is smaller than
the threshold from the fourth IMF, which means these IMFs contain less information of PD signals.
Consequently, the first four IMFs are kept for EMD decomposition.

4.3. Feature Extraction

In this paper four different types of PD signals are decomposed using VMD method. The VMD
decomposition parameters are shown in Table 4. Ks is the number of effective IMFs calculated as
described in Section 4.2.
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Table 4. VMD decomposition parameters.

PD Type K α τ Ks

FD 4 2000 0.1 3
ND 5 2000 0.1 3
BD 4 2000 0.1 4
CD 4 2000 0.1 4

Using the above parameters, the corresponding IMFs of different types of PD are obtained by
VMD decomposition. Then the MDE value of each IMF is calculated. During MDE calculation, some
preset parameters need to be given, including scale factor s, number of classification c, time delay
d and embedded dimension m. But considering that aliasing may occur when d > 1, d is set to 1 as
recommended. In order to avoid the trivial case of only one dispersion pattern, c is set to 2. For better
detection on dynamic change of signals, m is set to 6. To analyze the variation of MDE values with
different scales, s is set to 20. With above parameters, MDE values of four different types of PD signals
extracted in the laboratory are calculated. For each type of PD, MDE values are averaged with different
IMFs, shown in Figure 9.
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Figure 9. MDE variation with scale factors.

Figure 9 shows that different types of PD signals have diverse MDE values with variations of
scale factors. The reason is that the randomness of PD signals is changing when PD fault occurs,
which could change the MDE values. It also indicates that a single scale cannot completely reflect
all the signal information and much more important information distributes in other scales. MDE
can effectively detect the dynamic variation of PD signals which represent the fault characteristics
with different scales. It can be found from the figure that MDE values start to level off after Scale 12.
Therefore, the scale factor is set to 12 in this paper. In the case of FD, MDE values of IMFs using VMD
and EMD are shown in Figure 10.



Entropy 2019, 21, 81 13 of 19

Entropy 2018, 20, x FOR PEER REVIEW  12 of 18 

 

Table 4 VMD decomposition parameters. 

PD Type K α τ Ks 

FD 4 2000 0.1 3 

ND 5 2000 0.1 3 

BD 4 2000 0.1 4 

CD 4 2000 0.1 4 

Using the above parameters, the corresponding IMFs of different types of PD are obtained by 

VMD decomposition. Then the MDE value of each IMF is calculated. During MDE calculation, some 

preset parameters need to be given, including scale factor s, number of classification c, time delay d 

and embedded dimension m. But considering that aliasing may occur when d > 1, d is set to 1 as 

recommended. In order to avoid the trivial case of only one dispersion pattern, c is set to 2. For better 

detection on dynamic change of signals, m is set to 6. To analyze the variation of MDE values with 

different scales, s is set to 20. With above parameters, MDE values of four different types of PD signals 

extracted in the laboratory are calculated. For each type of PD, MDE values are averaged with 

different IMFs, shown in Figure 9. 

 

Figure 9. MDE variation with scale factors. 

Figure 9 shows that different types of PD signals have diverse MDE values with variations of 

scale factors. The reason is that the randomness of PD signals is changing when PD fault occurs, 

which could change the MDE values. It also indicates that a single scale cannot completely reflect all 

the signal information and much more important information distributes in other scales. MDE can 

effectively detect the dynamic variation of PD signals which represent the fault characteristics with 

different scales. It can be found from the figure that MDE values start to level off after Scale 12. 

Therefore, the scale factor is set to 12 in this paper. In the case of FD, MDE values of IMFs using VMD 

and EMD are shown in Figure 10. 

 

Figure 10. MDE values of IMFs using VMD and EMD. Figure 10. MDE values of IMFs using VMD and EMD.

Figure 10 shows that with the variation of scales, MDE values extracted by VMD are different.
However, MDE values extracted by EMD seems to be same with the increase of decomposition scales
which makes it difficult to distinguish different IMFs. The initial FD feature vectors combined with the
MDE of all IMFs using VMD decomposition are shown in Table 5.

Table 5. Initial feature vectors.

IMF Vectors

K1 O1, O2, O3, O4, O5, O6, O7, O8, O9, O10, O11, O12
K2 P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12
K3 Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12
K4 R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12

4.4. PCA-Based Dimension Reduction

Due to the high dimension of extracted feature vectors, it will cause big burden for pattern
classifiers which can directly affect the recognition accuracy. In this paper, the PCA method is
employed for dimension reduction of initial feature vectors. In the case of K1, the covariance matrix is
constructed to obtain the principal components. The eigenvalue and eigenvector of the covariance
matrix are solved for linear transformation of original vectors. To achieve the goal of dimension
reduction, those factors whose eigenvalues are greater than 1 are selected as principal components.
The eigenvalue and corresponding contribution rates of the covariance matrix are shown in Table 6.

Table 6. Eigenvalues and corresponding contribution rates.

Vectors Eigenvalue Contribution Rate/% Accumulated Contribution Rate/%

O1 3.732 66.738 66.738
O2 2.169 25.843 92.581
O3 0.852 3.560 96.141
O4 0.603 1.435 97.576
O5 0.304 1.064 98.64
O6 0.124 0.626 99.266
O7 0.102 0.441 99.707
O8 0.075 0.152 99.859
O9 0.052 0.086 99.945
O10 0.036 0.027 99.972
O11 0.029 0.024 99.996
O12 0.003 0.004 100.00
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Table 6 shows that first two eigenvalues are greater than 1, and the accumulated contribution rate
is larger than 90%. The contribution rate changes with the variation of principle components, shown
in Figure 11.
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It can be concluded from above figure that, the contribution rate from the third principle
component starts to level off. In addition, the contribution rates are decreasing gradually which
can be ignored. Therefore, first two principle components are suitable for further analysis which
represent most of the vector information. To do so, the original 12 indicators are reduced to 2 new ones.
With a similar method, the principle components of K2, K3 and K4 can be obtained, shown in Table 7.

Table 7. Principle components with different IMFs.

IMF KMO Contribution Rate/% Principle Component

K1 0.852 92.581 O1, O2
K2 0.767 88.379 P1, P2
K3 0.734 80.232 Q1, Q2, Q3
K4 0.752 83.368 R1, R2

It can be seen from Table 7 that nine principle components factors are extracted from 48 feature
vectors. And the contribution rate in each IMF is greater than 80%. Given the above, the dimension
of feature vectors is reduced to nine after dimension reduction using PCA. Similarly, with above
procedure, the calculated PD parameters of different PD types are shown in Table 8.

Table 8. Principle components with different IMFs.

PD Type Parameters

K1 K2 K3 K4 K5

FD O1, O2 P1, P2 Q1, Q2, Q3 R1, R2 -
ND O1, O2 P1, P2 Q1, Q2 R1, R2 S1, S2
BD O1, O2, O3 P1, P2 Q1, Q2 R1, R2 -
CD O1, O2 P1, P2, P3 Q1, Q2 R1, R2 -

4.5. PD Pattern Recognition

In this paper, 400 PD samples, including FD, ND, BD and CD, are extracted in the laboratory
containing 100 samples in each PD type. MDE values of four different PD types are calculated and 50
samples in each type constitute the initial feature vectors. To verify the effectiveness and superiority
of the proposed method, the feature extraction methods based on multi-scale sample entropy (MSE)
and multi-scale permutation entropy (MPE) are introduced. The calculation method of MSE and
MPE is similar with that of MDE. Firstly, PD signals are decomposed using EMD or VMD. After that
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MSE or MPE values of extracted IMFs are calculated. Finally, PCA is applied to dimension reduction.
The parameters during signal decomposition are shown in Table 9.

Table 9. Parameters selection.

EMD Decomposition VMD Decomposition

Level Scale Principle Components Number Level Scale Principle Components Number

MSE 4 14 10 3 12 8
MPE 3 10 8 3 10 8
MDE 3 12 9 4 12 9

PD feature vectors extracted with the above three methods are sent to the HMSVM classifier. Due
to the big impact on the fault diagnosis result, HMSVM parameters need optimal configuration with
PSO. In the case of VMD-MDE method, first of all, PD samples are divided into training and testing
samples. After multiple experimental trials, the number of particle population is set to 20, w = 1, c1 = 2,
c2 = 2, the maximum number of iterations N = 200. The penalty parameter C is between 1/n and 1,
while the searching range of the kernel parameter σ is between 1 and 100. The optimum fitness reaches
the maximum value of 96.98% after 19 iterations, when σ = 12.26 and C = 0.35. Similarly, HMSVM
parameters with different feature extraction methods are obtained as follows.

Using the parameters in Table 10, HMSVM classifier is constructed for fault diagnosis of three
different PD features. The recognition results with EMD and VMD decomposition are shown in
Figures 12 and 13.

Table 10. HMSVM parameters.

EMD-MSE EMD-MPE EMD-MDE VMD-MSE VMD-MPE VMD-MDE

C 0.43 0.31 0.27 0.46 0.33 0.35
σ 10.38 11.86 10.19 12.05 9.37 12.26
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Figure 12. Recognition results using EMD decomposition.
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Figure 13. Recognition results using VMD decomposition.

Figures 12 and 13 demonstrate that the recognition result using EMD decomposition is
significantly different with that using VMD decomposition. Figure 12 illustrates that the recognition
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accuracy in each PD type is not less than 80% but no more than 90%, which means, using EMD
decomposition, extracted PD features cannot represent most of signal characteristics. In contrary,
Figure 13 shows that the recognition accuracy in each PD type is no less than 90%. Moreover, in each
PD type, there’s no misjudged sample with MDE. This means that, with VMD decomposition, PD
features can effectively represent most of signal information. Besides, from above two figures, it gets a
satisfactory result with MDE parameters.

To compare the diagnosis results of PD features with different classifiers, artificial neural network
(ANN) [38] and support vector machine (SVM) classifiers are introduced for PD pattern recognition.
In ANN, back-propagation network is employed as the recognition model, which trains the weight
with differentiable nonlinear functions. The classifier parameters are shown in Table 11. σ is the kernel
parameter of RBF and C is the penalty factor in SVM.

Table 11. Parameters of ANN and SVM.

Classifier Type EMD-MSE EMD-MPE EMD-MDE VMD-MSE VMD-MPE VMD-MDE

SVM C 0.25 0.28 0.45 0.44 0.38 0.46
σ 8.39 10.57 8.32 9.18 8.25 10.22

ANN Input 10 8 9 8 8 9
Output 4 4 4 4 4 4

Hidden layer 16 12 14 12 10 12

With the parameters shown in Tables 10 and 11, ANN, SVM and HMSVM classifiers are
constructed for PD pattern recognition. Using diverse classifiers, the recognition result with VMD-MDE
can be seen in Figure 14. Table 12 shows the integrative result using different PD features, in which
running time means the time used for PD fault diagnosis.
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Table 12. Recognition result with different PD features.

Feature
Types

ANN SVM HMSVM

Recognition
Accuracy/%

Running
Time/s

Recognition
Accuracy/%

Running
Time/s

Recognition
Accuracy/%

Running
Time/s

EMD- MSE 86.00 6.88 × 10−4 88.50 6.92 × 10−4 86.50 6.75 × 10−4

EMD- MPE 86.50 3.45 × 10−3 84.00 3.21 × 10−3 86.00 3.51 × 10−3

EMD- MDE 88.00 5.39 × 10−4 90.50 5.36 × 10−4 91.50 1.68 × 10−3

VMD- MSE 95.00 8.16 × 10−4 96.50 7.29 × 10−4 97.50 7.80 × 10−4

VMD- MPE 98.00 7.45 × 10−4 97.50 7.12 × 10−4 99.00 7.42 × 10−4

VMD- MDE 98.00 5.36 × 10−4 99.00 5.32 × 10−4 100.00 5.27 × 10−4

As can be illustrated in Figure 14, using the same PD feature extraction method, the recognition
results with different classifiers are significantly different. The average classification accuracy achieved
using HMSVM is 100.00%. HMSVM shows great advantages over ANN and SVM. Table 12 shows
diverse diagnostic results with different PD features. Compared with different PD feature types,
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VMD-MDE gives less running time and higher recognition accuracy. It means parameters using
VMD-MDE can represent most of PD signal components. The quadratic programming calculation of
HMSVM is less than that of SVM, which causes shorter training and testing time. In addition, HMSVM
shows better classification ability than other two classifiers, ANN and SVM.

5. Conclusions

In this paper, a novel PD fault diagnosis method is proposed. This method combines PD feature
extraction based on VMD-MDE and PD pattern recognition based on HMSVM. First of all, four types of
PD signals are extracted in the experimental environment, including FD, ND, BD and CD. Then VMD
is employed for PD signal decomposition. Secondly, proper IMFs are selected according to central
frequency observation and MDE values in each IMF are calculated. Afterwards PCA is introduced
to select effective principle components in MDE as final PD characteristic parameters. Finally, the
extracted principle factors are used as PD features and sent to the HMSVM classifier. Experiment
results show the following advantages: the proposed method can extract effective IMFs according to
VMD decomposition. PD feature information in IMFs can be quantified successfully with MDE. Using
PCA, the principle components which represent prominent characteristics are effectively selected.
With small data size and low computational complexity, this approach overcomes the limitations in
traditional PD feature extraction methods. Compared with PD feature extraction methods based on
EMD-MSE, EMD-MPE, EMD-MDE, VMD-MSE and VMD-MPE, this proposed approach based on
VMD-MDE achieves higher recognition accuracy and needs less running time, which can improve the
diagnosis efficiency to satisfy real time requirements.

HMSVM uses one hypersphere for pattern recognition. HMSVM can not only separate two
different classes, but also divide the sample space into two different parts. Using HMSVM,
the classification of multi-classes was realized directly. Compared with ANN and SVM classifiers,
HMSVM obtains higher recognition rate and improves the accuracy and efficiency in PD fault diagnosis.
On the whole, this proposed method provided a new scheme for PD fault diagnosis. For further
consideration, the proposed fault diagnosis method can be employed in PD on-line monitoring
and diagnosis.
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