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Abstract: In quantum Shannon theory, transmission of information is enhanced by quantum features.
Up to very recently, the trajectories of transmission remained fully classical. Recently, a new paradigm
was proposed by playing quantum tricks on two completely depolarizing quantum channels i.e.,
using coherent control in space or time of the two quantum channels. We extend here this control
to the transmission of information through a network of an arbitrary number N of channels with
arbitrary individual capacity i.e., information preservation characteristics in the case of indefinite
causal order. We propose a formalism to assess information transmission in the most general case
of N channels in an indefinite causal order scenario yielding the output of such transmission. Then,
we explicitly derive the quantum switch output and the associated Holevo limit of the information
transmission for N = 2, N = 3 as a function of all involved parameters. We find in the case N = 3 that
the transmission of information for three channels is twice that of transmission of the two-channel
case when a full superposition of all possible causal orders is used.

Keywords: quantum control; indefinite causal order; quantum switch; Holevo information

1. Introduction

In information theory, the main tasks to perform are the transmission, codification,
and compression of information [1]. Incorporating quantum phenomena, such as quantum
superposition and quantum entanglement, into classical information theory gives rise to a new
paradigm known as quantum Shannon theory [2]. In this paradigm, each figure of merit can be
enhanced: the capacity to transmit information in a channel is increased [3], the security to share a
message is improved [4], and the storing and compressing of information is optimized [5]. In all these
enhancements, only the carriers and the channels of information are considered as quantum entities.
On the other hand, connections between channels are still classical, that is, quantum channels are
connected setting a definite causal order in space or time. However, principles of quantum mechanics
and specifically the quantum superposition principle can be applied to the connections of channels [6],
i.e., the trajectories either in space [7] or time [8].

Recently, it has been theoretically [9] and experimentally [10,11] shown that two completely
depolarizing channels can surprisingly transmit classical information when combined under an
indefinite causal order (i.e., when the order of application of the two channels is not one after another
instead of a quantum superposition of the two possibilities). In this paper, we tackle the general

Entropy 2019, 21, 1012; doi:10.3390/e21101012 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-9809-6746
http://www.mdpi.com/1099-4300/21/10/1012?type=check_update&version=1
http://dx.doi.org/10.3390/e21101012
http://www.mdpi.com/journal/entropy


Entropy 2019, 21, 1012 2 of 19

situation of an arbitrary number N of channels with arbitrary parameters associated with the control
and depolarizing strength. As N is greater than two, the number of different causal orders increases
as N!

The indefiniteness of causal order has been recently theoretically proposed as a novel resource
for applications to quantum information theory [12,13] and quantum communication [14,15]. Initially,
indefinite causal orders have been studied and implemented using two parties with the proposal
of a quantum switch by Chiribella et al. [6] followed by experimental demonstrations [11,16–19].
The quantum switch is an example of quantum control where a switch can, like its classical counterpart,
routes a target system to undergo through two operators in series following one causal order (1 then 2)
or the other (2 then 1). However, this quantum switch can also trigger a whole new quantum trajectory
where the ordering of the two operators is indefinite. Efforts to describe the quantum switch in a
multipartite scenario of more than two quantum operations have recently started [20,21] with an
application to reduce the number of queries for quantum computation [13].

Specifically, in a quantum N-switch used in a second-quantized Shannon theory context [22],
the order of application of N channels Nj on a target system ρ is coherently controlled by a control
system ρc. The state of ρc encodes for the temporal combination of the N channels applied to ρ.
There are N! different possibilities of definite causal orders using each channel once and only once,
as sketched in Figures 1 and 2 for N = 2 and N = 3, respectively. In those figures, when the wiring
passes through the channel, there is a single channel use, i.e., the target system passes once through
one physical channel [16]. We discard all wirings with multiple uses of the same channel and missing
channels [7]. For each causal order of channels, the overall operator is

Nπ := π(N1 ◦ · · · ◦ NN), (1)

where π is a permutation element of the symmetric group SN = {πk|k ∈ {1, 2, . . . , N!}}, and k is
associated with a specific definite causal order (equivalent to a single element of SN) to combine the N
channels where each channel is used once and only once.

Figure 1. Concept of the quantum 2-switch. Ni = N D
qi

is a depolarizing channel applied to the
quantum state ρ, where 1− qi is the strength of the depolarization. For two channels, depending on the
control system ρc, there are 2! possibilities to combine the channels with definite causal order: (a) if ρc

is in the state |1〉 〈1|, the causal order will be N2 ◦ N1, i.e., N1 is before N2; (b) on the other hand, if ρc

is on the state |2〉 〈2|, the causal order will be N1 ◦ N2; (c) however, placing ρc in a superposition of its
states (i.e., ρc = |+〉 〈+|, where |+〉c = 1√

2
(|1〉+ |2〉)) results in the indefinite causal order of N1 and

N2 to become indefinite. In this situation, we said that the quantum channels are in a superposition
of causal orders. This device is called a quantum 2-switch [6] whose input and output are ρ⊗ ρc and
S(N1,N2)(ρ⊗ ρc), respectively.
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In a quantum N-switch, the control state ρc in the state |1〉 〈1| for instance fixes the order of
application of the channels to be NId = N1 ◦ N2 ◦ · · · ◦ NN , whereas choosing ρc = |k〉 〈k|, k ≤ N!
would assign another ordering Nπk = Nπk(1) ◦ Nπk(2) ◦ · · · ◦ Nπk(N) (defined by the effect of the
permutation element πk ∈ SN on the order of channels). The key to accessing indefinite causal order
of the channels is thus to put ρc in a superposition of the |k〉 〈k| states (e.g., ρc = |+〉 〈+| where
|+〉 ≡ 1√

N! ∑ |k〉).

Figure 2. Concept of the quantum 3-switch. For three channels, depending on ρc, we have 3! possibilities to
combine the channels in a definite causal order: (a) ρc = |1〉 〈1| encodes a causal order N1 ◦ N2 ◦ N3, i.e., N3 is
applied first to ρ; (b) ρc = |2〉 〈2| encodes N1 ◦ N3 ◦ N2; (c) ρc = |3〉 〈3| encodes N2 ◦ N1 ◦ N3; (d) ρc = |4〉 〈4|
encodes N2 ◦ N3 ◦ N1; (e) ρc = |5〉 〈5| encodes N3 ◦ N1 ◦ N2; (f) ρc = |6〉 〈6| encodes N3 ◦ N2 ◦ N1; (g) finally,
if ρc = |+〉 〈+|, where |+〉 = 1√

6 ∑6
k=1 |k〉 we shall have a superposition of six different causal orders. This is an

indefinite causal order called quantum 3-switch whose input and output are ρ⊗ ρc and S(N1,N2,N3)(ρ⊗ ρc),
respectively. Notice that, for each superposition with m different causal orders, there are (N!

m ) (with m = 1, 2, . . . , 6 )
possible combinations of causal orders to build such superposition with N = 3 channels, where (n

r) =
n!

r!(n−r)! is the
binomial coefficient. The input and output of each channel are fixed. The arrows along the wire just indicate that
the target system enters in or exits from the channel.

The paper is organized as follows: Section 2 is devoted to the general theoretical framework for
the investigation of the transmission of classical information over N noisy channels with an arbitrary
degree of depolarization, i.e., arbitrary level of noise. Section 2 also gives the channels representation in
terms of Kraus operators performed from those operators for a single depolarizing channel. In Section 3,
following the previous formalism, we explicitly analyze the case N = 2, generalizing the outcomes
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in the literature [9] to any degree of depolarization and level of coherent control. Similarly, the case
N = 3 is developed in the same section. Finally, conclusions and perspectives are given in Section 5.

2. Transmission over Multiple Channels in Quantum Superposition of Causal Order

In the current development, the sender prepares the target system in the state ρ, where the
information to transmit is encoded. A control system ρc is associated with the target system to
coherently control the causal order for the application of N quantum communication channels.
We relate the basis for the quantum state ρc mapping their elements on those of the symmetric
group of permutations SN : 1

N! ∑k,k′ |k〉〈k′|. Then, the sender introduces as input ρ⊗ ρc to a network
of N partially depolarizing channels Ni = N D

qi
, 1 ≤ i ≤ N applied in series (i.e., the output of one

channel becomes the input of the next channel). Throughout this work, the N depolarizing channels
N1, N2, . . ., NN can have different depolarization strengths 1− qj, (thus, N D

qj
is sometimes used for Nj

to improve the readability).
After the network, the receiver gets the output state S(N1,N2, . . . ,NN)(ρ ⊗ ρc), where S is

the quantum N-switch channel. No information is encoded by the sender into the control system
controlling the way information is transmitted. Eventually, the receiver retrieves the information
decoded in ρ.

Communication quantum channels in a network are mathematically described with completely
positive trace preserving maps (CPTP). Here, we adopt the Kraus decomposition [2] N(ρ) = ∑i KiρK†

i
to describe the action of a total depolarizing channel N on the quantum state ρ (i ∈ {1, 2, . . . , d}):
Nρ = Tr[ρ] Id . The set of d2 non-unique and generally non-unitary Kraus operators {Ki} satisfies the

completeness condition ∑d2

i=1 KiK†
i = I. Thus, to describe the action of the j-th partially depolarizing

channel Nj on a d-dimensional quantum system ρ, we write as in [9]

N D
qj
(ρ) = qjρ + (1− qj)Tr[ρ]

It

d
= qjρ +

1− qj

d2

d2

∑
ij=1

U j
ij

ρU j†
ij

=
1− qj

d2

d2

∑
ij=0

U j
ij

ρU j†
ij

, (2)

where each Nj = N D
qj

is thus decomposed on an orthonormal basis {U j
ij
}|d2

ij=1. Then, we define

K j
ij
=

√
1−qj
d U j

ij
for ij 6= 0, where the added non-unitary operator U j

0 =
d√qj√

1−qj
It, for ij = 0. In addition,

Nj has no noise when qj = 1. On the other hand, Nj is completely depolarizing when qj = 0.
The results reported in [7,9] are mainly related to two completely depolarizing (q1 = q2 = 0) channels
N1 and N2, despite the fact that generalization is outlined. Below, we extend the results from [9] to the
case of a quantum switch with N channels Nj with arbitrary individual depolarization strengths qj.

The Formalism for a Quantum N-Switch Channel S(N1,N2, . . . ,NN)

We define the control state ρc as ρc = |ψc〉 〈ψc| = ∑N!
k,k′=1

√
PkPk′ |k〉 〈k′|, where Pk is the probability

to apply the causal order k (corresponding to the permutation πk as it was previously stated) to the
channels such that ∑N!

k=1 Pk = 1.
The action of the quantum N-switch channel S(N1,N2, . . . ,NN) can be expressed through

generalized Kraus operators Wi1i2 ...iN for the full quantum channel resulting from the switching
of N channels as

S(N1,N2, . . . ,NN) (ρ⊗ ρc) = ∑
{ij}|Nj=1

Wi (ρ⊗ ρc )W†
i , (3)

where Wi := Wi1i2 ...iN = ∑N!
k=1 Kπk ⊗ |k〉 〈k| and Kπk has been defined similarly to Equation (1): Kπk :=

πk(K1
i1
· · ·KN

iN
), where πk acts on the index j, and the sum over {ij}|Nj=1 means all ij associated with
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each channel Nj vary from 0 to d2. We verify (see Appendix A) that these generalized Kraus operators
satisfy the completeness property ∑{ij}|Nj=1

WiW†
i = It ⊗ Ic, where identity operators in the target and

control systems spaces are denoted It and Ic, respectively. This check of completeness suggests how
the ij indices allow the systematic reordering of the sums by isolating and grouping the ij = 0 cases.
To distinguish those terms, we introduce the number z of indices ij equal to zero. The sums over the
indices ij can then be rearranged as

∑
{ij}|Nj=1

→
N

∑
z=0

∑
Az∈AN

z

∑
b∈Bz

, (4)

where Az is the set of z indices equal to zero (ia = 0, ∀a ∈ Az) and Bz is the complementary set
of indices in {1, 2 . . . , N} : ib 6= 0, ib ∈ {1, 2, . . . , d2} for all b ∈ Bz. Then, Uπk U†

πk
= d2zhAzIt,

where hAz = ∏a∈Az
qa

1−qa
and hA0 = 1.

Introducing the Kraus operators Wi into S(N1,N2, . . . ,NN), Equation (3) can be written as a sum
of N + 1 matrices Sz whose N!× N! elements are matrices of dimension d× d involving exactly z
factors Uij equal to the identity operator. The overall dimension Sz is thus dN!× dN!

S(N1,N2, . . . ,NN) (ρ⊗ ρc) =
N

∑
z=0
Sz, (5)

and (see Appendices A and B)

Sz =
N!

∑
k,k′=1

√
PkPk′ ∑

Az∈AN
z

fAz ·Q
k,k′
Az
⊗ |k〉

〈
k′
∣∣ (6)

with

fAz = d2(z−N)
N

∏
j=1

(1− qj) ∏
a∈Az

qa

1− qa
,

where AN
z is the collection of all possible subsets Az of z subscripts in {1, 2, . . . , N} corresponding to

the z indices equal to zero (i.e., ia = 0 ∀a ∈ Az). The following subsections provide details of examples
with N = 2 and N = 3. The coefficients Qk,k′

Az
are given by

Qk,k′
Az

= ∑
{ib |b∈Bz}

πk
(
Ui1 · · ·UiN

)
ρ
[
πk′
(
Ui1 · · ·UiN

)]† . (7)

The U j
ij

of Equation (2) have been simplified in Uij . We can see from Equation (7) that the elements

of the matrix S(N1,N2, . . . ,NN) (ρ⊗ ρc) will always be a linear combination of ρ and It, whatever
N channels. Note also the operators Uij for j ∈ Az are identity operators It by construction. Thus,
arguments Ui1 · · ·UiN under πk in Equation (7) involves N elements, z of them in Az and N − z in Bz.
The matrix S and the pivotal Equations (5)–(7) contain all information about the correlations between
precise causal orders coherently controlled by ρc and the output of the quantum switch. S is a function
of several parameters: the involved causal orders πk via the probabilities Pk, the depolarization
strengths qi’s of each individual channel Ni, the dimension d of the target system undergoing the
operations of those channels, and the number of channels N. Notably, the sum over k and k′ in
Equation (6) can be restricted to a subset of definite causal orders via the probabilities Pk, i.e., a subset
of superposition of m causal orders among the N! existing ones for advanced quantum control.
This handle had remained unexplored up to now. It was not accessible to former explorations limited
to two channels. In the current work, we consider only superpositions of all causal orders. The control
of causal orders will be presented elsewhere.
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In the following subsections, we will give the explicit expressions of the quantum switch
matrices for the quantum N-switch channel for N = 2 and N = 3. We access these matrices of
the quantum N-switch channel via the systematic ordering of the terms in Equations (3) as settled in
Equations (5)–(7).

The explicit calculation of the quantum N-switch channel gives important insights on the
transmission of information coherently controlled by ρc in a fascinating multi-parameter space.
We briefly review below some of the intriguing behaviors associated with the parameters exploration
in the N = 2 and the N = 3 cases. We show indeed in those cases how the nature and number of the
causal orders in the control state superposition, the dimension of the target system, and the level of
noise all play a role. We underline that the N = 3 case is still untouched experimentally.

To derive Equation (6) for particular cases of N, we first introduce the definitions of Wi and ρc

into Equation (3). Introducing the definitions of the Kraus operators in terms of U j
ij

operators and
applying the same reordering on the sums as in Equation (4) leads to Equation (6). In the following
subsection, specific developments for N = 2 and N = 3 to evaluate the Qk,k′

Az
are given simplifying

Qk,k′
Az

in Equation (7) by following the relations presented in Appendix B (Equations (A4)–(A6)).

3. The Quantum Switch Matrices for N = 2 and N = 3

To show the usefulness of Equations (6), we derive general expressions to investigate the
transmission of information through two and three channels in an indefinite causal order. Our method
can be easily applied to any number of depolarizing channels provided that {Ui}d2

i=1 are unitary
operators setting an orthonormal basis for the space of d× d matrices.

3.1. Evaluation of S for N = 2

To explicitly evaluate Equation (5) with two channels, we identify the two permutations in S2 :
π1 =

(
1 2
1 2

)
and π2 =

(
1 2
2 1

)
. Equation (5) for the quantum 2-switch channel matrix acting on the input

state ρ⊗ ρc writes
S(N1,N2)(ρ⊗ ρc) = S0 + S1 + S2. (8)

The collection of all subsets of subscripts in {1, 2} are A2
0 = {∅}, A2

1 = {{1}, {2}} and A2
2 =

{{1, 2}}. Then, the corresponding complementary collections are B2
0 = {{1, 2}}, B2

1 = {{2}, {1}} and
B2

2 = {∅}.
Coefficients for S0. In this case, we use A2

0 = {∅} to calculate the coefficients Qk,k′
∅ , k, k′ ∈ {1, 2}.

The Qk,k′
∅ then reads

Q1,1
∅ = ∑i1,i2 π1(Ui1Ui2)ρπ1(Ui1Ui2)

†

= ∑i1,i2(Ui1Ui2)ρ(U
†
i2

U†
i1
)

= d ∑i1,i2 Ui1U†
i1
= d3I.

Q1,2
∅ = ∑i1,i2 π1(Ui1Ui2)ρπ2(Ui1Ui2)

†

= ∑i1,i2(Ui1Ui2)ρ(U
†
i1

U†
i2
)

= d ∑i1, Ui1 tr(ρU†
i1
) = d2ρ,

(9)

where we have used Equations (A4) and (A6) for Q1,1
∅ , Equation (A4) with X = Ui2 ρ and

Equation (A5) for Q1,2
∅ . Likewise, we have Qα,α′

∅ = d3I, for (α, α′) ∈ A ≡ {(1, 1), (2, 2)} and

Qβ,β′

∅ = d2ρ, for (β, β′) ∈ B ≡ {(1, 2), (2, 1)}. Then, we may write

S0 = ∑
(α,α′)∈A

r0I
d

√
PαPα′ ⊗ |α〉〈α′|+ ∑

(β,β′)∈B

r0ρ

d2

√
PβPβ′ ⊗ |β〉〈β′|, (10)

where r0 = p1 p2 with pi = 1− qi.
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Coefficients for S1. In this case, A2
1 = {{1}, {2}} and B2

1 = {{2}, {1}}. Let us first consider

the coefficient Qγ,γ′

{1} = ∑i2 πγ(I ·Ui2)ρπγ′(I ·Ui2)
† = dI, using the general relations (A4)–(A6), for

(γ, γ′) ∈ G ≡ {(1, 1), (1, 2), (2, 1), (2, 2)}. Since indices are dumb, it can be shown that Qγ,γ′

{2} = Qγ,γ′

{1}
for all (γ, γ′). Then, the term S1 can be written as

S1 = ∑
k,k′

r1

d

√
PkPk′I⊗ |k〉〈k′| =

r1

d
I⊗ ρc, (11)

where r1 = q1 p2 + q2 p1.
Coefficients for S2. Finally, let us consider the term S2. In this case A2

2 = {{1, 2}} and hence
B2

2 = {∅}. Note that Qk,k′
{1,2} = ρ for all k and k′. Thus, the term with z = 2 reads

S2 = ∑
k,k′

r2ρ
√

PkPk′ ⊗ |k〉〈k′| = r2ρ⊗ ρc, (12)

with r2 = q1q2. By expanding the matrices S0, S1 and S2 in the control qubit basis, {|1〉 , |2〉}, we are
able to write

S0 =

(
r0
d IP1

r0ρ

d2

√
P1P2

r0ρ
d2

√
P2P1

r0
d IP2

)
,

S1 =

(
r1
d IP1

r1
d I
√

P1P2
r1
d I
√

P2P1
r1
d IP2

)
,

S2 =

(
r2ρP1 r2ρ

√
P1P2

r2ρ
√

P2P1 r2ρP2

)
,

(13)

where I = It. Summing those matrices according to Equation (5), we find that the quantum 2-switch
channel matrix S(N1,N2) has diagonal elements ak = Pk[(r0 + r1)I/d + r2ρ], for k = 1, 2 and
off-diagonal elements b =

√
P1P2[(r0 + d2r2)ρ/d2 + r1

d I], with r0 = p1 p2, r1 = q1 p2 + q2 p1 and
r2 = q1q2. Thus,

S(N1,N2)(ρ⊗ ρc) =

(
a1 b
b a2

)
. (14)

Note that the diagonal and off-diagonal elements a1, a2 and b are matrices and are linear
combinations of matrices ρ and It. This property is non-unique for case N = 2; instead, it is general for
N channels, an advisable aspect from Equation (7) and Equations (A4) and (A5). Indeed, Equation (14)
gives as particular outputs the predicted Holevo capacity of Figure 3 in [10] and expressions of Holevo
information in [9].

We end up this subsection stressing that Figure 1 sketches different ways to connect channels N1

and N2 in either (a) and (b) a definite causal order and (c) for an indefinite causal order combining the
2! possible orders.

3.2. Evaluation of S for N = 3

In this section, we explicitly evaluate expression (5) considering three channels. Let us label the six
elements of S3 according to the following set of permutations π1 =

(
1 2 3
1 2 3

)
, π2 =

(
1 2 3
1 3 2

)
, π3 =

(
1 2 3
2 1 3

)
,

π4 =
(

1 2 3
2 3 1

)
, π5 =

(
1 2 3
3 1 2

)
and π6 =

(
1 2 3
3 2 1

)
. Equation (5) for the quantum 3-switch channel matrix

acting on input state ρ⊗ ρc reads

S(N1,N2,N3) (ρ⊗ ρc) = S0 + S1 + S2 + S3. (15)
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Coefficients for S0. In this case, note that A3
0 = {∅}, hence B3

0 = {{1, 2, 3}}. In addition, the sum in
Q1,k′

∅ is over the indices {i1, i2, i3}. These can be computed explicitly

Q1,1
∅ = ∑

i1,i2,i3

π1(Ui1Ui2Ui3)ρπ1(Ui1Ui2Ui3)
† = d5I. (16)

Likewise,
Q1,4

∅ = ∑
i1,i2,i3

π1(Ui1Ui2Ui3)ρπ4(Ui1Ui2Ui3)
† = d4ρ. (17)

The remaining coefficients for S0 are

Q1,2
∅ = ∑i1,i2,i3 π1(Ui1Ui2Ui3)ρπ2(Ui1Ui2Ui3)

†

= ∑i1,i2,i3(Ui1Ui2Ui3)ρ(U
†
i2

U†
i3

U†
i1
)

= d ∑i1,i3 Ui1 Tr(Ui3 ρ)U†
i3

U†
i1
= d2 ∑i1 Ui1 ρU†

i1
= d3I,

Q1,3
∅ = ∑i1,i2,i3 π1(Ui1Ui2Ui3)ρπ3(Ui1Ui2Ui3)

†

= ∑i1,i2,i3(Ui1Ui2Ui3)ρ(U
†
i3

U†
i1

U†
i2
)

= d ∑i1,i2 Ui1Ui2IU
†
i1

U†
i2
= d2 ∑i1 Tr(Ui2I)U

†
i2

= d3I,
Q1,5

∅ = ∑i1,i2,i3 π1(Ui1Ui2Ui3)ρπ5(Ui1Ui2Ui3)
†

= ∑i1,i2,i3(Ui1Ui2Ui3)ρ(U
†
i2

U†
i1

U†
i3
)

= d ∑i1,i3 Ui1 Tr(Ui3 ρ)U†
i1

U†
i3
= d3 ∑i3 Tr(Ui3 ρ)U†

i3
= d4ρ,

Q1,6
∅ = ∑i1,i2,i3 π1(Ui1Ui2Ui3)ρπ6(Ui1Ui2Ui3)

†

= ∑i1,i2,i3(Ui1Ui2Ui3)ρ(U
†
i1

U†
i2

U†
i3
)

= d ∑i1,i3 Ui1 Tr(Ui3 ρU†
i1
)U†

i3
= d2 ∑i1 Ui1 ρU†

i1
= d3I.

(18)

The coefficients Qk,k′
∅ with k ≥ 2 can be computed using these expressions from Equations (18).

For instance, consider the following

Q2,6
∅ = ∑

i1,i2,i3

π2(Ui1Ui2Ui3)ρπ6(Ui1Ui2Ui3)
† = ∑

i1,i2,i3

(Ui1Ui3Ui2)ρ(U
†
i1U†

i2U†
i3), (19)

which is equivalent to expression Q1,4
∅ because the indices i’s are dumb. Thus, one can calculate

explicitly the remaining coefficients. Results are thus summarized in the following list:

Qi,i′
∅ = d3I, ∀ (i, i′) ∈ I ≡ {(1, 6), (2, 4), (3, 5), (4, 2),

(1, 2), (2, 1), (3, 4), (4, 3), (5, 6),
(6, 5), (5, 3), (6, 1), (1, 3), (2, 5),
(3, 1), (4, 6), (5, 2), (6, 4)},

Qj,j′

∅ = d4ρ, ∀ (j, j′) ∈ J ≡ {(1, 4), (2, 6), (3, 2), (4, 5),
(5, 1), (6, 3), (1, 5), (2, 3), (3, 6),
(4, 1), (5, 4), (6, 2)},

Qk,k′
∅ = d5I, ∀ (k, k′) ∈ K ≡ {(1, 1), (2, 2), (3, 3),

(4, 4), (5, 5), (6, 6)}.

(20)
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After calculating all these coefficients, we obtain

S0 = ∑
(i,i′)∈I

s0

d3 I
√

PiPi′ ⊗ |i〉〈i′|+ ∑
(j,j′)∈J

s0ρ

d2

√
PjPj′ ⊗ |j〉〈j′|

+ ∑
(k,k′)∈K

s0

d
I
√

PkPk′ ⊗ |k〉〈k′|,
(21)

where s0 = p1 p2 p3.
Coefficients for S1. In this case A3

1 = {{1}, {2}, {3}} and B3
1 = {{2, 3}, {1, 3}, {1, 2}}. Let us

first consider the coefficient Qk,k′
{1}, so that sum must be accomplished over the indices {i2, i3}, hence

Qk,k′
{1} = ∑i2,i3 πk(I ·Ui2 ·Ui3)ρπk′(I ·Ui2 ·Ui3)

†. Using the relations (A4)–(A6), we obtain

Q`,`′
{1} = d2ρ, ∀ (`, `′) ∈ L1 ≡ {(2, 3), (3, 2), (2, 4), (4, 2),

(3, 5), (5, 3), (3, 6), (6, 3), (4, 5),
(5, 4), (4, 6), (6, 4), (5, 1), (1, 5),
(1, 2), (2, 1), (1, 6), (6, 1)},

Qm,m′
{1} = d3I, ∀ (m, m′) ∈M1 ≡ {(1, 1), (2, 2), (3, 3), (4, 4),

(5, 5), (6, 6), (1, 3), (1, 4), (4, 1)
(3, 1), (2, 5), (5, 2), (2, 6), (6, 2),
(3, 4), (4, 3), (5, 6), (6, 5)},

(22)

Q`,`′
{2} = d2ρ, ∀ (`, `′) ∈ L2 ≡ {(1, 4), (1, 5), (1, 6), (2, 4),

(2, 5), (2, 6), (3, 4), (3, 5), (3, 6)
(4, 1), (4, 2), (4, 3), (5, 1), (5, 2),
(5, 3), (6, 1), (6, 2), (6, 3)},

Qm,m′
{2} = d3I, ∀ (m, m′) ∈M2 ≡ {(1, 1), (1, 2), (1, 3), (2, 1),

(2, 2), (2, 3), (3, 1), (3, 2), (3, 3)
(4, 4), (4, 5), (4, 6), (5, 4), (5, 5),
(5, 6), (6, 4), (6, 5), (6, 6)},

(23)

Q`,`′
{3} = d2ρ, ∀ (`, `′) ∈ L3 ≡ {(1, 3), (1, 4), (1, 6), (2, 3),

(2, 4), (2, 6), (3, 1), (3, 2), (3, 5)
(4, 1), (4, 2), (4, 5), (5, 3), (5, 4),
(5, 6), (6, 1), (6, 2), (6, 5)},

Qm,m′
{3} = d3I, ∀ (m, m′) ∈M3 ≡ {(1, 1), (1, 2), (1, 5), (2, 1),

(2, 2), (2, 5), (3, 3), (3, 4), (3, 6)
(4, 3), (4, 4), (4, 6), (5, 1), (5, 2),
(5, 5), (6, 3), (6, 4), (6, 6)}.

(24)

Hence, the matrix S1 can be computed

S1 =
1
d2

3

∑
s=1

tsd ∑
(`,`′)∈Ms

√
P`P`′ I⊗ |`〉〈`′| +ts ∑

(m,m′)∈Ls

√
PmPm′ ρ⊗ |m〉〈m′|

 , (25)

where t1 = p2 p3q1, t2 = p1 p3q2 and t3 = p1 p2q3.
Coefficients for S2. In this case, A3

2 = {{1, 2}, {1, 3}, {2, 3}} and hence B3
2 = {{3}, {2}, {1}}.

Let us consider
Qk,k′
{2,3} = ∑

i1

πk(Ui1 · I · I)ρπk′(Ui1 · I · I)
† = dI,
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where the operators I have been written for the sake of clarity as the permutations πk act on sets of
three elements. In a similar way, Qk,k′

{1,3} = Qk,k′
{1,2} = dI. Thus, we obtain

S2 = p1 p2 p3
d2 ∑k,k′

√
PkPk′

(
q2q3
p2 p3

Qk,k′
{2,3}

+ q1q3
p1 p3

Qk,k′
{1,3} +

q1q2
p1 p2

Qk,k′
{1,2}

)
⊗ |k〉〈k′| = s2

d I⊗ ρc

(26)

where s2 = q1q2 p3 + q1q3 p2 + q2q3 p1.
Coefficients for S3. Finally, note that Qk,k′

{1,2,3} = ρ for all k and k′. Thus, the term with z = 3 reads

S3 = s3 ∑
k,k′

√
PkPk′ρ⊗ |k〉〈k′| = s3ρ⊗ ρc, (27)

where s3 = q1q2q3 and uses the definition of the control qudit.
For three channels, Figure 2 shows different ways to connect channels N1, N2 and N3 in either

(a)–(f) a definite causal order, or (g) in an indefinite causal order taking into account all 3! causal orders.
The quantum 3-switch matrix is again calculated with Equation (5) (see Appendix C)

S(N1,N2,N3)(ρ⊗ ρc) =



A1 B C D E F
B A2 G H I J
C G A3 K L M
D H K A4 N P
E I L N A5 Q
F J M P Q A6


, (28)

where the diagonal and the off-diagonal elements whose expressions are given in Appendix C are also
linear combinations of matrices ρ and It. From the definition of symmetric matrices [23], we can see
that the quantum switch matrices (14) and (28) are block-symmetric matrices with respect to the main
diagonal. This could be seen as general from the fact Qk,k′

Az
= Qk′ ,k

Az
due to Equations (6) and (7) because

indices in the sums are dumb. Thus, as the number of channels increases, the number of different
d× d matrices involved in the quantum N-switch matrix S scales as N!(N! + 1)/2. Notice that those
matrices also characterize information transmission of any definite causal ordering πk of channels Nπk

when setting Pk = 1 and Ps = 0 for all s 6= k.
Matrices in Equation (14) or (28) are written in the basis of the control system ρc which maps and

weights the chosen causal orders. To know the best rate to communicate classical information with
two and three channels, in the following section, we diagonalize matrices (14) and (28) to compute
the Holevo information limit χ, which quantifies how much classical information can be transmitted
through a channel in a single use. χ gives a lower bound on the classical capacity [3,7,24].

4. Holevo Information Limit for Two and Three Channels

We compute the Holevo information limit (Holevo information for shortness in the following)
χ(S) for N = 2 and N = 3 channels through a generalization of the mutual information (see for
example [25]) and supplementary information of [9]. The Holevo information χ(S) is found by
maximizing mutual information, and it can be shown that maximization over the ρ pure states is
sufficient [25]. The Holevo information is then given by

χQNS
(
S
)
= log d + H(ρ̃

(N)
c )− Hmin(S), (29)

where d is the dimension of the target system ρ, H(ρ̃
(N)
c ) is the von-Neumann entropy of the output

control system ρ̃
(N)
c for N channels, and Hmin(S) is the minimum of the entropy at the output of the
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channel S . The minimization of Hmin(S) ≡ min
ρ

Hmin(S(ρ)) is over all input states ρ going on the

channel S [25]. To evaluate Equation (29):

1. The diagonalization and minimization of Hmin(S) is performed on all possible states given by ρ.
It is done analytically for N = 2 channels and arbitrary qi. For N = 3 channels, we compute the
eigenvalues of the full quantum 3-switch matrix S(N1,N2,N3) (ρ⊗ ρc) numerically.

2. ρ̃
(N)
c was analytically calculated following [9].

3. We deduce H(ρ̃
(N)
c ) from the analytical expressions of ρ̃

(N)
c .

4.1. Holevo Information Limit for N = 2 Channels

4.1.1. Calculation of Hmin

We calculate the minimum output entropy Hmin(S) of the channel S ≡ S(N1, . . . ,NN)

Hmin(S) ≡ min
ρ

Hmin(S(ρ)) = min
ρ

∑
i
−λS(ρ),ilog[λS(ρ),i],

where the minimization is a priori over all input states ρ and {λS(ρ),i}d
i=1 are the eigenvalues of S(ρ).

In fact, it is sufficient to minimize over the states [25] and the eigenvalues {λρ,i}d
i=1 sum up to 1.

As Hmin(S(ρ)) is concave, the minimization is done as in Reference [9] : the eigenvalues {λS(ρ),i}d
i=1

are taken at the border of the interval [0, 1]×d and, as they sum up to one, the minimization is simplified
to the cases where all λ but one are set to zero, and the last one is equal to 1.

In this situation, S(N1,N2) (ρ⊗ ρc) has only four non-zero matrix elements, (see Equation (14)),
which can be rewritten as 2× 2 matrices (

a0 p b
b a0q

)
, (30)

where a0 and b are d× d matrices and linear combinations of ρ and It:

a0 = (r0 + r1)I/d + r2ρ, b =
√

P1P2[(r0 + d2r2)ρ/2 + r1I/d], (31)

with p ≡ P1, q ≡ P2 are the control probabilities with p + q = 1.
Using the commutativity of ρ and It (so they have the same eigenvectors), we then retrieve

analytically a±, the matrix-eigenvalues of S(N1,N2, . . . ,NN) (ρ⊗ ρc)

a± =
a0

2
±
√

b2 + a2
0(p− 1

2
)2. (32)

The existence of this last expression is warranted by the positivity of the discriminant [26],
considering the positivity of ρ and the structure of a0 and b, which are linear combinations of I and ρ.

The commutativity properties of ρ and It are inherited to a±. Then, the eigenvalues of
S(N1,N2) (ρ⊗ ρc) for two causal orders are the eigenvalues of a±.Thus, to diagonalize a±, we just
replace ρ by its eigenvalues, labeled as λρ,i, in Equation (32), which generalizes the procedure obtained
in [9]. Our procedure gives access to the transmission of information in a more general situation, where
the depolarization strengths qi can be different for each channel, and it can take any value between 0
and 1. Equation (32) gives the eigenvalues of the matrix S(N1,N2)(ρ⊗ ρc) (s = ±1)

λs,i =
α0

2
+ s

√
pqβ2 + α2

0(p− 1
2
)2

with: α0 ≡
1− q1q2

d
+ q1q2λρ,i

β ≡ p1q2 + q1 p2

d
+ (

p1 p2

d2 + q1q2)λρ,i.

(33)
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The eigenvalues of λs,i are well defined because of the positivity of discriminant [26]. Finally,
using the concavity of the entropy, the minimum of the entropy Hmin for a state is reached by setting
just one λρ,i to one and all the others to zero; with this, we obtain

− Hmin(S(N1,N2)) = ∑
s∈{±1}
k∈{0,1}

(d− 1)1−kλs,k log (λs,k) , (34)

λs,k =
α0,k

2
+ s

√
pqβ2

k + α2
0,k(p− 1

2
)2, (35)

α0,k =
1− q1q2

d
+ kq1q2, (36)

βk =
p1q2 + q1 p2

d
+ k

( p1 p2

d2 + q1q2

)
. (37)

It is easy to show βk ≤ α0,k, then λ±,i ≥ 0 (λs,k ≥ 0) as expected. In addition, 0 ≤ λs,k ≤ 1 and
then −Hmin(S(N1,N2)) ≤ 0.

If one of q1 = 1 , i.e., channel 1 is free of depolarization, then α0,k =
p2
d + kq2 = βk and

− Hmin(S(N1,N2)) = (d− 1)
p2

d
log(

p2

d
) + (

p2

d
+ q2) log(

p2

d
+ q2) (38)

depends only on the probability of depolarization for channel 2. Thus, −Hmin(S(N1,N2)) reaches its
maximum value of zero only if q1 = q2 = 1. Alternatively, it is direct to show that the discriminant
reaches its maximum value when p = 1

2 , which is the case studied by Ebler et al. [9]. In addition,
if q1 = q2 = 0, i.e., both channels are fully depolarizing, then α0,k =

1
d , βk =

k
d2 , so −Hmin(S(N1,N2))

reaches the minimum value

−Hmin(S(N1,N2)) = − log(2d) + 1
2d2 log( d+1

d−1 ) +
1

2d log(1− 1
d2 ). (39)

For the sake of shortness, the entropy Hmin(S(N1,N2)) will be denoted simply as Hmin(SN).
To illustrate the range of parameters of Equation (38), we plot the entropy Hmin(S2) map for two noisy
channels. Figure 3 shows the entropy Hmin(S2). The plots are contour surfaces of Hmin(S2) when
q1, q2 vary from 0 to 1. Each plot contains thirty surfaces distributed in their complete range shown
in the color-chart. We plot several cases of Hmin(S2) when the dimension of the target is d = 2, 3, 10
and 100.

4.1.2. Derivation of ρ̃
(2)
c

To obtain the output state of the control system ρ̃
(N)
c after N channels, we calculate

TrXI J
[
(S(N1, . . . ,NN) (ρ⊗ ρc))⊗ I)(ωXI JAC)

]
,

where ωXI JAC is an extended input state with a pure conditional state as described in [9]. A direct
calculation shows:

TrXI J
[
(S(N1, . . . ,NN) (ρ⊗ ρc))⊗ I)(ωXI JAC)

]
=

= TrXI J

[
1
d2 ∑

x,i,j
px |x 〉〈 x| |i 〉〈 i| |j 〉〈 j| ⊗ S(N1, . . . ,NN)(ρ

′ ⊗ ρc)

]

=
I
d
⊗ ρ̃

(N)
c , (40)
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where ρ′ = X(i)Z(j)ρZ(j)†X(i)† and X(i) |l〉 = |i⊕ l〉 , Z(j) |l〉 = e2πijl |l〉 are the known
Heisenberg−Weyl operators [25]. To isolate the term ρ̃

(N)
c , we apply the following relations:

TrXI J

[
∑
XI J

px |x 〉〈 x| |i 〉〈 i| |j 〉〈 j| ρ′
]
= dI, (41)

TrXI J

[
∑
XI J

px |x 〉〈 x| |i 〉〈 i| |j 〉〈 j| I
]
= d2I, (42)

which are valid for N ≥ 2, and they are obtained by direct calculation following the former definitions.
Then, for N = 2, we find that the output control state is

ρ̃
(2)
c = p1 p2[P1 |1 〉〈 1|+ P2 |2 〉〈 2|+

√
P1P2

d2 (|0 〉〈 1|+ |1 〉〈 0|)] + ρc (1− p1 p2) , (43)

where pi = 1− qi.
Using the two previous results for χQNS, Figure 4 shows the transmission map of information

for two noisy channels. The plots are contour surfaces of χQ2S when q1, q2 and P1 = P2 = p vary from
0 to 1. The maximum capacity is trivially reached when q1 = q2 = 1 simultaneously reaching the
value χQ2S = log d. The minimum capacity is zero, reached in the boundary of the front sides with
(q1 = 0, p = 0, 1), (q2 = 0, p = 0, 1), (q1 = 0, q2 = 1), and (q1 = 1, q2 = 0). Notably, for q1 = q2 = 0,
there are values higher than the minimum. This phenomenon is observed in the protuberance of plots
near χQ2S = 0. For larger values of d, the protuberance occurs sharply near q1 = 0 and q2 = 0 faces.
Note the nearest surface to those faces are for χQ2S = 10−3, 10−3, 10−4, 10−7 respectively for each plot
d = 2, 3, 10, 100.

Figure 3. Entropy map for two noisy channels. The 3D graphs represent contour surfaces of the
Von-Neumann entropy Hmin(S2) when the depolarizing parameters q1, q2, and the probabilities P1 =

P2 = p are varied from 0 to 1. We plot several cases when the dimension d of the target ρ is: (a) d = 2;
(b) d = 3; (c) d = 10; and (d) d = 100. The value of Hmin(S2) is also depicted by the color in the bar.
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Figure 4. Transmission map of information for two noisy channels.The 3D graphs represent contour
surfaces of the Holevo information χQ2S when the depolarising parameters q1, q2 and the probabilities
P1 = P2 = p varied from 0 to 1. We plot several cases for the dimension d of the target system: (a) d = 2,
(b) d = 3, (c) d = 10 and (d) d = 100. In all these cases there are thirty contour surfaces of χQ2S.
The values of χQ2S are shown in the color bars.

4.2. Holevo Information for N = 3 Channels

We numerically calculate the eigenvalues of the entropy Hmin for N = 3 channels from
Equation (28). Then, using relations (41) from (21), (25), (26) and (27), we find that the output
state is

ρ̃
(3)
c = (s2 + s3)ρc +

s0

d2

 ∑
(k,k′)∈I,J

√
PkPk′ |k〉〈k′| + d2 ∑

(k,k′)∈K

√
PkPk′ |k〉〈k′|

 (44)

+
1
d2

 3

∑
s=1

∑
(`,`′)∈Ls

√
P`P`′rs|`〉〈`′|+ d2

3

∑
s=1

∑
(m,m′)∈Ms

√
PmPm′rs|m〉〈m′|

 .

As before, putting those outcomes together in (29), Figure 5a,b give the Holevo information χQ2S

and χQ3S for two and three channels, respectively, as a function of the depolarization strengths qi and
the dimension d of the target system. Our model enables us to exhibit a wealth of different behaviors
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as a function of d,qi, and N from the fully noisy situation to the identity channel transmission. For the
sake of simplicity, we restrict our graphical analysis to equal depolarization strengths, i.e., q1 = q2 =

q3, with a balanced superposition of N! causal orders, that is, with equally weighted probabilities
Pk = 1/N! for each case N = 2, 3.

(a)

(b)

Figure 5. Transmission of information for N = 2 and N = 3 channels. Holevo information as a
function of the depolarization strengths qi of the channels. We plot the subcases of equal depolarization
strengths, i.e., q1 = q2 = q3 = q, with equally weighted probabilities Pk for indefinite causal orders
(solid line) with (a) N = 2 and (b) N = 3 channels. The transmission of information first decreases
to a minimal value for Holevo information and then the transmission of information increases with
q. For completely depolarizing channels, i.e., q = 0, the transmission of information is nonzero and
decreases as d increases. A comparison is shown between the Holevo information when the channels
are in a definite causal order (dashed line). A full superposition of N! causal orders is used.

The analysis of these results allows us to draw the following conclusions for those particular cases:

• For a fixed dimension d, the Holevo information for indefinite causal order is always higher
than the one obtained using one of the definite causal order shown in Figure 2. This is especially
the case for totally depolarized channels i.e., qi = 0, ∀i. For completely clean channels (q = 1),
the Holevo information for indefinite and definite causal order converges to the same value
depending on d (not shown).

• Two regions can be distinguished. In the strongly depolarized region (roughly q < 0.3 for N = 2
and q < 0.5 for N = 3), the increase of the dimension d of the target system is detrimental
to the Holevo information transmitted by the quantum switch. In contrast, in the moderately
depolarized region (q > 0.3 for N = 2 and q > 0.5 for N = 3), the Holevo information increases
both with q and d, a maximum (not shown) as expected for completely clean channels.

• In the strongly depolarized region, increasing the number of channels to N = 3 is definitively
advantageous for information extraction. For instance, in the case of totally depolarized channels
(q = 0), the Holevo information is approximately doubled with N = 3 with respect to N = 2 for
all values of the dimension d calculated up to d = 10
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In fact, Table 1 gives the values of the ratio χQ3S/χQ2S, finding that the Holevo information is
approximately doubled for N = 3 with respect to N = 2.

Table 1. Values of the Holevo information ratio χQ3S/χQ2S. The mean value of the ratio is
1.9328 ± 0.0617.

d χQ2S χQ3S χQ2S/χQ3S

2 0.0487 0.0980 2.0123
3 0.0183 0.0339 1.8524
4 0.0085 0.0159 1.8705
5 0.0046 0.0087 1.8913
6 0.0027 0.0053 1.9629
7 0.0018 0.0034 1.8888
8 0.0012 0.0023 1.9166
9 0.0008 0.0016 2

10 0.0006 0.0012 2

5. Conclusions

Communication enhancement is a challenging task in quantum information processing due
to imperfection of communication channels subjected to depolarization. Causal order has been
proposed as a disruptive procedure to improve communication, compression of quantum information,
bringing the quantum possibilities into a new frontier. We have analyzed the quantum control
of N operators in the context of the second-quantized Shannon theory and in the specific case of
superposition of causal orders, extending the results in the current literature. We obtained a general
expression for S(N1,N2, . . . ,NN) for the quantum N-switch for an arbitrary number of channels
with any depolarizing strength, thus providing an operational formula enabling the exploration of
communication channels controlled by causal orders. This formula is useful to explore computationally
the cases with an increasing N. A detailed analysis to assess the information transmission for the
cases of N = 2 and N = 3 channels is presented: an increasing number of channels improves the
transmission of information. In particular, we remarkably found that the Holevo information is
doubled when the number of channels goes from N = 2 to N = 3.

We give the matrices corresponding to quantum N-switches S(N1,N2, . . . ,NN) as a function of
the number of channels, depolarization strengths, and dimension of the target system. We obtain other
general properties for the general case of N channels such as the symmetric properties of matrices
Qk,k′

Az
and thus of S(N1,N2, . . . ,NN). We also demonstrate that S(N1,N2, . . . ,NN) is always a linear

combination of ρ and It, whatever N channels. Expressions for the Holevo limit are equally accessible
from our expressions and methodology. In addition, we showed that the depolarizing strengths can
be used as control parameters to modify the information transmission on demand. We shall develop
elsewhere the analysis of control via selected combinations of the N! available causal order enabled by
the present work.
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Appendix A. Completeness Property for Wi

We demonstrate here the completeness property

∑
{is}|Ns=1

WiW†
i = It ⊗ Ic (A1)

for the generalized Kraus operators Wi for the full quantum N-switch channel by relying on the
reordering of the sums obtained by grouping terms with indices is equal to zero. Wi := Wi1i2 ...iN =

∑N!
k=1 Kπk ⊗ |k〉 〈k| and Kπk := πk(K1

i1
· · ·KN

iN
), where πk acts on the subscripts j of the Kraus operators

K j
ij

. In the sum {ij}|Nj=1, each index in the set of indices {i1, i2, . . . , iN} is associated with a channel Nj

where j ∈ {1, 2, . . . , N} and varies from 0 to d2. By introducing the definition of the Kraus operators

K j
ij
=

√
1−qj
d U j

ij
into Wi, the left side from Equation (A1) can be re-written as

hNd−2N ∑
{is}|Ns=1

N!

∑
k=1

Uπk U†
πk
⊗ |k〉 〈k| , (A2)

where Uπk := πk(U1
i1
· · ·UN

iN
) and hN = ∏N

j=1 1 − qj. As UiU†
i = I, ∀i > 0, the product Uπk U†

πk

reduces almost to the identity It except for the factors U0U†
0 =

d2qj
1−qj

It. Using Equation (4) in the above
expression, it can be rearranged into:

∑
{ij}|Nj=1

Wi1i2 ...iN W†
i1i2 ...iN

= hNd−2N
N!

∑
k=1

N

∑
z=0

d2z ∑
a∈AN

z

∑
b∈Bz

hAzIt ⊗ |k〉 〈k| , (A3)

where the sum over Az is the sum of terms hAz over all the elements of AN
z , the set of all subset of z

elements in {1, 2, . . . , N}. This yields the factor fAz = hNhAz d2(z−N) in Equation (6).
To prove Equation (A1), we then apply the total probability property ∑N

z=0 ∑a∈Az hAz = 1
hN

together with the property ∑b∈Bz d2(z−N) = 1. Thus, property (A1) is proved.

Appendix B. Relations to Evaluate Coefficients Qk,k′

Az

We recall below the relations needed to deduce explicitly matrices Sz and then S for the quantum
N-switch from the sums and products of the Qk,k′

Az
factors

d2

∑
i=1

UiX [Ui]
† = dTrX I, (A4)

d2

∑
i=1

Tr([Ui]
†ρ)Ui =

d2

∑
i=1

Tr(Uiρ) [Ui]
† = d ρ, (A5)

where X is any d× d matrix and Ui an orthonormal basis for the d× d matrices. Applying Equation (A4)
to X = I,

d2

∑
i=1

Ui [Ui]
† = d2I. (A6)

Applying Equation (A4) to X = ρ, such that Tr(ρ) = 1, we get a uniform randomization over the
set of unitaries Ui 6=0 that completely depolarizes the state ρ, thus giving the relation ∑i UiρU†

i = dI.
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Appendix C. Matrices Sz for the Quantum 3-Switch

Matrix S(N1,N2,N3)(ρ ⊗ ρc) is a 6 × 6 block-matrix, block-symmetric matrix whose matrix
elements are matrices of dimension d × d. Since Qk,k′

Az
= Qk′ ,k

Az
, for all Az, then S(N1,N2,N3)(ρ ⊗

ρc) is symmetric with respect to the main diagonal. Now, by expanding equations S0, S1, S2 and
S3 in the control qudit basis, {|1〉 , |2〉 , |3〉 , |4〉 , |5〉 , |6〉}, we can find the quantum 3-switch matrix
S(N1,N2,N3)(ρ⊗ ρc) having diagonal elements as

Ak = IPk
(s0 + s1 + s2)

d
+ ρPks3, for k = 1, 2, . . . , 6, (A7)

where s1 = t1 + t2 + t3. The off-diagonal elements read

B = I
√

P1P2
(d2s2+d2t2+d2t3+s0)

d3 + ρ
√

P1P2
(d2s3+t1)

d2 ,

C = I
√

P1P3
(d2s2+d2t1+d2t2+s0)

d3 + ρ
√

P1P3
(d2s3+t3)

d2 ,

D = I
√

P1P4
(t1+s2)

d + ρ
√

P1P4
(d2s3+s0+t2+t3)

d2 ,

E = I
√

P1P5
(s2+t3)

d + ρ
√

P1P5
(d2s3+s0+t1+t2)

d2 ,

F = I
√

P1P6
(d2s2+s0)

d3 + ρ
√

P1P6
(d2s3+s1)

d2 ,

G = I
√

P2P3
(s2+t2)

d + ρ
√

P2P3
(d2s3+s0+t1+t3)

d2 ,

H = I
√

P2P4
(d2s2+s0)

d3 + ρ
√

P2P4
(d2s3+s1)

d2 ,

I = I
√

P2P5
(d2s2+d2t1+d2t3+s0)

d3 + ρ
√

P2P5
(d2s3+t2)

d2 ,

J = I
√

P2P6
(s2+t1)

d + ρ
√

P2P6
(d2s3+s0+t2+t3)

d2 ,

K = I
√

P3P4
(d2s2+d2t1+d2t3+s0)

d3 + ρ
√

P3P4
(d2s3+t2)

d2 ,

L = I
√

P3P5
(d2s2+s0)

d3 + ρ
√

P3P5
(d2s3+s1)

d2 ,

M = I
√

P3P6
(s2+t3)

d + ρ
√

P3P6
(d2s3+s0+t1+t2)

d2 ,

N = I
√

P4P5
(s2+t2)

d + ρ
√

P4P5
(d2s3+s0+t1+t3)

d2 ,

P = I
√

P4P6
(d2s2+d2t2+d2t3+s0)

d3 + ρ
√

P4P6
(d2s3+t1)

d2 ,

Q = I
√

P5P6
(d2s2+d2t1+d2t2+s0)

d3 + ρ
√

P5P6
(d2s3+t3)

d2 .

(A8)

Those matrix elements are the entries of the matrix (28) in the main text.
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