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Abstract: Quantum computation by the adiabatic theorem requires a slowly-varying Hamiltonian
with respect to the spectral gap. We show that the Landau–Zener–Stückelberg oscillation
phenomenon, which naturally occurs in quantum two-level systems under non-adiabatic periodic
drive, can be exploited to find the ground state of an N-dimensional Grover Hamiltonian. The total
runtime of this method is O(

√
2n), which is equal to the computational time of the Grover algorithm

in the quantum circuit model. An additional periodic drive can suppress a large subset of Hamiltonian
control errors by using coherent destruction of tunneling, thus outperforming previous algorithms.

Keywords: adiabatic quantum computing; quantum algorithms; quantum error correction;
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1. Introduction

Adiabatic Quantum Computation (AQC) [1,2] is a computational model motivated by the
adiabatic theorem. The theorem states that, if a system is prepared in the ground state of an initial
Hamiltonian, and the Hamiltonian slowly varies over time, then the system will remain close to the
instantaneous ground state [3,4]. By encoding a solution for a computational problem in the ground
state of the final Hamiltonian, one can exploit this phenomenon to produce the aforementioned ground
state, and thus produce a solution to the problem. The maximal rate of change allowed for such
evolution usually scales with the square of the energy gap between the ground state and the first
excited state [1].

The Grover problem [5], also known as The Unstructured Search Problem, is one of the few
problems solvable by a native adiabatic algorithm, which achieves the same performance as the best
possible algorithm in the circuit model [6] (see also [7–9]). The input to the problem is an n qubit
Hamiltonian Hp, which can only be used as a black box, meaning it can be switched on or off:

Hp = IN − |y〉 〈y| , (1)

wherein IN is the N×N identity matrix with N = 2n, and we use dimensionless units (see Appendix A).
The problem is to find the unknown string y. Grover’s algorithm solves the problem in time O(

√
N),

which is a quadratic improvement to any classical algorithm. The problem is comparable to finding
the ground state of a known Hamiltonian, whose ground state is computationally hard to find and,
therefore, can be considered computationally unknown [10].

An adiabatic algorithm for the search problem was first suggested by Farhi et al. [1]. The system
is initialized to a symmetric superposition of the computational basis states, denoted |u〉 = |+ · · ·+〉,
and then evolves by the time-dependent Hamiltonian:
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HG (s(t)) = (1− s(t)) · (IN − |u〉 〈u|) + s(t) · (IN − |y〉 〈y|), (2)

wherein the control function s(t) : [ti, t f ]→ [0, 1] is initialized to 0 and increases monotonically in time
to 1. The minimal gap for n qubit systems is ∆ =

√
2−n. Evolving with a linear s(t) requires O(2n)

time, while a specially tailored control function, whose rate matches the instantaneous spectral gap,
generates the ground state of Hp in the optimal time, O(

√
2n) [11,12].

In this work, we introduce a diabatic algorithm for the Grover problem, denoted algorithm A,
whose performance matches the optimal adiabatic and circuit model algorithms [5,6,12], by setting
s(t) = (1− A cos(ωt))/2 when ω � ∆. The system passes the minimal gap multiple times diabatically
and is effectively evolving by a Landau–Zener–Stükelberg (LZS) Hamiltonian [13–17] (which is
sometimes referred to as the Landau–Zener–Stükelberg–Majorana Hamiltonian [18]). In algorithm B,
we add an oscillating term B cos(ωt) |u〉 〈u| that yields improved robustness to Hamiltonian control
errors relative to previous algorithms [5,12].

2. Background

2.1. LZS Hamiltonians

We start by analyzing the LZS Hamiltonian for a generic two-level system with the bare states
|0〉 , |1〉, closely following the treatment of [19]:

HLZS(t) :=
1
2
(−A cos(ωt)σz − ∆σx) =

1
2

[
−A cos(ωt) −∆
−∆ A cos(ωt)

]
. (3)

The sinusoidal drive causes the Hamiltonian to exhibit avoided level crossings at t = π(k + 1
2 )/ω

for k ∈ Nwith a minimal energy gap of ∆ (see Figure 1).

A
co
s(
ω
t)

π
2ω

2π
2ω

3π
2ω

4π
2ω

5π
2ω

6π
2ω

7π
2ω

8π
2ω

|0〉

|1〉

|0〉

|1〉

|1〉

|0〉

|1〉

|0〉

E
n
er
gy

t

t

1

Figure 1. (top) The instantaneous eigenvalues of HLZS(t); and (bottom) the drive A cos(ωt).
Avoided crossings occur at t = π(k + 1

2 )/ω for integer k, when cos(ωt) = 0. Each period of the
drive (gray or green background) contains a double crossing. Note that the ground state and the excited
state alternate at every avoided crossing.

To gain some intuition, consider a system initialized to the state |0〉 and driven through the
avoided crossing twice (meaning, one period of s(t)). After the double crossing, the population
of the state |1〉, denoted P(2)

+ , approaches 0 for both ω � ∆2/A and for ω � A: if ω � ∆2/A,
the adiabatic condition holds; the system always remains in the instantaneous ground state and,
thus, returns to |0〉. Furthermore, in the limit ω � A, the propagator approaches unity and the state
remains unperturbed. In intermediate cases, an interesting phenomenon occurs: in the first passage of
the avoided crossing, the system transfers almost perfectly from the initial ground state to the final
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excited state. However, a tiny amplitude leaks to the orthogonal state. The populations of the excited
state and the ground state gain different phases between the two crossings, and, finally, interfere again
in the second crossing. P(2)

+ is affected by this interference and oscillates with the periodicity of the
control 2π/ω in what is known as Landau–Zener–Stückelberg oscillations [13–15] (See Figure 2).

In the ω � ∆ regime, one can use the rotating wave approximation (see [19], and Appendix B)
to show that, with periodic drive, the system oscillates around the x axis in the Bloch sphere
with frequency

Ω = ∆
∣∣∣∣J0

(
A
ω

)∣∣∣∣ . (4)

The algorithm will fail when A/ω equals a root of the Bessel function J0, where a coherent
destruction of tunneling (CDT) occurs, and Ω = 0 ([20], see also [17,19]). CDT was previously
suggested as a method to control interactions in quantum systems [21–23] and we use these ideas in
algorithm B.

Figure 2. Numerical simulation of LZS oscillations solving the Grover problem where the system
is initialized to the ground state at t = 0. (a–c) The ground state population after a double crossing
with different ω and gaps. This probability reaches 1 both for ω � A and for ω � ∆2/A (only visible
in (a)). For the first limit, the system is almost unperturbed. However, in second limit, the process is
adiabatic and the system follows the instantaneous ground state and returns to its initial state. While the
rotating wave approximation holds (ω � ∆), the ground state population after a double crossing

is P(2)
+ = ∆

∣∣∣J0

(
A
ω

)∣∣∣ · 2π/ω. The zeros of the Bessel function correspond to coherent destruction of

tunneling, wherein 1− P(2)
+ = 1 in the graph. The approximation fails as ω � ∆ in (a); (d) Numerical

simulation of the ground state population following multiple double crossings in a 16-qubit system.

2.2. Grover as a Two-Level System

Interestingly, the Grover Hamiltonian HG(t) with a periodic control function is closely related
to HLZS(t). The key to the mapping is the subspace V = span {|u〉 , |y〉}, which is invariant to HG(s)
for all s, as originally noted by Farhi and Gutmann [24] (see proof in Appendix C). Although V is
isomorphic to the Hilbert space of a two-level system, one cannot map |u〉 , |y〉 to |0〉 , |1〉 trivially in
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HLZS, because the first pair is only approximately orthogonal. To overcome this problem, we define a
new basis |0̄〉 , |1̄〉, exponentially close to |u〉 and |y〉, as stated in the following claim:

Claim 1. The projection of HG(s(t)) on V satisfies:

HG(s(t))
∣∣∣∣
V
=

I2

2
+

(
s(t)− 1

2

)√
1− ∆2σ̄z −

∆
2

σ̄x, (5)

wherein ∆ = 〈y|u〉. The operators σ̄x, σ̄z act on the states

|0̄〉 =

√
1 +
√

1− ∆2

2
|u〉 −

√
1−
√

1− ∆2

2
|u⊥〉

|1̄〉 =

√
1−
√

1− ∆2

2
|u〉+

√
1 +
√

1− ∆2

2
|u⊥〉 ,

(6)

wherein |u⊥〉 := |y〉−∆|u〉√
1−∆2 is the vector orthogonal to |u〉 in V.

See Appendix D for the proof.

3. Results

3.1. Algorithm A
Algorithm A is an immediate corollary of Claim 1. The Hamiltonian HG with the control

function s(t) = (1− A cos(ωt))/2 acts on V as an LZS Hamiltonian on the states |0̄〉 , |1̄〉. Since |0̄〉
and |1̄〉 are exponentially close to |u〉 and |y〉, respectively, evolving |u〉 by HG(s(t)) will cause the
system to oscillate between the states close to |u〉 and |y〉 with frequency Ω = ∆

∣∣∣J0(
√

1− ∆2 A/ω)
∣∣∣.

Hence, such a driven Hamiltonian can solve the Grover problem in time O(
√

2n), i.e., the same
complexity as the optimal circuit and adiabatic models.

A careful analysis of LZS interferometry shows that the algorithm finds y for a wide range of
A, ω. We require only ω � ∆ for the rotating wave approximation to hold. J0(

√
1− ∆2 A/ω) is a

factor of the algorithm’s runtime, hence A/ω should not be large (for z� 1, |J0(z)| ∼ 1/
√

z), and not
too close to the roots of J0 as it will cause Ω to diminish by CDT. Note that none of these constraints
requires prior knowledge of the gap ∆, other than an upper bound. Hence, the algorithm is robust to a
multiplicative error of the Hamiltonian due to calibration errors, similar to previous approaches [25].
A different choice of parameters may improve the algorithm’s robustness to the variations in the total
evolution time, as demonstrated in [26].

The limit A = 0 yields maximal Ω, and corresponds to evolving by the time-independent
Hamiltonian HG(s)

∣∣
s=1/2 = 1

2 (I2−∆σ̄x), which we denote H1/2. This is exactly the “analog” algorithm
for the search problem by Farhi and Gutmann [24], and, more generally, a search by a quantum
walk [25,27–33]. The Hamiltonian H1/2 is the core of algorithms for the search problem: in the adiabatic
algorithm [12], the Hamiltonian spends most of the time close to H1/2, where the gap is minimal [25],
while the original gate-model algorithm by Grover [5] can be seen as a simulation (or an approximation
by Trotter formula [34]) of H1/2 [24].

3.2. Algorithm B
We now discuss adding an additional modulation to Algorithm A to improve its robustness

without significantly increasing the runtime. Equation (7) defines the Hamiltonian for algorithm B,
and the spectrum is illustrated in Figure 3.
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HB(t) = (IN − |u〉 〈u|) ·
1 + A cos(ωt)

2
+ (IN − |y〉 〈y|) ·

1− A cos(ωt)
2

− B cos(ωt) |u〉 〈u|

HB

∣∣∣∣
V
=

[
1
2 − (B + A

2 ) cos(ωt) −∆
2 (B cos(ωt) + 1)

−∆
2 (B cos(ωt) + 1) 1

2 + A
2 cos(ωt)

]
+ O(∆2).

(7)
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Figure 3. The spectrum of the noiseless HB over one period. The parameters are n = 16, A = 1, B = 9.1193.
Note that the yellow energy level is outside the invariant subspace V.

A natural question is whether Algorithm B is “cheating” by artificially increasing the gap or
by manipulating resources. Here, a small detour discussing resources is in order. First, note that
implementing the term |u〉 〈u| requires no prior knowledge of y. Namely the algorithm is the same for
all y (or y is “unknown”). This means that the total time wherein Hp is active would have to be at least
2n/2. Otherwise, this would contradict the optimality of Grover’s algorithm [35]. To understand the
role of B, one can partition HB by the Trotter approximation to slices of time independent Hamiltonians,
where evolution by Hp and by terms that are not Hp alternate. In this picture, increasing |B| corresponds
to using a stronger quantum computer between calls to the black box, but has no effect on the query
complexity of the problem (the total time Hp is active).

3.3. Robustness Comparison

In what follows, we compare the robustness to control errors of algorithm B versus applying
the time-independent Hamiltonian H1/2, which also represents the standard gate model and adiabatic
algorithms (for an analysis of the Hamiltonian-based search algorithm under different noise
models, cf. [25,36,37]).

Hamiltonian control errors are uncontrolled terms causing the system to deviate unitarily from
the intended evolution. The first error we focus on is in the form A1 cos(ω1t + ϕ)σ̄z that preserves the
subspace V and represents an error in s(t) (see Equation (5)).

Consider H1/2 with a harmonic control error in s(t):

H̃1/2 =
I2

2
− ∆

2
σ̄x + A1 cos(ω1t + ϕ)σ̄z. (8)

This is exactly the LZS Hamiltonian. Therefore, for high frequency errors (ω1 � ∆), the Rabi
frequency is Ω̃ = ∆

∣∣∣J0

(
A1
ω1

)∣∣∣, and the evolution is generally unaffected. On the other hand, for ω1 = 0,
even A1 ≈ ∆ may cause the system to freeze in the initial state because the σ̄z rotation may become
more dominant than the desired σ̄x rotation. Hence, algorithms based on H1/2 are not robust to low
frequency control errors.
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Algorithm B generally shows similar robustness (see Figure 4). It fails to find y when ω1 = 0
and A1 ≈ ∆ for the same reasons H1/2 fails. For high frequency errors, we write the Hamiltonian
HB + A1 cos(ω1t + ϕ)σ̄z in the appropriate rotating frame (around σ̄z) while neglecting O(∆2) terms:

H̃′B

∣∣∣∣
V
=

 0 −∆
2 (B cos(ωt) + 1)χ

−∆
2 (B cos(ωt) + 1)χ∗ 0



χ =
∞

∑
k,k1=−∞

Jk

(
A + B

ω

)
Jk1

(
2A1

ω1

)
eik1(ω1t+ϕ)−ikωt.

See Appendix E for details.
The algorithm is generally unaffected by high frequency errors (ω1 � ∆) where all terms except

k = k1 = 0 average out, and the Rabi oscillation is Ω̃ = J0

(
A+B

ω

)
J0

(
2A1
ω1

)
. Note that, if k1ω1 ≈ kω

for some values of k, k1, then these terms would not average out, and may, in principle, cause the
algorithm to fail because of CDT.

(a) HB + A1 cos(!1t)7<z
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Figure 4. Sixteen-qubit numerical simulation comparing the robustness of Algorithm B versus an
evolution by H1/2: (a) Algorithm B with parameters ω = 3.67, A = 1, B = 9.12; and (b) an evolution by
H1/2. The error A1 cos(ω1t)σ̄z with A1 = 0.05 is equivalent to an error in s(t). Each row in both panels
is a simulation with different ω1 that is displayed on the y-axis. The brightness of the row changes
from left to right as the value of P+ varies in time under the noise of the specified ω1. Both algorithms
are influenced by errors with ω1 ≈ ∆ = 0.125, and fail as ω1 diminishes. However, both are generally
robust to high frequency errors.

The second error we consider in our comparison are errors that do not preserve V. For their
analysis, we use a three-level system toy model, composed of the previously defined states |0̄〉 , |1̄〉 and
an additional state |2̄〉, which represents a state outside of V. The error term we choose to focus on is
the term η(|0̄〉 〈2̄|+ |2̄〉 〈0̄|). The Hamiltonians take the form:

H1/2 =

 1
2 −∆

2 η

−∆
2

1
2 0

η 0 1

 HB =

 1
2 − (B + A

2 ) cos(ωt) −∆
2 (B cos(ωt) + 1) η

−∆
2 (B cos(ωt) + 1) 1

2 + A
2 cos(ωt) 0

η 0 1

 . (9)

Interestingly, H1/2 already has some inherent robustness to errors diverting the system to
|2̄〉: the diagonal elements of H1/2 can be considered as “potential energies” of three sites.
Therefore, a particle in |0̄〉 needs to overcome a potential difference to reach |2̄〉, while it does not need
to face a barrier when transitioning to |1̄〉.
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Algorithm B improves the natural error suppression by adding CDT between the states |0̄〉
and |2̄〉, while allowing transitions between |0̄〉 and |1̄〉. We hereby present a simplified analysis,
using the rotating wave approximation. However, we stress that finer tools, such as Floquet theory [38],
better describe the dynamics of the system and should be used when one attempts to find optimal
values for B, A, ω (see Figure 5). After changing to a rotating frame where 〈0̄|HB |0̄〉 = 〈1̄|HB |1̄〉 = 0,
and using the rotating wave approximation, we have:

H′B =


0 −∆

2 J0

(
B+A

ω

)
η J0

(
B+A/2

ω

)
−∆

2 J0

(
B+A

ω

)
0 0

η J0

(
B+A/2

ω

)
0 1

2

 . (10)

Note that, in Equation (10), the argument for the Bessel function in 〈0̄|HB |1̄〉 is different from
the one in 〈0̄|HB |2̄〉. By choosing B+A/2

ω to be a root of J0, the transition from |0̄〉 to |2̄〉 is suppressed.
On the other hand, the term |〈0̄|HB |1̄〉|, which dominates Ω and the computation time, is multiplied
by a factor of J0

(
B+A

ω

)
6= 0. Namely, the runtime is increased by a factor of 1/J0

(
B+A

ω

)
, while the

error term η is suppressed. Our numerical simulations (see Figure 5) confirm that, for a given scenario,
the probability of an evolution H1/2 to find y is 3.2× 10−5, while, with tuned parameters, Algorithm B
finds y with near certainty.
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Figure 5. A simulation of Algorithm B with the control errors which do not preserve V, as expressed
in Equation (9). We set n = 20, A = 1, B = 9.12, η = 0.3, and simulated the three-level system with
different values of ω (x axis). For every simulation, two data points were plotted for the maximal
probability reached by the states 1̄ (blue, solid) and 2̄ (orange, dashed) in the time interval t = [0, 150/∆].
The ratio between the desired transition ∆/2 ≈ 5× 10−4 and the control error η is 1:600; evolving |0̄〉
by H1/2 yields |1̄〉 with probability 3.2× 10−5. The graph shows that for some ω, the peak probability
of 1̄ is close to one. Hence, Algorithm B is more robust to such errors. Note that Equation (10) predicts

that the transition 0̄→ 1̄ peaks for ω ≈ 1.74, 4, which corresponds for the first two roots of J0

(
B+A/2

ω

)
,

where the 0̄→ 2̄ transition is strongly suppressed. The simulation shows that the desired transition
0̄→ 1̄ peaks at two frequencies around each root—this implies that the rotating wave approximation is
insufficient to describe the dynamics of the system.

Thermal noise: Implementing error correction for quantum algorithms based on continuous
Hamiltonians instead of discrete gates is an open problem [39]. One can suppress thermal noise
(as well as control errors) by encoding the Hamiltonian by a stabilizer code [40], combined with
dynamical decoupling [41], energy gap protection [42], or Zeno effect suppression [43]. All of them
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function very similarly [39,44], providing enhanced performance for finite size systems, which were
recently described as noisy intermediate scale quantum (NISQ) [45]. For an exponential time algorithm,
such as the unstructured search problem, error suppression methods ultimately fail, and an active
error correction is required.

4. Discussion

In this work, we propose a new diabatic algorithm for solving the Grover problem using LZS
interferometry. Diabatic scheduling for computation was researched recently [46,47] and, in some
cases, even showed superior performances to adiabatic scheduling. Variational Quantum Algorithms
(VQA) [48–51] and Quantum Approximate Optimization Algorithms (QAOA) [52,53], in which the
path is optimized by a classical computer, can also be considered diabatic. However, our work shows
a new application of diabaticity: suppression of control errors. We conjecture the need for hybrid
algorithms (diabatic/adiabatic), tailored to the noise parameters of a system.

One possible near term implementation of such model is the unstructured search problem on the
hypercube [30,54], which exhibits an avoided crossing between the two lowest eigenvalues, while the
rest of the spectrum is separated. Driving the system with oscillations that are slow with respect to
the gap between the first and second excited states will cause the two lowest energy states to act as a
two-level system.

While the Grover problem is important on its own, it is interesting to examine the applicability
of our paradigm to additional problems. It remains an open question whether one can translate any
adiabatic algorithm to a diabatic algorithm.

Finally, it is interesting to find an expression for the optimal driving frequencies in Algorithm
B, including their spectral width, and effectiveness (based on a full numerical analysis of the
Floquet problem).
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Appendix A. Dimensionless Units

In the main text we have worked in dimensionless units, specially because computational/query
complexity is invariant to multiplicative factors. Here, we rewrite the main results while keeping the
units consistent. The problem Hamiltonian is normally given with an energy scale ε (h̄ = 1):

Hp = ε(IN − |y〉 〈y|) (A1)

The Hamiltonian corresponding to Algorithm A is the following:

HG (s(t)) = ε [(1− s(t)) · (IN − |u〉 〈u|) + s(t) · (IN − |y〉 〈y|)]

s(t) =
1− a cos(ωt)

2
,

(A2)

where a ∈ [0, 1] is the dimensionless amplitude of the control function s(t). Note that the minimal
energy gap is ∆ = 2−n/2ε. Claim A1 takes the following form:
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Claim A1. The projection of HG(s(t)) on V satisfies:

HG(s(t))
∣∣∣∣
V
= ε

[
I2

2
+

(
s(t)− 1

2

)√
1− δ2σ̄z −

δ

2
σ̄x

]
= ε

[
I2

2
+

(−a cos(ωt)
2

)√
1− δ2σ̄z −

δ

2
σ̄x

] (A3)

wherein δ = 〈y|u〉 is dimensionless. The operators σ̄x, σ̄z act on the states

|0̄〉 =

√
1 +
√

1− δ2

2
|u〉 −

√
1−
√

1− δ2

2
|u⊥〉

|1̄〉 =

√
1−
√

1− δ2

2
|u〉+

√
1 +
√

1− δ2

2
|u⊥〉

(A4)

wherein |u⊥〉 := |y〉−δ|u〉√
1−δ2 is the vector orthogonal to |u〉 in V.

The rotating frame approximation holds when ω � ∆ = 2−n/2ε. The run time of the algorithm
in this case is inversely proportional to the Rabi frequency Ω = εδ · J0

(√
1−δ2aε

ω

)
. On the other hand,

when εaω � ∆2, the process is adiabatic.
Algorithm B is defined using an additional dimensionless variable b:

HB(t) = ε

(
(IN − |u〉 〈u|) ·

1 + a cos(ωt)
2

+ (IN − |y〉 〈y|) ·
1− a cos(ωt)

2
− b cos(ωt) |u〉 〈u|

)
HB

∣∣∣∣
V
= ε

[
1
2 − (b + a

2 ) cos(ωt) − δ
2 (b cos(ωt) + 1)

− δ
2 (b cos(ωt) + 1) 1

2 + a
2 cos(ωt)

]
+ ε(|a|+ |b|) ·O(δ2),

(A5)

and by adding a unitary error from V to V⊥ it takes the form:

HB = ε

 1
2 − (b + a

2 ) cos(ωt) − δ
2 (b cos(ωt) + 1) η

− δ
2 (b cos(ωt) + 1) 1

2 + a
2 cos(ωt) 0

η 0 1

+ ε(|a|+ |b|) ·O(δ2). (A6)

Finally, the optimal values for a, b, ω are in proximity to the roots of J0

(
ε(b+a/2)

ω

)
.

Appendix B. Analysis of LZS Oscillations Using the Rotating Wave Approximation

In this section, we analyze the LZS oscillations and the robustness to errors by generalizing the
rotating wave approximation analysis by [19,55].

Claim A2. The Rabi frequency of a system driven by HLZS is

Ω = ∆
∣∣∣∣J0

(
A
ω

)∣∣∣∣ (A7)

Proof. We start with a two-level system and a general control function:

H(t) :=
1
2
(−a(t)σz − ∆σx) =

1
2

[
−a(t) −∆
−∆ a(t)

]
. (A8)
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Changing to the rotating frame yields

|ψ(t)〉 = U(t) |ψ′(t)〉 , (A9)

wherein

U(t) = exp
{

i
2

σz

∫
a(t)dt

}
. (A10)

Note that the populations of the ground state and the excited state are invariant to this
transformation. The effective Hamiltonian H′, which satisfies the Shrödinger equation in the rotating
frame, i d

dt |ψ′〉 = H′ |ψ′〉 , is the following [56]:

H′(t) = U†(t)H(t)U(t)− iU†(t)
dU(t)

dt
= −∆

2

[
0 e−i

∫
a(t)dt

ei
∫

a(t)dt 0

]
. (A11)

By assigning a(t) = A cos(ωt), integrating and using the Bessel–Anger identity

exp {iz sin γ} =
∞

∑
k=−∞

Jk(z)eikγ, (A12)

we get

H′(t) = −∆
2

 0 exp
{
−i A

ω sin(ωt)
}

exp
{

i A
ω sin(ωt)

}
0



= −∆
2

[
0 ∑∞

k=−∞ Jk(A/ω)e−ikωt

∑∞
k=−∞ Jk(A/ω)eikωt 0

]
.

(A13)

A general pulse shape was analyzed in [57]. Since ω � ∆, we can use the rotating wave
approximation, which yields

H′(t) = −∆
2

[
0 J0(A/ω)

J0(A/ω) 0

]
, (A14)

and the proof follows.

Appendix C. Invariant Subspace in HG(s)

Claim A3 (Following Farhi and Gutmann [24]). The subspace V = span{|y〉 , |u〉} is invariant to

HG (s(t)) = (1− s(t)) · (IN − |u〉 〈u|) + s(t) · (IN − |y〉 〈y|). (A15)

Proof. A general vector in V takes the form |v〉 = (α |u〉+ β |y〉) ∈ V. When HG(s) acts on |u〉 and
|y〉, we have

HG(s(t)) |u〉 = s(t) (|u〉 − 〈u|y〉 |y〉) ∈ V (A16)

HG(s(t)) |y〉 = (1− s(t)) (|y〉 − 〈y|u〉 |u〉) ∈ V. (A17)

Therefore, HG(s(t)) |v〉 ∈ V for any choice of s, α, β.

This invariance allows us to reduce the 2n-dimensional problem to a 2-dimensional problem as
required for the similarity relation in Claim 1. Additionally, this enables numerical simulations for
high values of n.
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Appendix D. Proof of Claim 1

Here, we show the similarity of HG in the subspace V to the LZS Hamiltonian. It is clear
that |u〉 , |y〉 are not orthogonal and therefore they cannot be trivially mapped to |0〉 , |1〉 in HLZS.
To overcome the problem, we find a basis that is exponentially close to |u〉 , |y〉, which allows stating
the similarity relation (clearly these corrections are relevant only for small and intermediate size
systems). Note that the rate s(t) is also slightly adjusted.

Claim A4. The projection of HG(s(t)) on V satisfies:

HG(s(t))
∣∣∣∣
V
=

(
I2

2
+

(
s(t)− 1

2

)√
1− ∆2σ̄z −

∆
2

σ̄x

)
(A18)

wherein ∆ = 〈y|u〉. The operators σ̄x, σ̄z act on the states

|0̄〉 =

√
1 +
√

1− ∆2

2
|u〉 −

√
1−
√

1− ∆2

2
|u⊥〉

|1̄〉 =

√
1−
√

1− ∆2

2
|u〉+

√
1 +
√

1− ∆2

2
|u⊥〉

(A19)

wherein |u⊥〉 := |y〉−∆|u〉√
1−∆2 is the vector orthogonal to |u〉 in V.

Proof. By definition,

HG (s(t)) = (1− s(t)) · (IN − |u〉 〈u|) + s(t) · (IN − |y〉 〈y|). (A20)

We wish to prove that the matrix form of HG(s(t)) projected on V, in the basis |0̄〉 , |1̄〉 is:

HG(s(t))
∣∣∣∣
V
=

 1
2 +

(
s(t)− 1

2

)
ξ −∆

2

−∆
2

1
2 −

(
s(t)− 1

2

)
ξ.

 (A21)

wherein ξ =
√

1− ∆2. In other words, we should prove that

〈0̄|HG(s(t)) |0̄〉 =
1
2
+

(
s(t)− 1

2

)
ξ

〈1̄|HG(s(t)) |1̄〉 =
1
2
−
(

s(t)− 1
2

)
ξ

〈0̄|HG(s(t)) |1̄〉 = −
∆
2

(A22)

It is helpful to use the following three equations:

〈u|HG(s(t)) |u〉 = (1− ∆2)s(t)

〈u⊥|HG(s(t)) |u〉 = −∆ξ · s(t)
〈u⊥|HG(s(t)) |u⊥〉 = 1− ξ2 · s(t).

(A23)

Calculating the matrix elements:
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〈0̄|HG(s(t)) |0̄〉 =
1 + ξ

2
· (1− ∆2)s(t) + 2∆ξs(t)

√
1 + ξ

2
· 1− ξ

2
+ (1− ξ2s(t))

1− ξ

2

= ξ2 1 + ξ

2
s(t) + ∆2ξs(t) + (1− ξ2s(t))

1− ξ

2

= s(t) ·
(

ξ2 1 + ξ

2
+ (1− ξ2)ξ − ξ2 1− ξ

2

)
+

1− ξ

2
=

1
2
+

(
s(t)− 1

2

)
ξ

(A24)

〈1̄|HG(s(t)) |1̄〉 =
1− ξ

2
· (1− ∆2)s(t)− 2∆ξs(t)

√
1 + ξ

2
· 1− ξ

2
+ (1− ξ2s(t))

1 + ξ

2

= ξ2 1− ξ

2
s(t)− ∆2ξs(t) + (1− ξ2s(t))

1 + ξ

2

= s(t)
(

ξ2 1− ξ

2
− (1− ξ2)ξ − ξ2 1 + ξ

2

)
+

1 + ξ

2
=

1
2
−
(

s(t)− 1
2

)
ξ

(A25)

〈1̄|HG(s(t)) |0̄〉 = (1− ∆2)s(t)

√
(1 + ξ)(1− ξ)

4
+ ∆ξ · s(t)

(
1− ξ

2
− 1 + ξ

2

)
− (1− ξ2 · s(t))

√
(1− ξ)(1 + ξ)

4

=
ξ2∆

2
s(t)− ∆ξ2s(t)− (1− ξ2 · s(t))∆

2
= −∆

2

(A26)

The proof of Claim 1 follows.

Appendix E. Analysis of Algorithm B Using the Rotating Wave Approximation

We add detailed derivation of HB (following Ashhab et al. [19]). In the case of σ̄z error,

Claim A5. Let

H̃B

∣∣∣∣
V
=

[
1
2 − (B + A

2 ) cos(ωt) −∆
2 (B cos(ωt) + 1)

−∆
2 (B cos(ωt) + 1) 1

2 + A
2 cos(ωt)

]
+ A1σ̄z cos(ω1t + ϕ) + O(∆2). (A27)

Using a rotation around σ̄z the effective Hamiltonian takes the form:

H̃′B

∣∣∣∣
V
=

 0 −∆
2 (B cos(ωt) + 1)χ

−∆
2 (B cos(ωt) + 1)χ∗ 0

+ O(∆2)

χ =
∞

∑
k,k1=−∞

Jk

(
A + B

ω

)
Jk1

(
2A1

ω1

)
eik1(ω1t+ϕ)−ikωt

(A28)

Proof. We subtract the global (time dependent) energy offset 1
2 − B/2 cos(ωt). Terms of order O(∆2)

can be neglected because the Hamiltonian is applied for duration O(1/∆). We get

H̃B

∣∣∣∣
V
=

(
−B + A

2
cos(ωt) + A1 cos(ω1t + ϕ)

)
σ̄z −

∆
2
(B cos(ωt) + 1)σ̄x (A29)

Next, we choose a rotating frame, in which the diagonal is zero, in a similar way to Equation (A11),
but with a(t) = (A + B) cos(ωt)− 2A1 cos(ω1t + ϕ):
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H̃′B

∣∣∣∣
V
=

[
0 −∆

2 (B cos(ωt) + 1)e−i
∫

a(t)dt

−∆
2 (B cos(ωt) + 1)ei

∫
a(t)dt 0

]

= − σ̄+
2
· ∆

2
(B cos(ωt) + 1) exp

{
−i
(

A + B
ω

sin(ωt)− 2A1

ω1
sin(ω1t + ϕ)

)}
+ h.c.

= − σ̄+
2
· ∆

2
(B cos(ωt) + 1)

∞

∑
k,k1=−∞

Jk

(
A + B

ω

)
e−ikωt · Jk1

(
2A1

ω1

)
eik1(ω1t+ϕ) + h.c.,

(A30)

wherein σ̄+ = σ̄x + iσ̄y. The proof follows.

Similarly, we derive the transformation of the three-level system in Equation (10).

Claim A6. Let

HB =

 1
2 − (B + A

2 ) cos(ωt) −∆
2 (B cos(ωt) + 1) η

−∆
2 (B cos(ωt) + 1) 1

2 + A
2 cos(ωt) 0

η 0 1

 (A31)

By a changing to a frame, which preserves |0̄〉 , |1̄〉 , |2̄〉, the Hamiltonian can be approximated by
Equation (10):

H′B =


0 −∆

2 J0

(
B+A

ω

)
η J0

(
B+A/2

ω

)
−∆

2 J0

(
B+A

ω

)
0 0

η J0

(
B+A/2

ω

)
0 1

2

 . (A32)

Proof. First, we change the reference frame by the first equality of Equation (A11), with

U = exp
{

i
(

B +
A
2

)
sin(ωt)

ω
|0̄〉 〈0̄| − i

A sin(ωt)
2ω

|1̄〉 〈1̄|
}

. (A33)

We get

H′B =


1
2 −∆

2 (B cos(ωt) + 1)e−i A+B
ω sin(ωt) ηe−i B+A/2

ω sin(ωt)

−∆
2 (B cos(ωt) + 1)ei A+B

ω sin(ωt) 1
2 0

ηei B+A/2
ω sin(ωt) 0 1

 . (A34)

The diagonal can be adjusted by subtracting 1
2 I. By using the Bessel–Anger identity in

Equation (A12), and by neglecting all but the zero frequency terms (rotating wave approximation),
we get

H′B =


0 −∆

2

[
J0

(
B+A

ω

)
+

B[J1( B+A
ω )+J−1( B+A

ω )]
2

]
η J0

(
B+A/2

ω

)
−∆

2

[
J0

(
B+A

ω

)
+

B[J1( B+A
ω )+J−1( B+A

ω )]
2

]
0 0

η J0

(
B+A/2

ω

)
0 1

2

 . (A35)

Finally, J−1(z) = −J1(z) for all z and the proof follows.
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