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Abstract: We aimed to explore the online signature modality for characterizing early-stage Alzheimer’s
disease (AD). A few studies have explored this modality, whereas many on online handwriting have
been published. We focused on the analysis of raw temporal functions acquired by the digitizer on
signatures produced during a simulated check-filling task. Sample entropy was exploited to measure
the information content in raw time sequences. We show that signatures of early-stage AD patients
have lower information content than those of healthy persons, especially in the time sequences of pen
pressure and pen altitude angle with respect to the tablet. The combination of entropy values on two
signatures for each person was classified with two linear classifiers often used in the literature: support
vector machine and linear discriminant analysis. The improvements in sensitivity and specificity
were significant with respect to the a priori group probabilities in our population of AD patients and
healthy subjects. We show that altitude angle, when combined with pen pressure, conveys crucial
information on the wrist-hand-finger system during signature production for pathology detection.

Keywords: online signature analysis; sample entropy; Alzheimer’s disease; classification

1. Introduction

Signatures have long been used for personal biometric authentication. This behavioral modality,
widely used in our daily lives, evolves with age. The production of fine motor movements strongly
progresses during childhood and for many years until the motor program ruling handwritten
movements reaches maturity. At this stage, the signing gesture becomes the outcome of a highly
automated ballistic process, involving multiple areas of the brain [1]. Alterations in this automated
and unconscious process may reflect a change in health condition, such as a decline in cognitive or
motor functions.

Few researchers have examined handwriting signatures for assessing the health state of individuals.
Prior studies on handwriting focused on other handwriting tasks, such as loops, letters, and handwritten
texts, for characterizing and detecting different pathologies, such as Parkinson’s disease [2–9],
Huntington’s [9], Alzheimer’s [9–16], and depression [10].

Alzheimer’s disease (AD), from the perspective of handwritten signatures analysis, has rarely
been studied. To the best of our knowledge, only one study, specifically on online handwritten
signatures [17], proposed a machine learning approach to discriminate AD patients from healthy
subjects. The authors exploited the sigma-lognormal model [18] for online signatures to extract global
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features of each signature instance, such as the number of lognormal densities, the maximum speed
divided by the signing time, and the number of peaks in the graphing speed normalized by their
duration, average, and standard deviations of some key parameters of the sigma-lognormal model.
Three classifiers were compared: a support vector machine (SVM) with a linear kernel, and two
decision trees: classification and regression trees (CART) and bagging CART. The best results were
obtained with the bagging CART algorithm; an error rate of 3% was reached on a private database of
32 healthy and 29 pathological signatures.

In the present work, we studied the relationship between handwriting movements and early-stage
Alzheimer’s disease (AD) by analyzing online signatures captured in a real-life task: signing a check.
We propose considering the raw temporal functions acquired by the digitizer and using the sample
entropy (SE) measure to quantify the possible alterations in temporal functions induced by the disease
in the early stages. Our hypothesis is that since signing is uniquely both an automated and an
unconscious writing pattern, a cognitive and motor disorder during the early stage of disease would
be detectable by alterations in the raw temporal functions. This analysis may provide insights for early
AD diagnosis.

Our paper is organized as follows: In Section 2, we detail the database and its associated acquisition
protocol. In Section 3, we review the SE measure and present the experiments and results. Section 4
states our conclusions and perspectives for future work.

2. Materials and Data Acquisition Protocol

Our private dataset was acquired at Broca Hospital in Paris within the framework of the ALWRITE
project [15,16], a French research project on the analysis of different handwriting tasks for AD assessment.
All participants freely signed a consent form after receiving information about the study. The whole
protocol contained, among many others, a real-life-inspired task that involves filling out a simulated
check printed on a sheet of paper and fixed to a digitizing tablet.

Two simulated checks (pseudo-checks) were provided on two different sheets of paper and
presented consecutively to each participant. Each person naturally filled out the whole information
in the check by appending the amount in words and numeric form, the date, the place, and their
signature. Participants filled out both pseudo-checks on a Wacom Intuos Pro Large tablet with an
inking pen. The digitizing tablet sampled the pen trajectory at 125 Hz and captured five raw temporal
functions: pen position (x(t),y(t)), pen pressure p(t), and two pen inclination angles, azimuth Az(t) and
altitude Alt(t), as shown in Figure 1.
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Figure 1. Azimuth and altitude angles captured by the Wacom digitizing tablet.

For our study, online signature data were manually segmented from the whole handwritten
information written on the check (the amount in words, the amount in numeric form, the date, and
the place). Examples of online signatures from one healthy subject and one early-stage AD patient
are displayed in Figure 2. As the in-air trajectory of the pen (pen-up) is also captured by the digitizer
up to 2 cm off the tablet surface, the signatures displayed in Figure 2 also show in-air trajectories in
green points.
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Figure 5. The pressure temporal function for (a) an AD signature and (b) a healthy one. 

Figure 2. Examples of segmented signatures: (a) both signatures of an Alzheimer’s disease (AD)
patient; (b) both signatures of a healthy subject. Green points represent the in-air trajectory captured by
the Wacom tablet.

Figures 3–7 display the five raw temporal functions for one AD signature, and a healthy one,
belonging to the persons whose signatures are shown in Figure 2. We notice a different behavior
between these two signatures in terms of their raw temporal functions.
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The used dataset contained online signatures of 70 participants. From the overall dataset,
31 participants were patients with early-stage AD (AD patients), and 39 were healthy controls (HC
subjects). Table 1 summarizes the characteristics of the subjects. AD patients were diagnosed at
Broca Hospital (Paris, France) based on the DSM-V criteria [19] and considered as having early-stage
AD if their mini-mental state examination (MMSE) score was over 20 [19]. HC subjects performed
neuropsychological tests to ensure their cognitive profile was normal. Participants with medical
problems, such as stroke and other neurodegenerative diseases, were not included.

Table 1. Characteristics of the 70 subjects available in the dataset. HC denotes healthy controls, MMSE
denotes mini-mental state examination.

Male (n = 21) Female (n = 49)

Number Age
(mean ± std)

MMSE
(mean ± std) Number Age

(mean ± std)
MMSE

(mean ± std)

AD patients
(n = 31) 14 81.5 ± 7.4 23.1 ± 3.8 17 78.2 ± 6.6 22.5 ± 4.3

HC subjects
(n = 39) 7 75.5 ± 6.4 28.8 ± 0.7 32 72.2 ± 6.4 28.8 ± 1.1

3. Methods and Analysis of Signatures

3.1. Sample Entropy Measure

The concept of entropy has been widely and successfully exploited in the literature for the
analysis of biomedical signals, especially for electroencephalography analysis [20,21]. More recently,
SE was used on online handwritten inputs for health status assessment [22,23]. It is used to quantify
irregularities in time sequences and measures complexity. To the best of our knowledge, SE has never
been used for AD assessment based on signature analysis.

On-time series of length N {u(1), u(2), . . . , u(i), . . . , u(N)}, an integer value m < N is fixed,
specifying the length of the subsequences to be compared (window on the signal), and let r be a positive
real number.
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The following (N − m + 1) vectors Xm(1), Xm(2), . . . , Xm(i), . . . , Xm(N − m + 1) are defined as:

Xm(i) =
{
u(i), u(i + 1), . . . , u(i + m− 1) (1)

and are embedded in the m-dimensional space, since each contains a subsequence of length m starting
at point i. The distance between two different vectors (i , j) is defined as the maximum difference of
their scalar components:

d(Xm(i), Xm( j)) = max0≤k≤m−1

{∣∣∣u(i + k) − u( j + k)
∣∣∣} (2)

SE is then:
SE(m, r) = −log (A/B) (3)

where A is the number of template vectors pairs less than r far in the embedded dimension (m + 1),
and B is the number of template vectors pairs less than r far in the embedded dimension m. With
construction A ≤ B, we have SE(m, r) ≥ 0.

In the literature [20–23], the hyper-parameters m and r are often fixed empirically with the
objective to maximize the discrimination between the groups: between Parkinson patients and healthy
subjects [22], between AD patients and healthy subjects [20,21], and between patients with essential
tremor and healthy subjects [23]. In this work, we studied the variation in SE values for all possible
values in a given interval for both hyper-parameters m and r. The objective was to analyze the behavior
of this measure independently of fixed values of its hyper-parameters.

3.2. Initial Trends in the Correlation Between SE and Metadata

We computed the SE values of all signatures for different values of m = 1, . . . , 9 and r = 0.1 to 0.9
in 0.1 steps. The SE of a signature was computed considering the whole signing gesture, including
both in-air and on-paper trajectories during the signing process.

To gain initial insights into its behavior, we computed the SE for each raw temporal function
separately. Then, we analyzed the correlation between the obtained values and two metadata, the
MMSE and age, and that for the 70 participants independently of the group (AD or HC).

The correlation values between the MMSE and the average SE on both signatures of each person
for all values of m and r are reported in Table 2. We noticed a positive correlation between the MMSE
and SE that was higher for the y coordinate, pen pressure, and altitude angle compared with those
computed for x coordinate and azimuth angle. This result shows that persons with normal cognitive
profiles (high MMSE) tend to produce signatures with more information content.

Table 2. Correlation values between the MMSE and sample entropy (SE) for the five temporal functions.

MMSE, SE(x) MMSE, SE(y) MMSE, SE(p) MMSE, SE(Alt) MMSE, SE(Az)

0.28 0.36 0.39 0.33 0.26

Table 3 displays the correlation values between age and the average SE on both signatures for all
values of m and r. We noticed a negative correlation between age and SE for each temporal function.
This reveals that, in general, with age, entropy tends to decrease, meaning that temporal functions
show less intrinsic irregularities and variation in the signature gesture. The handwritten production
loses information content with age.

Table 3. Correlation values between age and SE for the five temporal functions.

Age, SE(x) Age, SE(y) Age, SE(p) Age, SE(Alt) Age, SE(Az)

−0.22 −0.30 −0.32 −0.33 −0.10
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We observed a very low correlation between age and azimuth compared with other temporal
functions (−0.1). Aging appears to have no effect on this parameter. Azimuth could be used to
distinguish a right-handed from a left-handed person, for example, for biometric authentication
purposes. In our dataset, except one person, all the other participants were right-handed and thus
had a similar azimuth profile. Therefore, our dataset had less variance in azimuth between persons
compared with all other temporal functions. This is why we did not consider the azimuth temporal
function in the following studies.

3.3. Influence of Signature Styles

SE quantifies the intrinsic information content in signatures, and thus, may be sensitive to signature
style. For this reason, we addressed whether HC and AD patients produced different signature styles
and studied the influence of style on SE.

Signatures of HC and AD patients were labeled visually by three experts into text-based signatures
(where all the allographs are legible), mixed (where one or more but not all of the allographs are
legible), and stylized (where none of the allographs are legible) [24]. These three styles may be related
to signature complexity, quantified by SE. The resulting distribution in each style is reported in Table 4.

Table 4. Distribution of signature styles in AD and HC groups.

Group Stylized Mixed Text-Based

AD
(n = 31) 21 10 0

HC
(n = 39) 21 18 0

We first noticed that text-based signatures do not exist in our dataset; no signatures were
completely legible.

To study the influence of signature stylization, we considered the SE values computed for the x
coordinate (SE(x)) and y coordinate (SE(y)), and that for all signatures, independent of the group (AD
or HC). Then, we performed k-means clustering, with k = 3, on both entropy values simultaneously
(two-dimensional (2D) clustering). Table 5 reports the distribution of signature styles in the obtained
three groups and their respective bi-dimensional centroids.

Table 5. Distribution of stylized and mixed signature styles in the three resulting groups.

Group 1 Group 2 Group 3

[mean SE(x), mean SE(y)] [0.2, 0.34] [0.14, 0.23] [0.11, 0.16]
Stylized signatures (n = 42) 2 30 10
Mixed signatures (n = 28) 0 24 4

We observed that 77.14% of persons with stylized and mixed signatures were grouped together
in Group 2 (54 of the 70 participants). This means that most signatures with such styles have similar
information content in the x(t) and y(t) temporal functions. Also, two persons with stylized signatures
had the highest SE values, which means that an illegible signature could be complex.

These results indicate that SE quantifies irregularities in temporal functions independent of the
stylization in the form. Given these findings, we then studied the relationship between SE and AD
independent of signature styles.

3.4. Relationship between SE and AD

In each group (AD vs. HC), we analyzed the impact of the hyper-parameters m and r on SE values
computed for the four temporal functions (x(t), y(t), p(t), and Alt(t)). In the surfaces displayed in both
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Figures 8 and 9, we noticed that the SE measure was sensitive to the hyper-parameter r and not to m.
Also, for low values of r, SE values were much higher for HC compared with AD patients. This means
that the intrinsic variation in the temporal functions in the signature was much stronger for healthy
persons compared with AD patients. We, thus observed a significant information loss in Alzheimer’s
signatures for low values of hyper-parameter r in Figure 8 (for x(t) and y(t) pen coordinates) and
Figure 9 (for pen pressure p(t) and altitude angle Alt(t)).
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To gain further insight into the impact of the two hyper-parameters on SE, Figures 10–13 display
boxplots of the entropy values for the four temporal functions when fixing one hyper-parameter and
varying the other. These figures show that SE is more sensitive to r compared with m. We observed
that when r increases, entropy values decrease for both AD and HC groups and their variances for
persons in each group decrease. When m increases, the entropy values and their variances for persons
in each group tend to remain stable.
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We also noticed that entropy values are much higher for temporal function y(t) compared with x(t),
indicating that signatures vary more vertically than horizontally. The same occurs for altitude: it had
higher information content than horizontal movement (x(t)). The altitude angle conveys information
about how the writer holds and moves the pen when signing, and is particularly modified by the
intensity of vertical movement (y(t)). Therefore, strong variations in y(t) also appear in the temporal
function Alt(t).
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Concerning information loss in Alzheimer’s signatures relative to healthy subjects, observed for
low values of r in Figures 8 and 9, the phenomenon was clearly stronger for pen pressure and pen
altitude angle, particularly for m = 3 and r/std = 0.1. For pen pressure and pen altitude, we found a
relative increase of entropy of around 50% and 37% between signatures of AD patients and those of
healthy subjects, respectively.

3.5. Towards AD Detection: AD vs. HC Classification Results

To study the discriminative power of SE between AD and HC subjects, as SE is sensitive to
r, we performed classification for m = 3 and r/std = 0.1. For these values of hyper-parameters, the
Mann–Whitney test in Table 6 shows a significant difference between the entropy values of AD and
HC populations for the four temporal functions.

Table 6. The p-values computed with the Mann–Whitney test for the four temporal functions.

Mann-Whitney Test x(t) y(t) p(t) Alt(t)

p-value 6 × 10−5 0.0013 3.12 × 10−6 4.22 × 10−4

Based on this result, we considered two linear classifiers, a linear support vector machine (SVM)
and linear discriminant analysis (LDA), using a two-fold cross-validation protocol for training and
testing. For each raw temporal function considered, the SE values of both signatures for each person
were used as inputs to the classifier.

Tables 7 and 8 report the obtained sensitivity (percentage of AD patients correctly classified),
specificity (percentage of HC correctly classified), and accuracy values for the SVM and LDA classifiers.

Table 7. Classification results for the support vector machine (SVM) classifier with
two-fold cross-validation.

Classification p(t) Alt(t) p(t), Alt(t) x(t),y(t),p(t),Alt(t)

Sensitivity 58.06% 61.29% 64.52% 74.19%
Specificity 76.92% 79.49% 71.79% 76.92%
Accuracy 68.80% 71.43% 68.57% 75.71%
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Table 8. Classification results for the linear discriminant analysis (LDA) classifier with
two-fold cross-validation.

Classification p(t) Alt(t) p(t), Alt(t) x(t),y(t),p(t),Alt(t)

Sensitivity 54.84% 54.84% 64.52% 67.74%
Specificity 79.49% 71.79% 79.49% 58.97%
Accuracy 68.57% 64.28% 72.86% 62.85%

We noticed that for both SVM and LDA classifiers, the combination of SE values computed for pen
pressure and pen altitude improved the sensitivity relative to taking each of those features separately.
As the a priori group probability for the dataset here used was 0.44 for the AD group (31 AD patients
out of 70) and 0.56 for the HC group (39 subjects out of 70), the improvement obtained was significant.
For sensitivity, which was our main objective, the relative improvement was 45.7% with both classifiers
(64.52% in sensitivity relative to 44.28% of a priori Alzheimer’s group probability).

When combining the SE values of the four temporal functions, the sensitivity (up to 74.19%)
and specificity (up to 76.92%) improved significantly for the SVM classifier. For the LDA classifier,
sensitivity also improved (up to 67.74%) but the specificity decreased by almost 26%.

Thus, in the best-case scenario, with the SVM and the combination of the four SE values, the
relative improvements in sensitivity and specificity were 67.54% and 37.35% relative to the a priori
group probability of correct classification of AD patients and HC subjects, respectively.

4. Discussion and Conclusions

In this work, we analyzed the sample entropy (SE) of raw temporal signals captured by a digitizer
on signatures appended during a simulated check-filling task. Our extensive study of the effect
of the hyper-parameters when measuring SE added to a statistical analysis highlighted that online
signatures written by early-stage AD patients show significantly lower entropy values, and thus, lower
information content, than those of healthy persons. We verified that SE is not influenced by different
signature styles, only represented in our dataset by mixed and stylized signatures [24].

We observed that the difference in the information content between signatures of AD patients
and those of HC was high for pen pressure and altitude angle time sequences. This result that the
pen altitude angle allows characterizing the pathology with pen pressure on signatures is a novel
finding. Notably, in former work on biometrics, pen inclination angles were found to be misleading for
characterizing a writer (with or without pressure) [25]. Our analysis instead showed that AD patients
have less tonus in their way of holding the pen, which impacts pen pressure and variations in the
vertical direction, which are lower, compared with those of healthy subjects. Our classification results
suggest that altitude, when combined with pen pressure, conveys valuable information about the
wrist-hand-finger system during signature production for pathology detection. In other words, one of
our findings is that the way the pen is held by the writer during the signing gesture has significance for
AD detection. Our statistical analysis with the Mann–Whitney test showed that a significant difference
exists between AD and HC distributions of SE values for pen coordinates, pressure, and altitude angle.
When combining these four temporal functions, we obtained an accuracy of 75.71% with a linear
SVM classifier in the framework of a two-fold cross-validation protocol to ensure the reliability of the
classification results.

Finally, the experiments and analyses conducted to support our claim—quantifying the alterations
in raw temporal functions with SE, describing the complete signing gesture in the air and on paper,
provides insight into early AD diagnosis. Our study shows that online signature, despite being a signal
of short duration, conveys valuable information about a writer’s motor and cognitive skills through its
ballistic, automated, and unconscious process, and is thus a possible modality for the automatic health
state assessment.

However, our study has some limitations: (1) our dataset is small, both in terms of the number
of persons in each group (AD and HC), and the number of signatures per person; (2) we exploited
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only the raw temporal functions captured by the digitizer for the data description; and (3) even if we
showed that a statistically significant difference exists between AD and HC populations with the SE
measure, we obtained a misclassification rate of around 24% with a linear SVM classifier. The rather
low correlation coefficients between SE and the MMSE suggest that SE is not sufficient alone to finely
characterize the alterations in temporal functions induced by the disease.

In the future, we will address these limitations by (1) incorporating other online signatures
captured during another task in the ALWRITE project; (2) considering other kinematic parameters
such as speed, acceleration, and jerk, successfully used for AD assessment based on handwriting after
a local point-wise feature extraction [15,16]; and (3) combining SE with other non-linear measures to
propose a more refined detection of alterations in signatures due to the disease.

We also aim to extend this transversal study to signatures acquired in different sessions. The
longitudinal framework will contribute to evaluating the viability of our approach for quantifying the
degradations in signatures according to dementia severity.
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