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Abstract: The acquired bearing fault signal usually reveals nonlinear and non-stationary nature.
Moreover, in the actual environment, some other interference components and strong background
noise are unavoidable, which lead to the fault feature signal being weak. Considering the above
issues, an effective bearing fault diagnosis technique via local robust principal component analysis
(LRPCA) and multi-scale permutation entropy (MSPE) was introduced in this paper. Robust principal
component analysis (RPCA) has proven to be a powerful de-noising method, which can extract a
low-dimensional submanifold structure representing signal feature from the signal trajectory matrix.
However, RPCA can only handle single-component signal. Therefore, in order to suppress background
noise, an improved RPCA method named LRPCA is proposed to decompose the signal into several
single-components. Since MSPE can efficiently evaluate the dynamic complexity and randomness of
the signals under different scales, the fault-related single-components can be identified according
the MPSE characteristic of the signals. Thereafter, these identified components are combined into a
one-dimensional signal to represent the fault feature component for further diagnosis. The numerical
simulation experimentation and the analysis of bearing outer race fault data both verified the
effectiveness of the proposed technique.

Keywords: bearing fault diagnosis; weak fault; multi-component signal; local robust principal
component analysis; multi-scale permutation entropy

1. Introduction

The bearing as an essential element has been widely used in rotating machinery [1,2]. Due to
the severe working conditions, such as long and uninterrupted operation, alternating loads, and
corrosion, the probability of bearing failure increases greatly, which may cause heavy economic losses
or even serious personal injury [3]. Hence, an available diagnosis technique for bearing faults is highly
valuable [4]. The bearing faults can be classified into three main types: inner race fault, outer race fault,
and rolling element fault [5]. The vibration signals of the bearings are often used for fault diagnosis for
their containing abundant equipment operation information [6]. When the bearing faults occur, the
corresponding vibration signals will produce periodic impulses, and the feature of this signal behaves
in a typical nonlinear and non-stationary nature, which increases in spectral complexity [5,7,8]. In the
actual industrial production environment, the signals usually contain some interference vibrations
caused by other mechanical components and strong background noise besides useful fault feature.
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Especially in the early stages of the bearing fault, the fault feature is weak and completely drowned by
the strong noise and interferences. Therefore, in order to realize accurate diagnosis of bearing faults,
suppressing the background noise and extracting weak fault features from multi-component signals
are becoming an urgent work to be solved.

For the diagnosis of the bearing fault signals, some researchers have proposed many methods.
Ciabattoni et al. [9] proposed a novel bearing fault classification method by adopting the empirical
cumulative distribution functions (ECDFs) of the signal statistical spectral images as the fault feature
vectors. The wavelet transform (WT) is the inner product operation between a translated and dialed
wavelet basis function and the raw time domain signal. The different feature components and noise in
the signal can be separated by the obtained wavelet coefficients [10,11]. Wang et al. [12] extracted the
weak fault feature of the rolling element via wavelet packet transform method. Deng et al. [13] presented
a novel fault diagnosis method for a motor bearing based on integrating empirical wavelet transform
(IEWT) and fuzzy entropy. Xiao et al. [14] applied the wavelet threshold denoising method to effectively
de-noise a rolling bearing signal. However, the diagnostic performance of these methods depends on
the selection of the wavelet basis functions and the threshold. The Wigner–Ville distribution (WVD) [15]
can extract ridges representing feature information from two-dimensional time-frequency plane of the
non-stationary signals. Ming et al. [16] applied the cyclic Wiener filter to detect the rolling bearing fault,
which uses the spectral coherence theory induced by the second-order cyclostationary signal to extract
the weak fault feature. Nevertheless, WVD will produce cross-terms when analyzing multi-component
signals. As far as the adaptive signal processing techniques, the empirical mode decomposition method
(EMD) and the local mean decomposition (LMD) can be used to deal with nonlinear and nonstationary
signals. LMD can decompose any signal into product functions (PFs) representing different feature
components [17]. Li et al. [18] introduced a fault diagnosis scheme based on local mean decomposition
and an improved multi-scale fuzzy entropy to realize the automatic identification of the bearing fault
patterns. LMD is inadequate in processing the signals containing narrow bandwidth components.
The multi-component signals can be decomposed into a series of intrinsic mode functions (IMFs)
with physical meaning by EMD [19]. Imaouchen et al. [20] employed some demodulation analysis
methods based on frequency-weighted energy operator and complementary ensemble empirical mode
decompositions to identify the early weak faults of the bearing. Bustos et al. [21] successfully identified
the operating state of the gears in high-speed trains through the EMD-based methodology. But the
EMD and its improved version always suffer from modal aliasing and boundary effect. Moreover,
they are also sensitive to noise. The above research provides rich reference information for bearing
fault diagnosis.

It has become quite familiar to view the dynamic characteristics of different features of the raw
system by reconstructing the observed time series from nonlinear non-stationary systems into a high
dimensional phase space [22,23]. In that way, extracting fault features from high a dimensional phase
space is a feasible scheme. The singular value decomposition (SVD) method [24] can decompose
the signal trajectory matrix into series interpretable components. The singular values obtained can
effectively display the intrinsic properties of different feature components and noise in raw signal.
The fault feature can be extracted by setting the singular values representing interference components
and background noise to zeros. Currently, the selection of singular values representing fault feature
components still depends on experience, which may lead to considerable error. Especially for the
early weak faults of the bearings, the singular values representing different feature components
are almost impossible to be identified [25]. The classical manifold learning theory holds that the
feature component of the signal matrix has a lower intrinsic dimension, which is distributed in a
low-dimensional submanifold of a high dimensional phase space [26,27]. As a widely used dimension
reduction method, the RPCA can extract this submanifold structure through a rank function constraint
based on low-rank matrix approximation (LRMA) and simultaneously suppress background noise
through a l0-norm regularization strategy [28]. RPCA has proven to be a powerful de-noising tool
in image processing, computer vision, and so on [29,30]. However, RPCA is inoperative for the
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separation of submanifold structures composed of multiple feature components; that is, it cannot
process a multi-component signal. Recently, a novel, convex, locally sensitive, low rank matrix
approximation (CLSLRMA) method [31] was introduced into the data completion problem, which
significantly relaxes the assumption in LRMA that the feature component in matrix has a low-rank
submanifold structure. CLSLRMA can decompose a matrix drawn from linear mixture of multiple
low-rank manifold subspaces into their respective single subspaces. Hence, it is a feasible way to
decompose the trajectory matrix composed of multi-component signals by CLSLRMA.

Permutation entropy (PE) [32] can efficiently evaluate the dynamic complexity and randomness of
the signal time series through measuring similarity among the ordinal patterns extracted from the series,
which has been widely used for the fault diagnosis of mechanical equipment [33,34]. The dynamic
complexity of the bearings will change with the occurrence of faults, resulting in the changing PE
values of the vibration signals [33]. However, because of the strong nonlinear and non-stationary
characteristic of the acquired mechanical fault feature signals, their complex dynamic characteristics
can usually hardly be fully displayed on the original scale, while some important information may
also exit over multiple spatial-temporal levels (scales) [32]. Fortunately, based on PE, the multi-scale
permutation entropy (MSPE) [32,35] has proven to be one of the most effective methods for which one
can explicitly explain the characteristic information from the multiple time scales present in complex
time series. Therefore, the MSPE of the signal was adopted in this paper to identify the feature
component signal representing the bearing faults.

In this paper, an effective bearing fault diagnosis technique via local robust principal component
analysis (LRPCA) and MSPE is introduced. Firstly, on the basis of noise suppression, we proposed
an improved RPCA method to decompose the signal into several single-components, which was
termed LRPCA. According to CLSLRMA, in the phase space of the weighted matrix associated with
different anchor point, we assume that the signal trajectory matrix behaves as a combination of a
noise component and a low-dimensional submanifold component, and those submanifold components
represent different feature components in the raw signal. LRPCA shows that those submanifold
components can be approximated by low-rank matrices through solving a convex program about a
weighted combination of the matrix rank constraint function and the l0-norm regularization [36,37].
After that, the MPSE was adopted to identify the low-rank matrices corresponding to the fault feature
component. Finally, the identified low-rank matrices were transformed into a one-dimensional signal
to represent the global approximation of the fault feature component for further diagnosis via weighted
Nadaraya–Watson regression model [38]. The processing of the numerical simulation data and the
experimental bearing fault data both verified that the proposed technique can provide a great diagnostic
performance for bearing faults.

The rest of the paper is organized as follows: Section 2 introduces the theory description, wherein
Section 2.1 defines some notations and abbreviations used in this paper; Section 2.2 illustrates the
proposed LPRCA method; Section 2.3 describes the MSPE; the detailed step of the proposed bearing
fault diagnosis technique is presented in Section 2.4. The analysis of the simulated signal and the
experimental signal are performed in Section 3. Section 4 draws the conclusions.

2. Theory Description

2.1. Notations and Abbreviations

Throughout this paper, we use lowercase letters for scalars, e.g., x; bold and lowercase letters for
vectors, e.g., x ∈ Rn1 ; boldface and uppercase letters for matrices, e.g., X ∈ Rn1×n2 . The anchor points
in X are marked as ei = (ai, bi), ai = 1, . . . , n1; bi = 1, . . . , n2; i = 1, . . . , m; the i-th element of x can be
expressed as xi, the (i,j)-th element of X is denoted as X(i, j) and the i-th row of X is expressed as X(i, :).
The Hadamard product of two matrix A ∈ Rn1×n2 , B ∈ Rn1×n2 is defined as C = A�B ∈ Rn1×n2 with its
element C(i, j) = A(i, j)B(i, j). The l0-norm ‖X‖0 represents the sum of nonzero elements of X and the
l1-norm ‖X‖1 the sum of absolute value of all elements in X. The SVD of X is defined as X = U

∑
V,
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where U and V are the left and right singular value matrices; Σ = diag({σi}1≤i≤r) represents the singular
value matrix. The nuclear norm of X is denoted as ‖X‖∗ =

∑
i σi.

In the rest of this paper, the following abbreviations are used: RPCA—robust principal component
analysis; LRPCA—local robust principal component analysis; MSPE—multi-scale permutation
entropy; CLSLRMA—convex local sensitive low rank matrix approximation; SVD—singular
value decomposition; SSA—singular spectrum analysis; EMD—empirical mode decomposition;
ADMM—alternating direction method of multipliers; and SNR—signal to noise ratio.

2.2. Decomposing a Signal into Single-Components via LRPCA

2.2.1. RPCA

The acquired one-dimensional bearing fault signal x ∈ Rn can be converted into a high dimensional
signal trajectory matrix X ∈ Rn1×n2 by phase space reconstruction, which is based on a embedding process
with the parameter of the embedding dimension n1 and the delay time τ (where (n1 − 1)τ+ n2 = n) [22]:

X =


x1 x2 · · · xn2

x1+τ x2+τ · · · xn2+τ
...

... · · ·
...

x1+(n1−1)τ x2+(n1−1)τ
. . . xn


(1)

Except for the strong background noise component, X is composed of multiple feature components,
which include the fault feature component and the unwanted interfering components. Hence, on
the basis of noise suppression, how to separate the useful feature component from these mixed
multi-components and back it to the one-dimensional signal to represent the extracted fault feature
component was an inevitable task for extracting weak faults in this paper.

By referring to manifold learning theory, it can be found that the feature component in X has
a low-dimensional submanifold structure [26,27]. RPCA can extract this structure by solving the
following low-rank matrix and sparse matrix decomposition model (shown as Figure 1):

minarg
L,S

rank(L) + α‖S‖0, s.t. X = L + S (2)

where α = 1/
√

max(n1, n2) is the optimal weighted parameter. The first term (L ∈ Rn1×n2 , r(L)� r(X))
of this model is a rank constraint function, which uses a low-rank matrix to estimate the low-dimensional
submanifold structure, and the second term (S ∈ Rn1×n2) is a regularization strategy, which is mainly
used to correct the deviation of matrix data caused by noise. In fault feature extraction, L represents
the signal feature component and S captures the noise [28]. Thus, RPCA can effectively separate the
feature component of the signal from the noise. However, it can be seen from the theoretical basis of
Equation (2) that RPCA can only deal with the matrix data composed of a single feature component and
noise, which means this method cannot separate the data containing the multiple feature components.

2.2.2. LRPCA

To tackle the drawback of RPCA in processing the multi-component signals, we proposed a novel
LRPCA method based on CLSLRMA to decompose X into several single-components. In LRPCA, the
following fundamental assumption is introduced.

Fundamental Assumption: In addition to the background noise signal matrix S, X contains a
feature signal matrix L composed of a linear mixture of several feature components. Furthermore,
each feature component corresponds to a low-dimensional submanifold structure hidden in the
high-dimensional phase space and has a characteristically of low-rank.
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Figure 1. Illustration of the robust principal component analysis (RPCA); A signal trajectory matrix
X ∈ Rn1×n2 can be decomposed into a low rank feature component L ∈ Rn1×n2 and a sparse component
S ∈ Rn1×n2 .

Figure 2 depicts the main ideal of the LRPCA. Specifically, each submanifold structure is generally
hidden in the different high-dimensional phase space T (ei) associated with the local selected anchor
point (ei = (ai, bi), ai = 1, . . . , n1; bi = 1, . . . , n2; i = 1, . . . , m), and T (ei) is derived from the weighting
of X:

T (ei) = Wei �X (3)

where Wei ∈ Rn1×n2 is a local weighted coefficient matrix.
Thereafter, T (ei) is decomposed into a low-rank component Lei and a sparse component Sei .

The resulting low-rank matrices Le1 , . . . , Lem represent the low-dimensional submanifolds, which
correspond to different feature components in raw signal, that of the fault feature component and the
unwanted interfering components. Conclusively, L is expressed as the weighted combination of these
local low-rank matrices:

L = R1 � Le1 + · · ·+ Rm � Lem (4)

where Ri ∈ Rn1×n2 is a weighted regression matrix. Thus, the fault-related feature components can
be extracted from these low-rank matrices obtained by decomposing L. For this task, a novel local
low-rank matrix and sparse matrix decomposition model was proposed to obtain these low-rank
matrices from X:

Lei = minarg
Lei ,Sei

rank(Lei) + α‖Sei‖0, s.t. T(ei) = Lei + Sei (5)

The RPCA is actually a special case of this model when Wei is a unit matrix. Therefore, the
de-noising performance of this model can be guaranteed.
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Figure 2. Illustration of the proposed LRPCA method; in the different high-dimensional phase space
T (ei) associated with the local selected anchor point ei = (ai, bi), the signal trajectory matrix X ∈ Rn1×n2

can be decomposed into a low rank component Lei ∈ Rn1×n2 and a sparse component Sei ∈ Rn1×n2 .

• Model Construction and Algorithm Solving

The derivation of the phase space T (ei) is the key step in LRPCA. Firstly, a distance function
d((a, b), (a′, b′)) is defined to describe the similarity between any two elements X(a, b) and X(a′, b′) in X.
A smaller value of d means the probability of the two elements being in the same phase space is higher.
According to the theory of CLSLRMA, The standard incomplete SVD X = UVT [39] is employed to
divide d into two independent terms and the arc-cosine function is utilized to calculate these two terms:

d(a, a′) = arccos(
〈
U(a, :), U(a′, :)

〉
‖U(a, :)‖‖U(a′, :)‖

), d(b, b′) = arccos(
〈
V(b, :), V(b′, :)

〉
‖V(b, :)‖‖V(b′, :)‖

) (6)

Then, the following non-parametric smoothing Epanechnikov kernel function [40] is adopted to
define the local weighted coefficient matrix Wei :

W((a, b), (a′, b′)) = W(a, a′)W(b, b′) = (1− d((a, a′)2)(1− d(b, b′)2) (7)



Entropy 2019, 21, 959 7 of 25

The (i, j)-element of Wei is expressed as W(ei, (i, j)). The Epanechnikov kernel function is a typical
unilateral quadratic decrement function related to d. Consequently, a lager value of the weighted
coefficient means that the weight for X(i, j) belonging to T (ei) is bigger. Besides, for different local
anchor point ei, there theoretically should exist a unique corresponding phase space hidden the single
submanifold. However, as the fundamental assumption states, there should be finite number of single
submanifold structures in X. Gratifyingly, this function has the mathematical property of changing
slowly, which means as long as the similarity of two anchor points ei and e j is large enough, their
corresponding phase spaces T (ei) and T (ei) will have quite high similarity. Moreover, both of those
two phase spaces may hide the same single submanifold structure.

Through the above theoretical analysis process, the T (ei) satisfying the fundamental assumption
was successful created. Finally, T (ei) is decomposed to extract the hidden low-rank matrix Lei by
solving the Equation (5). Since the discrete combination nature of the l0-norm and rank function, the
solution of this model is an non-deterministic polynomial (NP)-hard problem [41]. Take this into
consideration, some recent studies [36,37,42–45] pointed out that an equivalent convex optimization
program of this model can be obtained from the convex hull of the two constraints; that is, the l1-norm
and the nuclear norm are employed to replace those two constraints respectively:

Lei = minarg
Lei ,Sei

‖Lsi‖∗ + α‖Sei‖1, s.t. T(si) = Lei + Sei (8)

The solution of Equation (8) is a typical convex optimization problem, whose minimizer is globally
unique [43]. Algorithm 1 provides a precise and convergent solution to this equation via ADMM [44,46].
Note that steps 3 and 4 are both convex problems, they both have closed-form solutions via singular
value thresholding operator [47].

Algorithm 1 solve (8) by ADMM

Input: signal trajectory matrix X ∈ Rn1×n2 ;
Parameter: number of anchor points: q; regularization parameter: α = 1/

√
max(n1, n2);

for all i = 1:m, parallel do;
1. select ei(ai, bi) uniformly in X, and calculate Wei by Equation (7);
2. T (ei) = Wei �X;
Initialize: L0

ei
= S0

ei
= Y0 = 0, γ0 = e−3, γmax = e10, µ = 1.1, ε = 1e− 8;

while not converged do;
3. fix the others and update Lk+1

ei
by:

Lk+1
ei

= argmin
Lei

: ‖Lei‖∗ +
γk

2
‖Lei + Sk

ei
−T (ei) + Yk

‖
2
F

4. fix the others and update Sk+1
ei

by:

Sk+1
ei

= argmin
Sei

: λ‖Sei‖1 +
γk

2
‖Lk+1

ei
+ Sei −T (ei) + Yk

‖
2
F

5. update Lagrange multiplier Y: Yk+1 = Yk +T (ei) − Lk+1
ei
− Sk+1

ei
;

6. update τ: τk+1 = min(µτk, τmax);
7. check the convergence conditions:

‖Lk+1
ei
− Lk

ei
‖
∞
≤ ε,‖Sk+1

ei
− Sk

ei
‖
∞
≤ ε,‖Lk+1

ei
+ Sk+1

ei
−T (ei)‖∞ ≤ ε

end;
end;
output: Le1 , · · · , Lem .
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Through Algorithm 1, we can obtain m low-rank matrices corresponding to different feature
components in the raw signal. Besides, it needs to be emphasized that the performance of the final fault
diagnosis is highly susceptible to the location selection and the number of the anchor points. Once the
chosen anchor points are inappropriate, there may be multiple low-rank matrices corresponding to
the same feature component. More seriously, the fault-related low-rank matrices may be completely
missed. In view of the above problems, for the selection of the anchor points, we do not have a good
solution for now. But, in the process of analyzing the experimental data, the following two principles
are feasible. The first one is that m should be large enough to ensure that the low-rank matrices
corresponding to all feature components can be extracted specifically. This can be explained from the
perspective of the probability. When the number of the anchor points is more, the probability of the
extracted fault-related low-rank matrices is higher. However, this inevitably requires a lot of computing
time. The other one is that these anchor points should be uniformly chosen from the elements set
and the distance between any two anchor points should be made large enough. This principle is to
make extracted low-rank matrices corresponding to the different feature components differ as much
as possible. In the numerical simulation experiment, since the raw simulated signal contained three
feature components, and we found that when m was set as six, the final decomposition performance
was quite good. Additionally, when analyzing the experimental signal, it was found that m = 6 is also
appropriate. Therefore, according to the analysis results of the experimental data, we assumed that
the number of the main feature components in the acquired bearing fault signal generally would not
exceed three, and set m to be twice that number; that is m = 6.

• Global Approximation of Fault Feature Component

These low-rank matrices can be backed to m one-dimensional component signals by inverse
transform. In Section 2.2, it will show that the one-dimensional components related to fault feature
can be identified from these signal through the MPSE characteristic of the signal. Thus, there are
o (o < m) identified one-dimensional signals and their corresponding low-rank matrices Le1 , . . . , Leo .
These low-rank matrices are actually local sensitive, which can only be used to describe the fault
feature information contained in the corresponding low-dimensional submanifolds. Hence, the
Nadaraya-Watson regression model [38] is adopted to combine these low-rank matrices into a global

approximation
^
L f ∈ Rn1×n2 of the fault feature component, which can be expressed as:

^
L f =

o∑
i=1

Wei∑m
j=1 We j

� Lei (9)

Note that if o = m, this equation is equivalent to Equation (4). Thus, the estimator of L can be

obtained, which is actually a de-noising process. Thereby, we returned
^
L f to the one-dimensional

time series
^
l f ∈ Rn, which is the expected fault feature signal. Hence, the task to suppress the strong

background noise and extract the fault feature signal was completed.

2.3. Identification of Bearing Fault-Related Signal through MSPE

2.3.1. Basic Theory of MSPE

The MPSE can efficiently evaluate the dynamic complexity and randomness of the time series
under different scales. The calculation of the MSPE depends on three parameters: scale factor ε,
embedding dimension d and time-lag δ [32,36]. For a signal time series x = [x1, x2, · · · , xn], the main
calculation steps can be divided as follows:



Entropy 2019, 21, 959 9 of 25

(1) Transform x into a successive coarse-grained time series yε ∈ Rnε (nε = [n/ε]) by averaging the
time data points in x with the given non-overlapping time slice of the increasing length, ε. Then,
each element of yε is defined as:

yεi =
1
ε

iε∑
j=(i−1)ε+1

x j, i = 1, 2, · · · , nε (10)

(2) For each coarse-grained time series yε, the PE value needs to be calculated. Firstly, yε is cut into a
series of data segments through d and δ:

gi = [yεi , yεi+δ, . . . , yεi+(d−1)δ], i = 1, 2, . . . , nε − (d− 1)δ (11)

There will be nε − (d − 1)δ data segments in total. Then, there are d! different types of ordinal
patterns (ψi, i = 1, . . . , d!) in the data segments. Then, count the frequency of each pattern and
denote them as f (ψ i), i = 1, . . . , d!. Thus, the relative frequency of each pattern can be written as:

p(ψi) = f (ψi)/(nε − (d− 1)δ) (12)

Finally, the PE of yε is expressed as:

P(ε) = −
d!∑

i=1

p(ψi) log2 p(ψi) (13)

For convenience, we normalize P(ε) by dividing its maximum value log2 d!:

0 ≤ P
(
ε)/ log2d! ≤ 1 (14)

(3) The PE values of different coarse-grained time series can be obtained and plotted as a function of
the scale factors. The vector P = [P(1), P(2), . . .], formed by the set of PE values, is the MSPE of the
original time series. Figure 3 shows the process of coarse granulation and the data segmentation
of a time series.
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Figure 3. Illustration of the coarse-grained and data segments of the time series with ε = 2, d = 3, and
δ = 2, as well as the all d! = 6 type of ordinal patterns.



Entropy 2019, 21, 959 10 of 25

2.3.2. Mathematical Model of Bearing Fault Feature Signal

The bearing fault feature signal can be modeled as the combination of finite pulsed excitations [8,48–50]:

x(t) = a(t)
I∑

i=0

bi(t) cos(2π fet− ci(t) + θi) (15)

where bi(t), c(t), and ai(t) indicate the amplitude modulation component, the frequency modulation
component, and the modulation effect caused by vibration transfer path, respectively. fe and θi indicate
the system resonance frequency and the initial phase, respectively.

bi(t) and ci(t) can be expressed as:

bi(t) = Bie−ξ(t−iTd−υi)u(t− iTd − υi) (16)

ci(t) =
L∑

l=1

Cil sin(2πl fct + θil) (17)

where ξ, fc, and Td indicate the resonance attenuation coefficient, the fault feature frequency, and the
time period of fault, respectively. u(t) represents a unit step function. υi and θil represent the random
slip of the i-th pulse and the initial phase, respectively. Bi and Cil are amplitudes.

Generally, the vibration sensor is mounted at the bearing seat, which is fixed with the outer race.
In the case of the rolling element fault or the inner race fault, the vibration propagation generated
by the signal transfer path from the fault location to the sensor is varies with time, resulting in an
amplitude modulation effect in the signal:

a(t) = A[1 + cos(2π frt)] (18)

where fr indicates the rotation frequency of the shaft where the fault bearing is located, and C is
a constant.

In the case of the outer race fault, the vibration propagation only has a scaling effect on the signal
amplitude due to the transfer path being fixed:

a(t) = A (19)

One accepted approach to fault identification is to identify the fault-related frequency contents
from the signal spectrum. For example, Figure 4 shows the waveform and the spectrum of a simulated
bearing’s inner race fault signal, and the related frequency content includes: the fault feature frequency
fc, its harmonic frequencies n fc, the rotational frequency fr, and the modulated side band formed by
their combination n fc ± fr; Figure 5 shows the waveform and the spectrum of a bearing outer race fault
signal. The frequency content includes: the fault feature frequency fc and its harmonic frequencies
n fc. It can be observed that nonlinear and non-stationary nature of these fault signals increases the
complexity of the spectrum. Especially in the fault of inner race, where the complex modulation side
band appears. As a result, the dynamic characteristic of the inner race fault should be more complex
than that of outer race fault.
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Figure 4. A simulated fault feature signal of a bearing’s inner race; (a) signal waveform; (b) signal spectrum.
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Figure 5. The simulated fault feature signal of bearing outer race; (a) signal waveform; (b) signal spectrum.

2.3.3. Identification of Fault-Related Components through MSPE

When faults occur in a mechanical system, such as gear or bearing parts, the MSPE value of the
vibration signal will change, and the value varies with different type of the faults. Thus, MSPE can be
adopted to identify the fault-related components.

The common interference components in bearing signals include the shock signals generated
by other parts and the harmonic signals. Therefore, without loss of generality, we discuss the MSPE
characteristics of different types of components bearing fault signals, including the fault feature signals
of the bearing’s inner race (shown as Figure 4) and the bearing outer race (shown as Figure 5), a
harmonic signal, a shock signal, and a Gaussian white noise signal. The results of these five type signals
are shown as Figure 6a. The results demonstrate that the MSPE value of a regular time series, such as
harmonic signal or shock signal, is smaller, the examples being basically below 0.3; in contrast, since
advent of the complex dynamic characteristic, the MPSE values of the bearing fault feature signals
are larger, ranging from 0.4 to 0.7. In addition, it can be observed that the MSPE value of the inner
race fault is larger than that of the outer race. In particular, the randomness of the noise signal is the
strongest with the MSPE value more than 0.9, which proves that the MSPE is sensitive to noise.
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Figure 6. The MSPE of different types of simulated signals; (a) five types of signal: the two bearing
fault feature signals shown as Figures 4 and 5, a harmonic signal with the main frequency of 150 Hz, a
shock signal with the main frequency of 150 Hz, and a Gaussian white noise signal; (b) the MSPEs of
four feature signals in Figure 6a mixed with Gaussian white noise (signal to noise ratio (SNR) = −5).

According to the above analysis results, we can set a threshold range (0.5–0.85) of the MSPE value
or select the larger value (but no more than 0.9) to identify the components related to bearing fault
feature from the q one-dimensional component signals obtained by LRPCA.

It needs to be emphasized that although MSPE has a good anti-noise ratio, it may not be able
to effectively identify the early weak fault feature signals under strong background noise. Figure 6b
shows the MPSE of the four feature signals in Figure 6a, after Gaussian white noise with a SNR of −5
is added. Due to the existence of the strong background noise, the randomness of signals is greatly
enhanced, resulting in the MSPE values of the four feature signals increasing to more than 0.9 and
mixing together. As a result, the fault feature components are impossible to be identified. Therefore, it
is an urgent problem to reduce the noise before identifying the weak fault feature components.

2.4. The Process of the Effective Fault Diagnosis Technique

Figure 7 depicts the flowchart of the proposed effective fault diagnosis technique based on the
above theoretical description. And the main steps are summarized as follows:

(1) Using the proposed LRPCA method to decompose the trajectory matrix consisting of the acquired
bearing fault signal into multiple low-rank matrices and to suppress the noise synchronously;

(2) Convert the low-rank matrices obtained into one-dimensional component signals by inverse
transformations and identify the fault-related components from these signals through the MPSE
characteristic of the signal;

(3) Using the weighted Nadaraya–Watson regression model and inverse transform to combine the
low-rank matrices corresponding to identified components into a one-dimensional signal to
represent the extracted fault feature component;

(4) Confirm the bearing fault by identifying the fault-related frequency contents from the signal spectrum.
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3. Experiments

3.1. Numerical Simulation Experiment

In order to verify the diagnostic performance of the proposed technique, without loss of generality,
a simulated signal composed of multiple components was generated:

x = x1(t) + x2(t) + x3(t) + n(t) (20)

where x1(t) is the simulated fault feature signal of a bearing’s inner race, as shown in Figure 4, and its
detailed parameters are listed in Table 1. x2(t) and x3(t) are the interferences of a shock signal and
a harmonic signal, respectively. Figure 8a,b shows the waveforms of these two signals and both of
their feature frequencies are 150 Hz. n(t) represents the strong background white Gaussian noise.
The signal sampling frequency and the sampling point are fs = 20,000 and n = 20,000, respectively.

Table 1. Parameters in simulated fault feature signal of a bearing’s inner race.

ξ υi I L A Bi Cil ϕi ϕil fn fr fc

800 0.02/ fc 250 100 1 0.0004 2/l2 0◦ 0◦ 2000 Hz 30 Hz 125 Hz
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Figure 8. The simulated shock signal and harmonic signal; (a) shock signal waveform; (b) harmonic
signal waveform.

Firstly, the de-noising performance of the proposed LRPCA method was tested. The strong
background noise with SNR from −5 to 5 db was added to the simulated signals to imitate the early
weak fault. For visually displaying the de-noising performance of LRPCA, the methods of RPCA, SSA,
and EMD were employed to make a comparative analysis. The phase space reconstruction parameters
used in LRPCA, RPCA, and SSA were all set as n1 = 200 and τ = 100. EMD employed the energy
difference tracking method [51] to select desired IMF components. The hard threshold method [52]
was adopted in SSA to select the best combination of singular values to reconstruct the signal. Figure 9
illustrates the de-noising result of the above four methods. In the vertical axis of the graphics, the
higher SNR value indicates a better de-noising performance. It is clear that the proposed LRPCA
method can provide the best noise suppression performance.
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Figure 9. Comparison of the de-nosing performance of four methods when white Gaussian noise of
varying SNR is added to the multi-component signal.

Then, the fault feature extraction performance of the proposed technique was investigated. In this
experiment, a noise with a SNR of −5 db was added into the simulation signal. Figure 10 shows
the waveform and the spectrum of the noise-signal mixture. It can be seen that the fault feature is
completely submerged by noise and the other interferences, which inevitably increases the difficulty
of recognizing the fault feature. The methods of wavelet shrinkage denoising [14], basis pursuit
denoising [53], EMD, and SSA were selected for comparative analysis.
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Figure 10. The simulated multi-component signal contains a strong white Gaussian noise with the SNR
of −5 db; (a) signal waveform; (b) signal spectrum.

In the wavelet shrinkage denoising method, the decomposition layer was selected as 4 and the
wavelet basis function was set as “db15.” The waveform and the spectrum of the final extracted
fault feature signal are shown in Figure 11. In the resulting spectrum, the fault feature frequency
( fc) and some of its harmonic frequencies (2 fc−4 fc) can be found. However, due to a large number
of interference components and strong background noise, the identification of these fault-related
frequencies was seriously affected, and the modulation sidebands were completely submerged. hence,
this method was insufficient in feature extraction of a simulated signal.
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Figure 11. The analysis result of the wavelet shrinkage denoising method; (a) waveform of the extracted
fault feature signal; (b) spectrum of the extracted fault feature signal.

In the basis pursuit denoising method, we adopted the compressed sensing reconstruction
algorithm [54] to extract the fault feature signal and Figure 12 shows the final analysis result. In the
resulting spectrum, the Fault harmonic frequencies (3 fc−5 fc) and their modulated sidebands (3 fc ± fr,
4 fc ± fr, and 5 fc ± fr) could be identified. But, there were still a lot of interference frequency components
and strong background noise, leading to the fault of the signal not being directly determined.

In the EMD, fourteen IMFs can be obtained by decomposing the signal and the waveforms of
their top twelve are shown in Figure 13a. By applying Fourier transform to these IMFs, in the resulting
spectrums of IMF3 and IMF4, partial fault-related frequency contents can be found; i.e., fault harmonic
frequencies (2 fc−5 fc) and the modulated sidebands (3 fc − fr, 4 fc − fr, and 5 fc + fr). The waveform
and the spectrum of these two IMFs are shown in Figure 13b–e. However, there were still plenty of
interference frequency components and noise, which are adverse to the identification of fault feature.
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Figure 12. The analysis result of the basis pursuit denoising method; (a) waveform of the extracted
fault feature signal; (b) spectrum of the extracted fault feature signal.

Entropy 2019, 21, x FOR PEER REVIEW 15 of 24 

 

concluded that components 2 and 4 had higher similarity with the raw fault feature signal. Thus, the 
signal obtained by adding them represents the extracted fault feature component. The waveform 
and the spectrum of this extracted signal are shown in Figure 14b,c. In the spectrum, some 
fault-related frequency contents could be found. But, similar to the analysis result of EMD, there 
were also some interference frequency components and noises, which may have had an adverse 
effect on the final diagnosed result. 

The diagnosed result of the proposed technique is shown in Figure 15. Figure 15a shows the 
waveforms of the one-dimensional component signals obtained by LRPCA, which correspond to the six 
low-rank matrices. Additionally, the MSPEs of those components are displayed in Figure 13b. It can be 
observed that the MSPE values of component 3 and 6 are relatively higher and evenly distributed 
between 0.5 and 0.8. Thus, we could combine the low-rank matrices corresponding to those two 
components into a one-dimensional signal to represent the extracted fault feature signal. Figure 15c,d 
show the waveform and the spectrum of this extracted signal. All fault related frequencies were clearly 
discernable in the spectrum. Furthermore, it can be observed that the interference frequency components 
and the background noise were basically eliminated. According to the above analysis information, we 
can undoubtedly confirm that the fault occurred at the inner race. 

 

(b) 

 
(a) (c) 

  
(d) (e) 

Figure 13. The analysis result of the EMD method; (a) waveforms of top 12 IMFs; (b,d) waveform 
and spectrum of IMF 3; (c,e) waveform and spectrum of IMF 4. 

0 0.2 0.4 0.6 0.8 1
-5
0
5

IM
F 

1

0 0.2 0.4 0.6 0.8 1
-2
0
2

IM
F 

2

0 0.2 0.4 0.6 0.8 1
-2
0
2

IM
F 

3

0 0.2 0.4 0.6 0.8 1
-2
0
2

IM
F 

4

0 0.2 0.4 0.6 0.8 1
-1
0
1

IM
F 

5

0 0.2 0.4 0.6 0.8 1
-0.5

0
0.5

IM
F 

6

0 0.2 0.4 0.6 0.8 1
-0.2

0
0.2

IM
F 

7

0 0.2 0.4 0.6 0.8 1
-0.2

0
0.2

IM
F 

8

0 0.2 0.4 0.6 0.8 1
-0.1

0
0.1

IM
F 

9

0 0.2 0.4 0.6 0.8 1
-0.05

0
0.05

IM
F 

10

0 0.2 0.4 0.6 0.8 1
-0.05

0
0.05

IM
F 

11

0 0.2 0.4 0.6 0.8 1
-0.02

0
0.02

IM
F 

12

time/s

0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

time/s

A
m

pl
itu

de
/V

0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

2

time/s

A
m

pl
itu

de
/V

0 100 200 300 400 500 600 700
0

0.5

1

1.5

x 10-3

Frequency/Hz

A
m

pl
itu

de
/V

5 cf
3 cf

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3

3.5 x 10-3

Frequency/Hz

A
m

pl
itu

de
/V

2 cf

3 cf

4 cf

5 cf

3 c rf f−
4 c rf f−

5 c rf f−
5 c rf f+

Figure 13. The analysis result of the EMD method; (a) waveforms of top 12 IMFs; (b,d) waveform and
spectrum of IMF 3; (c,e) waveform and spectrum of IMF 4.
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In the SSA, by setting the threshold value of the energy of singular value to reach 95% of the
total, four singular subspaces representing different feature components can be obtained. Figure 14a
illustrates the waveforms of the corresponding one-dimensional feature component signals of these
four subspaces obtained through inverse transform. Then, through similarity analysis, it was concluded
that components 2 and 4 had higher similarity with the raw fault feature signal. Thus, the signal
obtained by adding them represents the extracted fault feature component. The waveform and the
spectrum of this extracted signal are shown in Figure 14b,c. In the spectrum, some fault-related
frequency contents could be found. But, similar to the analysis result of EMD, there were also some
interference frequency components and noises, which may have had an adverse effect on the final
diagnosed result.Entropy 2019, 21, x FOR PEER REVIEW 16 of 23 

 

 

 
(b) 

 
(a) (c) 

Figure 14. The analysis result of the SSA method; (a) waveform of the one-dimensional component 
signals; (b) waveform of the extracted fault feature signal; (c) spectrum of the extracted fault feature 
signal. 

 

 

(a) (b) 

  
(c) (d) 

Figure 15. Analysis result of the proposed technique; (a) waveform of the one-dimensional 
component signals; (b) the MSPE of the components; (c) waveform of the extracted fault feature 
signal; (d) spectrum of the extracted fault feature signal. 

0 0.2 0.4 0.6 0.8 1
-2

0

2

C
om

po
ne

nt
 1

0 0.2 0.4 0.6 0.8 1
-2

0

2

C
om

po
ne

nt
 2

0 0.2 0.4 0.6 0.8 1
-1

0

1

C
om

po
ne

nt
 3

0 0.2 0.4 0.6 0.8 1
-1

0

1

C
om

po
ne

nt
 4

time/s

0 0.2 0.4 0.6 0.8 1
-2

-1

0

1

2

3

time/s

A
m

pl
itu

de
/V

0 100 200 300 400 500 600 700
0

0.002

0.004

0.006

0.008

0.01

0.012

Frequency/Hz

A
m

pl
itu

de
/V

rf

cf

c rf f−
c rf f+

3 cf

4 cf

5 cf
4 c rf f−

5 c rf f−

3 c rf f+

4 c rf f+
5 c rf f+

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

Co
m

po
ne

nt
 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

Co
m

po
ne

nt
 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

Co
m

po
ne

nt
 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

Co
m

po
ne

nt
 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

Co
m

po
ne

nt
 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

Co
m

po
ne

nt
 6

time/s

1 2 3 4 5 6
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Scale

PE

 

 
Component 1
Component 2
Component 3
Component 4
Component 5
Component 6

ε

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

time/s

A
m

pl
itu

de

0 100 200 300 400 500 600 700
0

0.002

0.004

0.006

0.008

0.01

Frequency/Hz

A
m

pl
itu

de

rf

cf

c rf f−

c rf f+

2 cf

3 cf

4 cf

5 cf

2 c rf f+

2 c rf f−

3 c rf f− 4 c rf f−

5 c rf f−

3 c rf f+

4 c rf f+

5 c rf f+

Figure 14. The analysis result of the SSA method; (a) waveform of the one-dimensional component
signals; (b) waveform of the extracted fault feature signal; (c) spectrum of the extracted fault
feature signal.

The diagnosed result of the proposed technique is shown in Figure 15. Figure 15a shows the
waveforms of the one-dimensional component signals obtained by LRPCA, which correspond to the
six low-rank matrices. Additionally, the MSPEs of those components are displayed in Figure 13b. It can
be observed that the MSPE values of component 3 and 6 are relatively higher and evenly distributed
between 0.5 and 0.8. Thus, we could combine the low-rank matrices corresponding to those two
components into a one-dimensional signal to represent the extracted fault feature signal. Figure 15c,d
show the waveform and the spectrum of this extracted signal. All fault related frequencies were
clearly discernable in the spectrum. Furthermore, it can be observed that the interference frequency
components and the background noise were basically eliminated. According to the above analysis
information, we can undoubtedly confirm that the fault occurred at the inner race.



Entropy 2019, 21, 959 18 of 25

Entropy 2019, 21, x FOR PEER REVIEW 16 of 23 

 

 

 
(b) 

 
(a) (c) 

Figure 14. The analysis result of the SSA method; (a) waveform of the one-dimensional component 
signals; (b) waveform of the extracted fault feature signal; (c) spectrum of the extracted fault feature 
signal. 

 

 

(a) (b) 

  
(c) (d) 

Figure 15. Analysis result of the proposed technique; (a) waveform of the one-dimensional 
component signals; (b) the MSPE of the components; (c) waveform of the extracted fault feature 
signal; (d) spectrum of the extracted fault feature signal. 

0 0.2 0.4 0.6 0.8 1
-2

0

2

C
om

po
ne

nt
 1

0 0.2 0.4 0.6 0.8 1
-2

0

2

C
om

po
ne

nt
 2

0 0.2 0.4 0.6 0.8 1
-1

0

1

C
om

po
ne

nt
 3

0 0.2 0.4 0.6 0.8 1
-1

0

1

C
om

po
ne

nt
 4

time/s

0 0.2 0.4 0.6 0.8 1
-2

-1

0

1

2

3

time/s

A
m

pl
itu

de
/V

0 100 200 300 400 500 600 700
0

0.002

0.004

0.006

0.008

0.01

0.012

Frequency/Hz

A
m

pl
itu

de
/V

rf

cf

c rf f−
c rf f+

3 cf

4 cf

5 cf
4 c rf f−

5 c rf f−

3 c rf f+

4 c rf f+
5 c rf f+

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5
Co

m
po

ne
nt

 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

Co
m

po
ne

nt
 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

Co
m

po
ne

nt
 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

Co
m

po
ne

nt
 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

Co
m

po
ne

nt
 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

Co
m

po
ne

nt
 6

time/s

1 2 3 4 5 6
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Scale

PE

 

 
Component 1
Component 2
Component 3
Component 4
Component 5
Component 6

ε

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

time/s

A
m

pl
itu

de

0 100 200 300 400 500 600 700
0

0.002

0.004

0.006

0.008

0.01

Frequency/Hz

A
m

pl
itu

de

rf

cf

c rf f−

c rf f+

2 cf

3 cf

4 cf

5 cf

2 c rf f+

2 c rf f−

3 c rf f− 4 c rf f−

5 c rf f−

3 c rf f+

4 c rf f+

5 c rf f+

Figure 15. Analysis result of the proposed technique; (a) waveform of the one-dimensional component
signals; (b) the MSPE of the components; (c) waveform of the extracted fault feature signal; (d) spectrum
of the extracted fault feature signal.

The above simulation results indicate that EMD and SSA perform when decomposing a complicated
multi-component signal into finite single-components. However, their anti-noise ability against strong
noise is insufficient and there are still some interference components in the final extracted feature
signals. On the contrary, the proposed technique is more effective in eliminating the strong background
noise and extracting the weak fault feature component, and its diagnostic performance for the simulated
signal is obviously better than the other two methods.

3.2. Experimental Signal Analysis

The vibration signal acquired on the spot is more complex than the simulation signal. In order
to further verify the practicability of the proposed technique, a pitting fault signal of the bearing’s
outer race sampling from a bearing-gear fault’s experimental table was analyzed. Figure 16 shows the
experimental table, which consists of an AC motor, couplings, a gearbox with two pairs of meshing
gears, and a magnetic powder brake. The test bearing is a single-row tapered roller bearing of the type
of 32206 and its fault was handled by electrical discharge machining (EDM) method. The red arrow in
Figure 16a displays the mounting position of the bearing. The experiment parameter was listed in
Table 2. The vibration data of this experiment are measured by PCB acceleration sensor in the vertical
direction of the bearing.
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Table 2. Experiment parameters of fault bearing.

Number
of Roller
Elements

Roller
Diameter

(mm)

Medium
Diameter

(mm)

Contact
Angle

Rotation
Frequency

(Hz)

Fault
Frequency

(Hz)

Sampling
Points
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Frequency

(Hz)

z = 17 d = 8 D = 46 α = 14.04◦ fr = 7.225 fo = 51.05 N = 20,000 fs = 10,000

Figure 17 is the diagram of the waveform and the spectrum of the acquired signal. It can be seen
that the weak fault feature was impossible to be identified. Then, the proposed technique was utilized
to diagnose the signal, and the methods of wavelet shrinkage denoising, basis pursuit denoising, EMD,
and SSA were chosen for a comparative analysis.Entropy 2019, 21, x FOR PEER REVIEW 18 of 23 
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Figure 17. The acquired bearing fault signal; (a) signal waveform; (b) signal spectrum.

The analysis results of the wavelet shrinkage denoising method and basis pursuit denoising
method are shown as Figures 18 and 19, respectively. In their result spectrums, although the fault
characteristic frequency ( fo) and its harmonic frequencies (2 fo−3 fo) can be found, the identification of
these fault-related frequencies is seriously affected by a large number of interference components and
strong background noise. Therefore, the fault type of bearing cannot be directly determined from these
analysis results.
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Figure 18. Analysis result of the wavelet shrinkage denoising method; (a) waveform of the extracted
fault feature signal; (b) spectrum of the extracted fault feature signal.
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Figure 19. Analysis result of the basis pursuit denoising method; (a) waveform of the extracted fault
feature signal; (b) spectrum of the extracted fault feature signal.

Figure 20a displays the waveforms of top 12 IMFs obtained through EMD. By applying the Fourier
transform to them, the fault-related frequency contents ( fo and 2 fo) can be found in the spectrums of
IMF 1 and IMF 8, which are shown in Figure 20b,d,e. However, that fault feature information is hard to
be recognized due to the presence of many interference frequency components and strong background
noise. Therefore, it is difficult to determine whether the outer race of the bearing is faulty.

Figure 21 shows the fault feature extraction result of SSA. The peaks of fault feature frequency ( fo)
and its triple frequency (3 fo) were obvious in the spectrum. But there are still many interference peaks
and noise, which affects the identification of fault feature. These above analysis results indicate that
neither EMD nor SSA can provide good fault diagnosis performances for the experimental fault signal.

The proposed technique was utilized to diagnose the signal. Figure 22a shows the waveforms of
the one-dimensional component signal corresponding to the six low-rank matrices obtained by LRPCA.
Furthermore, their MSPE values were displayed in Figure 22b. It can be observed that the MSPE
values of component 1, 3, 4, and 6 are relatively higher. Meanwhile, the MSPE value of component
4 was basically above 0.9, which may be the feature signal of other component with more complex
dynamics characteristic. The MSPE values of components 1, 3, and 6 ranged from 0.7 to 0.9, and their
trends were similar, so we combined the low-rank matrices corresponding to these three components
into a one-dimensional feature signal representing the extracted the fault feature signal. Figure 22c,d
show the waveform and the spectrum of this extracted signal. In the spectrum, the rotation frequency
( fr), the fault feature frequency ( fo), and its double frequency (2 fo) and triple frequency (3 fo) can be
easily found. Moreover, it can be seen that the energy of the noise was suppressed at a low level and
there were a few interference frequency components, which had little effect on the final diagnosed
result. Consequently, we could confirm that the outer race of bearing had fault. These analysis results
demonstrate that the proposed technique can effectively suppress the strong background noise and
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extract weak fault feature component from the multi-component signal, which means the proposed
technique can provide a great diagnostic performance when dealing with the experimental signal.
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Figure 20. Analysis result of the EMD method; (a) waveforms of top 12 IMFs; (b,d) waveform and
spectrum of IMF 1; (c,e) waveform and spectrum of IMF 8.
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Figure 21. Analysis result of the SSA method; (a) waveform of the extracted fault feature signal;
(b) spectrum of the extracted fault feature signal. The fault feature extraction results of SSA. The peaks
of the fault feature frequency ( fo) and its triple frequency (3 fo) were obvious in the spectrum. But
there are still many interference peaks and noise, which affect the identification of the fault feature.
These above analysis results indicate that neither EMD nor SSA can provide a good fault diagnosis
performance for the experimental fault signal.
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Figure 22. Analysis result of the proposed technique; (a) waveform of the one-dimensional component
signals; (b) the MSPE of the components; (c) waveform of the extracted fault feature signal; (d) spectrum
of the extracted fault feature signal.
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4. Conclusions

In general, the bearing’s weak fault feature exhibits the nature of nonlinear and non-stationary,
which is hard to be extracted under the situation of existing strong background noise and interference
components. In considering this problem, an effective bearing fault diagnosis technique via LRPCA
and MSPE was introduced in this paper. The LRPCA can decompose the signal trajectory matrix
into multiple low-rank matrices, and meanwhile, suppress the noise. The MSPE was used to identify
the low-rank matrices corresponding to bearing’s fault feature. Thereafter, those identified low-rank
matrices were combined into a one-dimensional signal to represent the extracted fault feature component
for further fault diagnosis. The principle and the effectiveness of this technique was verified by the
analysis of both the simulation signal and the acquired bearing fault signal. The analysis results
indicate that the proposed technique can effectively detect and locate the bearing faults accurately.

The threshold range representing the bearing fault feature component was determined based on
the results of simulation experiments. However, the feature components of the acquired bearing fault
signals should be much more complex than simulated signals. Therefore, we will focus on determining
a more appropriate threshold range for acquired signal in future work. In addition, the de-nosing
performance of proposed LRPCA method was verified by the signal simulation Equation (20), and
Figure 9 shows that it performs better than other methods. In fact, the robustness of the method can be
improved by statistical evidence. By extending the evaluation to greater number of rounds, the results
of each round are collected, and through meaningful statistical tests, the parameters of the method can
be optimized, leading to a significant improvement in noise reduction performance. Therefore, we will
also carry out more deep research to that end in future work.
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