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Abstract: Any theory amenable to scientific inquiry must have testable consequences. This minimal
criterion is uniquely challenging for the study of consciousness, as we do not know if it is possible to
confirm via observation from the outside whether or not a physical system knows what it feels like to
have an inside—a challenge referred to as the “hard problem” of consciousness. To arrive at a theory
of consciousness, the hard problem has motivated development of phenomenological approaches
that adopt assumptions of what properties consciousness has based on first-hand experience and,
from these, derive the physical processes that give rise to these properties. A leading theory adopting
this approach is Integrated Information Theory (IIT), which assumes our subjective experience is a
“unified whole”, subsequently yielding a requirement for physical feedback as a necessary condition for
consciousness. Here, we develop a mathematical framework to assess the validity of this assumption by
testing it in the context of isomorphic physical systems with and without feedback. The isomorphism
allows us to isolate changes in Φ without affecting the size or functionality of the original system.
Indeed, the only mathematical difference between a “conscious” system with Φ > 0 and an isomorphic
“philosophical zombie” with Φ = 0 is a permutation of the binary labels used to internally represent
functional states. This implies Φ is sensitive to functionally arbitrary aspects of a particular labeling scheme,
with no clear justification in terms of phenomenological differences. In light of this, we argue any
quantitative theory of consciousness, including IIT, should be invariant under isomorphisms if it is to
avoid the existence of isomorphic philosophical zombies and the epistemological problems they pose.
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1. Introduction

The scientific study of consciousness walks a fine line between physics and metaphysics. On the
one hand, there are observable consequences to what we intuitively describe as consciousness. Sleep,
for example, is an outward behavior that is uncontroversially associated with a lower overall level
of consciousness. Similarly, scientists can decipher what is intrinsically experienced when humans
are conscious via verbal reports or other outward signs of awareness. By studying the physiology of
the brain during these specific behaviors, scientists can study “neuronal correlates of consciousness”
(NCCs), which point to where in the brain conscious experience is generated and what physiological
processes correlate with it [1]. On the other hand, NCCs cannot be used to explain why we are conscious
or to predict whether or not another system demonstrating similar properties to NCCs is conscious.
Indeed, NCCs can only tell us the physiological processes that correlate with what are assumed to
be the functional consequences of consciousness and, in principle, may not actually correspond to a
measurement of what it is like to have subjective experience [2]. In other words, we can objectively
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measure behaviors we assume accurately reflect consciousness but, currently, there exist no scientific
tools permitting testing our assumptions. As a result, we struggle to differentiate whether a system is
truly conscious or is instead simply going through the motions and giving outward signs of, or even
actively reporting, an internal experience that does not exist (e.g., [3]).

This is the “hard problem” of consciousness [2] and it is what differentiates the study of
consciousness from all other scientific endeavors. Since consciousness is subjective (by definition),
there is no objective way to prove whether or not a system experiences it readily accessible to science.
Addressing the hard problem, therefore, necessitates an inversion of the approach underlying NCCs:
rather than starting with observables and deducing consciousness, one must start with consciousness
and deduce observables. This has motivated theorists to develop phenomenological approaches
that adopt rigorous assumptions of what properties consciousness must include based on human
experience, and, from these, “derive” the physical processes that give rise to these properties.
The benefit to this approach is not that the hard-problem is avoided, but rather, that the solution
appears self-evident given the phenomenological axioms of the theory. In practice, translating from
phenomenology to physics is rarely obvious, but the approach remains promising.

The phenomenological approach to addressing the hard problem of consciousness is exemplified
in Integrated Information Theory (IIT) [4,5], a leading theory of consciousness. Indeed, IIT is a leading
contender in modern neuroscience precisely because it takes a phenomenological approach and offers
a well-motivated solution to the hard problem of consciousness [6]. Three phenomenological axioms
form the backbone of IIT: information, integration, and exclusion. The first, information, states that
by taking on only one of the many possibilities a conscious experience generates information (in the
Shannon sense, e.g., via a reduction in uncertainty [7]). The second, integration, states each conscious
experience is a single “unified whole”. The third, exclusion, states conscious experience is exclusive
in that each component in a system can take part in at most one conscious experience at a time
(simultaneous overlapping experiences are forbidden). Given these three phenomenological axioms,
IIT derives a mathematical measure of integrated information—Φ—that is designed to quantify the
extent to which a system is conscious based on the logical architecture (i.e., the “wiring”) underlying
its internal dynamics.

In constructing Φ as a phenomenologically-derived measure of consciousness, IIT must assume
a connection between its phenomenological axioms and the physical processes that embody those
axioms. It is important to emphasize that this assumption is nothing less than a proposed solution to
the hard problem of consciousness, as it connects subjective experience (axiomatized as integration,
information, and exclusion) and objective (measurable) properties of a physical system. As such, it
is possible for one to accept the phenomenological axioms of the theory without accepting Φ as the
correct quantification of these axioms and, indeed, IIT has undergone several revisions in an attempt
to better reflect the phenomenological axioms in the proposed construction of Φ [5,8,9]. Experimental
falsification of IIT or any other similarly constructed theory is a matter of sufficiently violating our
intuitive understanding of what a measure of consciousness should predict in a given situation which,
outside of a few clear cases (e.g., that humans are conscious while awake), varies across individuals
and adds a level of subjectivity to assessing the validity of measures derived based on phenomenology.
Given that IIT is a phenomenological theory, it is therefore only natural that the bulk of epistemic
justification for the theory comes in the form of carefully constructed logical arguments, rather than
directly from empirical observation [10]. For this reason, it is extremely important to isolate and
understand the logical assumptions that underlie any potentially controversial deductions that come
from the theory, as this plays an important role in assessing the foundations of the theory.

Here, we focus on a particularly controversial aspect of IIT, namely, the fact that philosophical
zombies are permitted by the theory. By definition, a philosophical zombie is an unconscious system
capable of perfectly emulating the outward behavior of a conscious system. In addition to being
epistemologically problematic [11,12], such systems are thought to indicate problems with the logical
foundations of any theory that admits them [13], as it is difficult to imagine how a difference in
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subjective experience can be scientifically justified without any apparent difference in the outward
functionality of the system [14]. In IIT, philosophical zombies arise as a direct consequence of IIT’s
proposed translation of the integration axiom. IIT assumes the subjective experience of a unified whole
(the integration axiom) requires feedback in the physical substrate that gives rise to consciousness as a
necessary (but not sufficient) condition. This implies any strictly feed-forward logical architecture has
Φ = 0 and is unconscious by default, despite the fact that the logical architecture of an “integrated”
system with Φ > 0 can always be unfolded [15] or decomposed [16,17] into a system with Φ = 0
without affecting the outward behavior of the system.

In what follows, we demonstrate the existence of a fundamentally new type of feed-forward
philosophical zombie, namely one that is isomorphic to its conscious counterpart in its state-transition
diagram. To do so, we implement techniques based on Krohn–Rhodes decomposition from automata
theory to isomorphically decompose a system with Φ > 0 onto a feed-forward system with Φ = 0.
The result is a feed-forward philosophical zombie capable of perfectly emulating the behavior of its
conscious counterpart without increasing the size of the original system. Given the strong mathematical
equivalence between isomorphic systems, our framework suggests the presence or absence of feedback
is not associated with observable differences in function or other properties such as efficiency or
autonomy. Our formalism translates into a proposed mathematical criterion that any observationally
verifiable measure of consciousness should be invariant under physical isomorphisms. That is, we
suggest conscious systems should form an equivalence class of physical implementations with
structurally equivalent state-transition diagrams. Enforcement of this criterion serves as a necessary,
but not sufficient, condition for any theory of consciousness to be free from philosophical zombies and
the epistemological problems they pose.

2. Methods

Our methodology is based on automata theory [18,19], where the concept of philosophical zombies
has a natural interpretation in terms of “emulation” [20]. The goal of our methodology is to demonstrate
that it is possible to isomorphically emulate an integrated finite-state automaton (Φ > 0) with a
feed-forward finite-state automaton (Φ = 0) using techniques closely related to the Krohn–Rhodes
theorem [16,21].

2.1. Finite-State Automata

Finite-state automata are abstract computing devices, or “machines”, designed to model a discrete
system as it transitions between states. Automata theory was invented to address biological and
psychological problems [22,23] and it remains an extremely intuitive choice for modeling neuronal
systems. This is because one can define an automaton in terms of how specific abstract inputs lead to
changes within a system. Namely, if we have a set of potential inputs Σ and a set of internal states
Q, we define an automaton A in terms of the tuple A = (Σ, Q, δ, q0) where δ : Σ× Q → Q is a map
from the current state and input symbol to the next state, and q0 ∈ Q is the starting state of the system.
To simplify notation, we write δ(s, q) = q′ to denote the transition from q to q′ upon receiving the input
symbol s ∈ Σ.

For example, consider the “right-shift automaton” A shown in Figure 1. This automaton is
designed to model a system with a two-bit internal register that processes new elements from the input
alphabet Σ = {0, 1} by shifting the bits in the register to the right and appending the new element on
the left [24]. The global state of the machine is the combined state of the left and right register, thus
Q = {00, 01, 10, 11} and the transition function δ specifies how this global state changes in response to
each input, as shown in Figure 1b.

In addition to the global state transitions, each individual bit in the register of the right-shift
automaton is itself an automaton. In other words, the global functionality of the system is nothing more
than the combined output from a system of interconnected automata, each specifying the state of a
single component or “coordinate” of the system. Specifically, the right-shift automaton is comprised of
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an automaton AQ1 responsible for the left bit of register and an automaton AQ2 responsible for the right
bit of the register. By definition, AQ1 copies the input from the environment and AQ2 copies the state
of AQ1. Thus, ΣQ1 = {0, 1} and ΣQ2 = Q1 = {0, 1} and the transition functions for the coordinates are
δQ1 = δQ2 = {δ(0, 0) = 0; δ(0, 1) = 0; δ(1, 0) = 1; δ(1, 1) = 1}. This fine-grained view of the right-shift
automaton specifies its logical architecture and is shown in Figure 1c. The logical architecture of the
system is the “circuitry” that underlies its behavior and, as such, is often specified explicitly in terms
of logic gates, with the implicit understanding that each logic gate is a component automaton.

(a) (b) (c)

Figure 1. The “right-shift automaton” A in terms of its: state-transition diagram (a); transition function
δ (b); and logical architecture (c).

It is important to note that not all automata require multiple input symbols and it is common to
find examples of automata with a single-letter input alphabet. In fact, any deterministic state-transition
diagram can be represented in this way, with a single input letter signaling the passage of time. In this
case, the states of the automaton are the states of the system, the input alphabet is the passage of
time, and the transition function δ is given by the transition probability matrix (TPM) for the system.
Because Φ is a mathematical measure that takes a TPM as input, this specialized case provides a
concrete link between IIT and automata theory. Non-deterministic TPMs can also be described in
terms of finite-state automata [24,25] but, for our purposes, this generalization is not necessary.

2.2. Cascade Decomposition

The idea of decomposability is central to both IIT and automata theory. As Tegmark [26] pointed
out, mathematical measures of integrated information, including Φ, quantify the inability to decompose
a transition probability matrix M into two independent processes MA and MB. Given a distribution
over initial states p, if we approximate M by the tensor factorization M̂ ≈ MA ⊗MB, then Φ, in general,
quantifies an information-theoretic distance D between the regular dynamics Mp and the dynamics
under the partitioned approximation M̂p (i.e., Φ = D(Mp||M̂p)). In the latest version of IIT [5], only
unidirectional partitions are implemented (information can flow in one direction across the partition)
which mathematically enforces the assumption that feedback is a necessary condition for consciousness.

Decomposition in automata theory, on the other hand, has historically been an engineering
problem. The goal is to decompose an automaton A into an automaton A′ which is made of simpler
physical components than A and maps homomorphically onto A. Here, we define a homomorphism h
as a map from the states, stimuli, and transitions of A′ onto the states, stimuli, and transitions of A
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such that for every state and stimulus in A′ the results obtained by the following two methods are
equivalent [22]:

1. Use the stimulus of A′ to update the state of A′ then map the resulting state onto A.
2. Map the stimulus of A′and the state of A′ to the corresponding stimulus/state in A then update

the state of A using the stimulus of A.

In other words, the map h is a homomorphism if it commutes with the dynamics of the system.
The two operations (listed above) that must commute are shown schematically in Figure 2. If the
homomorphism h is bijective, then it is also an isomorphism and the two automata necessarily have the
same number of states.

Figure 2. For the map h to be a homomorphism from A′ onto A, updating the dynamics then applying
h (top) must yield the same state of A as applying h then updating the dynamics (bottom).

From an engineering perspective, homomorphic/isomorphic logical architectures are useful
because they allow flexibility when choosing a logical architecture to implement a given computation
(i.e., the homomorphic system can perfectly emulate the original). Mathematically, the difference
between homomorphic automata is the internal labeling scheme used to encode the states/stimuli of
the global finite-state machine, which specifies the behavior of the system. Thus, the homomorphism
h is a dictionary that translates between different representations of the same computation. Just as
the same sentence can be spoken in different languages, the same computation can be instantiated
using different encodings. Under this view, what gives a computational state meaning is not its binary
representation (label) but rather its causal relationship with other global states/stimuli, which is what
the homomorphism preserves.

Because we are interested in isolating the role of feedback, the specific type of decomposition we
seek is a feed-forward or cascade decomposition of the logical architecture of a given system. Cascade
decomposition takes the automaton A and decomposes it into a homomorphic automaton A′ comprised
of several elementary automata “cascaded together”. By this, what is meant is that the output from
one component serves as the input to another such that the flow of information in the system is
strictly unidirectional (Figure 3). The resulting logical architecture is said to be in “cascade” or
“hierarchical” form and is functionally identical to the original system (i.e., it realizes the same global
finite-state machine).

At this point, the connection between IIT and cascade decomposition is readily apparent: if an
automaton with feedback allows a homomorphic cascade decomposition, then the behavior of the
resulting system can emulate the original but utilizes only feed-forward connections. Therefore, there
exists a unidirectional partition of the system that leaves the dynamics of the new system (i.e., the
transition probability matrix) unchanged such that Φ = 0 for all states.

In the language of Oizumi et al. [5], we can prove this by letting C→ be the constellation that is
generated as a result of any unidirectional partition and C be the original constellation. Because C→
has no effect on the TPM, we are guaranteed that C→ = C and ΦMIP = D(C|C→) = 0. We can repeat
this process for every possible subsystem within a given system and, since the flow of information is
always unidirectional, ΦMIP = 0 for all subsets so ΦMax = 0. Thus, Φ = 0 for all states and subsystems
of a cascade automaton.
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Figure 3. An example of a fully-connected three-component system in cascade form. Any subset
of the connections drawn above meets the criteria for cascade form because all information flows
unidirectionally.

Pertinently, the Krohn–Rhodes theorem proves that every automaton can be decomposed into
cascade form [16,17], which implies every system for which we can measure non-zero Φ allows a feed-forward
decomposition with Φ = 0. These feed-forward systems are “philosophical zombies” in the sense
that they lack subjective experience according to IIT (i.e., Φ = 0), but they nonetheless perfectly
emulate the behavior of conscious systems. However, the Krohn–Rhodes theorem does not tell us
how to construct such systems. Furthermore, the map between systems is only guaranteed to be
homomorphic (many-to-one) which allows for the possibility that Φ is picking up on other properties
(e.g., the efficiency and/or autonomy of the computation) in addition to the presence or absence of
feedback [5].

To isolate what Φ is measuring, we must go one step further and insist that the decomposition is
isomorphic (one-to-one) such that the original and zombie systems can be considered to perform the
same computation [20] (same global state-transition topology) under the same resource constraints.
In this case, the feed-forward system has the exact same number of states as its counterpart with feedback.
Provided the latter has Φ > 0, this implies Φ is not a measure of the efficiency of a given computation,
as both systems require the same amount of memory. This is not to say that feedback and Φ do not
correlate with efficiency because, in general, they do [27]. For certain computations, however, the
presence of feedback is not associated with increased efficiency but only increased interdependence
among elements.

It is these specific corner cases that are most beneficial if one wants to assess the validity of the
theory, as they allow one to understand whether or not feedback is important in absence of the benefits
typically associated with its presence. In other words, IIT’s translation of the integration axiom is
that feedback is a minimal criterion for the subjective experience of a unified whole; however, Φ is
described as quantifying “the amount of information generated by a complex of elements, above and
beyond the information generated by its parts” [4], which seems to imply feedback enables something
“extra” feed-forward systems cannot reproduce. An isomorphic feed-forward decomposition allows
us to carefully track the mathematical changes that destroy this additional information, in a way that
lets us preserve the efficiency and functionality of the original system. This, in turn, provides the
clearest possible case to assess whether or not this additional information is likely to correspond to a
phenomenological difference between systems.

2.3. Feed-Forward Isomorphisms via Preserved Partitions

The special type of computation that allows an isomorphic feed-forward decomposition is one
in which the global state-transition diagram is amenable to decomposition via a nested sequence of
preserved partitions. A preserved partition is a way of partitioning the state space of a system into
blocks of states (macrostates) that transition together. Namely, a partition P is preserved if it breaks the
state space S into a set of blocks {B1, B2, ..., BN} such that every state within each block transitions to a
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state within the same block [22,28]. If we denote the state-transition function f : S→ S, then a block Bi
is preserved when:

∃j ∈ {1, 2, ..., N} such that f (x) ∈ Bj∀x ∈ Bi

In other words, for Bi to be preserved, ∀x in Bi x must transition to some state in a single block Bj
(i = j is allowed). Conversely, Bi is not preserved if there exist two or more states in Bi that transition
to different blocks (i.e., ∃ x1, x2 ∈ Bi such that f (x1) = Bj and f (x2) = Bk with j 6= k ). In order for the
entire partition Pi to be preserved, each block within the partition must be preserved.

For an isomorphic cascade decomposition to exist, we must be able to iteratively construct a
hierarchy or “nested sequence” of preserved partitions such that each partition Pi evenly splits the
partition Pi−1 above it in half, leading to a more and more refined description of the system. For a
system with 2n states where n is the number of binary components in the original system, this implies
that we need to find exactly n nested preserved partitions, each of which then maps onto a unique
component of the cascade automaton, as demonstrated in Section 2.3.1.

If one cannot find a preserved partition made of disjoint blocks or the blocks of a given partition
do not evenly split the blocks of the partition above it in half, then the system in question does not allow
an isomorphic feed-forward decomposition. It will, however, still allow a homomorphic feed-forward
decomposition based on a nested sequence of preserved covers, which forms the basis of standard
Krohn–Rhodes decomposition techniques [20,22,29]. Unfortunately, there does not appear to be a way
to tell a priori whether or not a given computation will ultimately allow an isomorphic feed-forward
decomposition, although a high degree of symmetry in the global state-transition diagram is certainly
a requirement.

2.3.1. Example: AND/OR ∼= COPY/OR

As an example, we isomorphically decompose the feedback system X, comprised of an AND gate
and an OR gate, as shown in Figure 4a. As it stands, X is not in cascade form because information
flows bidirectionally between the components Q1 and Q2. While this feedback alone is insufficient to
guarantee Φ > 0, one can readily check that X does indeed have Φ > 0 for all possible states (e.g., [30]).
The global state-transition diagram for the system X is shown in Figure 4c. Note that we have
purposefully left off the binary labels that X uses to instantiate these computational states, as the goal is
to relabel them in a way that results in a different (feed-forward) instantiation of the same underlying
computation. In general, one typically starts from the computation and derives a single logical
architecture but, here, we must start and end with fixed (isomorphic) logical architectures—passing
through the underlying computation in between. The general form of the feed-forward logical
architecture X′ that we seek is shown in Figure 4b.

Given the global state-transition diagram shown in Figure 4c, we let our first preserved partition
be P1 = {B0, B1} with B0 = {A, D} and B1 = {B, C}. It is easy to check that this partition is preserved,
as one can verify that every element in B0 transitions to an element in B0 and every element in B1

transitions to an element in B1 (shown topologically in Figure 5a). We then assign all the states in B0 a
first coordinate value of 0 and all the states in B1 a first coordinate value of 1, which guarantees the
state of the first coordinate is independent of later coordinates. If the value of the first coordinate is
0, it will remain 0 and, if the value of the first coordinate is 1, it will remain 1, because states within
a given block transition together. Because 0 goes to 0 and 1 goes to 1, the logic element (component
automaton) representing the first coordinate Q′1 is a COPY gate receiving its previous state as input.

The second preserved partition P2 must evenly split each block within P1 in half. Letting P2 =

{{B00, B01}, {B10, B11}} we have B00 = {A}, B01 = {B}, B10 = {C}, and B11 = {D}. At this stage, it is
trivial to verify that the partition is preserved because each block is comprised of only one state which
is guaranteed to transition to a single block. As with Q′1, the logic gate for the second coordinate (Q′2)
is specified by the way the labeled blocks of P2 transition. Namely, we have B00 → B00, B01 → B01,
B10 → B01, and B11 → B11. Note that the transition function δQ2 is completely deterministic given input
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from the first two coordinates (as required) and is given by δQ2 = {00→ 0; 01→ 1; 10→ 1; 11→ 1}.
This implies Q′2 is an OR gate receiving input from both Q′1 and Q′2.

At this point, the isomorphic cascade decomposition is complete. We have constructed an
automaton for Q′1 that takes input from only itself and an automaton for Q′2 that takes input only from
itself and earlier coordinates (i.e., Q′1 and Q′2). The mapping between the states of X and the states
of X′, shown in Figure 5b, is specified by identifying the binary labels (internal representations) each
system uses to instantiate the abstract computational states A, B, C, D of the global state-transition
diagram. Because X and X′ operate on the same support (the same four binary states) the fact that they
are isomorphic implies the difference between representations is nothing more than a permutation
of the labels used to instantiate the computation. By choosing a specific labeling scheme based on
isomorphic cascade decomposition, we can induce a logical architecture that is guaranteed to be
feedback-free and has Φ = 0. In this way, we have “unfolded” the feedback present in X without
affecting the size/efficiency of the system.

(a)

(b) (c)
Figure 4. The goal of an isomorphic cascade decomposition is to decompose the integrated logical
architecture of the system X (a) so that it is in cascade form X′ (b) without affecting the state-transition
topology of the original system (c).

(a) (b) (c)
Figure 5. The nested sequence of preserved partitions in (a) yields the isomorphism (b) between X and
X′ which can be translated into the strictly feed-forward logical architecture with Φ = 0 shown in (c).

3. Results

We are now prepared to demonstrate the existence of isomorphic feed-forward philosophical
zombies in systems similar to those found in Oizumi et al. [5]. To do so, we decompose the integrated
system Y shown in Figure 6 into an isomorphic feed-forward philosophical zombie Y′ of the form
shown in Figure 3. The system Y, comprised of two XNOR gates and one XOR gate, clearly contains
feedback between components and has Φ > 0 for all states for which Φ can be calculated (Figure 6c).
As in Section 2.3, the goal of the decomposition is an isomorphic relabeling of the finite-state machine



Entropy 2019, 21, 1073 9 of 14

representing the global behavior of the system, such that the induced logical architecture is strictly
feed-forward.

(a) (b) (c)
Figure 6. The transition probability matrix (a); logical architecture (b); and all available Φ values (c) for
the example system Y (n/a implies Φ is not defined for a given state because it is unreachable).

We first evenly partition the state space of Y into two blocks B0 = {A, C, G, H} and B1 =

{B, D, E, F}. Under this partition, B0 transitions to B1 and B1 transitions to B0, which implies the
automaton representing the first coordinate in the new labeling scheme is a NOT gate. Note that this
choice is not unique, as we could just as easily have chosen a different preserved partition such as
B0 = {A, D, E, H} and B1 = {B, C, F, G}, in which case the first coordinate would be a COPY gate;
as long as the partition is preserved, the choice here is arbitrary and amounts to selecting one of
several different feed-forward logical architectures—all in cascade form. For the second preserved
partition, we let P2 = {{B00, B01}, {B10, B11}} with B00 = {C, G}, B01 = {A, H}, B10 = {B, F}. and
B11 = {D, E}. The transition function for the automaton representing the second coordinate, given by
the movement of these blocks, is: δQ2′ = {00→ 0; 01→ 1; 10→ 0; 11→ 1}, which is again a COPY gate
receiving input from itself. The third and final partition P3 assigns each state to its own unique block.
As is always the case, this last partition is trivially preserved because individual states are guaranteed
to transition to a single block. The transition function for this coordinate, read off the bottom row of
Figure 7, is given by:

δQ3′ = {000→ 0; 001→ 0; 010→ 1; 011→ 1; 100→ 0; 101→ 0; 110→ 1; 111→ 1}

Using Karnuagh maps [31], one can identify δQ3 as a COPY gate receiving input from Q′2. With
the specification of the logic for the third coordinate, the cascade decomposition is complete and the
new labeling scheme is shown in Figure 7. A side-by-side comparison of the original system Y and
the feed-forward system Y′ is shown in Figure 8. As required, the feed-forward system has Φ = 0 but
executes the same sequence of state transitions as the original system, modulo a permutation of the
labels used to instantiate the states of the global state-transition diagram.
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Figure 7. Nested sequence of preserved partitions used to isomorphically decompose Y into cascade
form.

(a)

(b)

(c)

(d)
Figure 8. Side-by-side comparison of the feedback system Y with Φ > 0 (a) and its isomorphic
feed-forward counterpart Y′ with Φ = 0 (c). The global state-transition diagrams (b,d, respectively)
differ only by a permutation of labels.

4. Discussion

Behavior is most frequently described in terms of abstract states/stimuli, which are not tied to
a specific representation (binary or otherwise). Examples include descriptors of mental states, such
as being asleep or awake, etc.: these are representations of system states that must be defined by
either an external observer or internally in the system performing the computation by its own logical
implementation, but are not necessarily an intrinsic attribute of the computational states themselves
(e.g., these states could be labeled with any binary assignment consistent with the state transition
diagram of the computation). The analysis presented here is based on this premise that such that
behavior is defined by the topology of the state-transition diagram, independent of a particular labeling
scheme. Indeed, it is this premise that enables Krohn–Rhodes decomposition to be useful from an
engineering perspective, as one can swap between logical architectures without affecting the operation
of a system in any way.
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Phenomenologically, consciousness is often associated with the concept of “top-down causation”,
where “higher level” mental states exert causal control over lower level implementation [32]. Under
this view, the “additional information” provided by consciousness above and beyond non-conscious
systems is considered to be functionally relevant by affecting how states transition to other states.
Typically, this is associated with a macroscale intervening on a microscale, which historically has been
problematic due to the issue of supervenience, whereby a system can be causally overdetermined
if causation operates across multiple scales [33]. Ellis and others described functional equivalence
classes [32,34] as one means of implementing top-down causation without causal overdetermination
because what does the actual causal work is a functional equivalence class of microstates, which as a
class have the same causal consequences. Building on the idea of functional equivalence classes, our
formalism introduces a different kind of top-down causation that also avoids issues of supervenience.
In our formalism, consciousness is most appropriately thought of as a computation having to do with
the topology (causal architecture) of global state transitions, rather than the labels of the states or a
specific logical architecture. Thus, the computation/function describes a functional equivalence class
of logical architectures that all implement the same causal relations among states, i.e. the functional
equivalence class is the computational abstraction (macrostate), which can be implemented in any
of a set of isomorphic physical architectures (microstates/physical implementations). There is no
additional “room at the bottom” for a particular logical architecture to exert more causal influence
when it instantiates a particular abstraction than another architecture instantiating the same abstraction,
because the causal structure of the abstraction remains unchanged. Any measure of consciousness that
changes under the isomorphism we introduce here, such as Φ, cannot therefore account for “additional
information” related to executing a particular function, because of the existence of zombie systems
within the same functional equivalence class.

It is important to recognize there exists an alternative perspective where one defines differences
relevant to consciousness not in terms of abstract computation, but in terms of specific logical
implementations, as IIT adopts. However, this does not address, in our view, whether isomorphic
systems ultimately experience a phenomenological difference as there is no way to test that assumption
other than accepting it axiomatically. In particular, for the examples we consider here, there is
only one input signal, meaning there are not multiple ways to encode input from the environment.
Therefore, there is no physical mechanism by which the environment can dictate a privileged internal
representation. Instead, the choice of internal representation is arbitrary with respect to the environment
and depends only on the physical constraints of the architecture of the system performing the
computation. For a system as complex as the human brain, there are presumably many possible logical
architectures that define an equivalence class capable of performing the same computation given the
same input, differing only in how the states are internally represented (e.g., by how neurons are wired
together). This could, for example, explain why humans brains all have the potential to be conscious
despite differences in the particular wiring of their neurons. Why the internal representations that have
evolved were selected for in the first place is likely important for understanding why consciousness
emerged in the universe.

Historically within IIT, the presence of feedback is associated with efficiency, such that unconscious
feed-forward systems, e.g., those presented by Oizumi et al. [5] and Doerig et al. [15], operate
under drastically different resource constraints than their conscious counterparts with feedback.
This motivates arguments for an evolutionary advantage toward efficient representation and, by proxy,
Φ/consciousness [27]. Under isomorphic decomposition, however, systems with feedback can be
assumed to have equivalent efficiency to their counterparts without feedback, because the size of the
system and its state transitions are equivalent—demonstrating that Φ is fundamentally distinct from
efficiency. This, in turn, implies there are no inherent evolutionary benefit to the presence or absence
of Φ because it is not selectable as being distinctive to a particular computation an organism must
perform for survival, but only how that computation is internally represented.
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Given that isomorphic systems exhibit the same behavior, meaning that they take the exact same
trajectory through state space, modulo a permutation of the labels used to represent the states, they
can also be considered to be equally autonomous. This is because the internal states of isomorphic
systems are in one-to-one correspondence (Figure 5b), meaning the presence/absence of autonomy
does not affect the transitions in the global state diagram of the system (e.g., Figure 8b,d). In our
examples, the future state of the system as a whole is completely determined its current state for
both the zombie system and its conscious counterpart. Similarly, the future state of each individual
component within a given system is completely determined by its inputs (i.e., it is a deterministic logic
gate). This presents a challenge for understanding in what sense a system with Φ > 0 can be said
to be dictating its own future from within, while the system with Φ = 0 is not, as IIT suggests. The
notion of autonomy that IIT adopts to address this is one of interdependence—autonomous systems
rely on bi-directional information exchange between components while non-autonomous systems
do not. However, given that each component can store only one bit of information, components
cannot store where the information came from (e.g., whether or not they are part of an integrated
architecture). Since the information stored by the system as a whole is nothing more than the combined
information stored by individual components, it is unclear to us why feedback between elements
should result in autonomy while feed-forward connections between elements should not, given
isomorphic state-transition diagrams.

This leads us to the central question of this manuscript: What is experienced as the isomorphic
system with Φ > 0 cycles through its internal states that is not experienced by its counterpart with
Φ = 0? Since in our examples the environment is not dictating the representation of the input, and
all state transitions are isomorphic, the representation and therefore the logic is arbitrary so long as
a logical architecture is selected with the proper input-output map under all circumstances. In light
of this, our formalism suggests any mathematical measure of consciousness, phenomenologically
motivated or otherwise, must be invariant with respect to isomorphic state-transition diagrams.
This minimal criterion implies measurable differences in consciousness are always associated with
measurable differences in the computation being performed by the system (though the inverse need
not be true), which is nothing more than precise mathematical enforcement of the precedent set by
Turing [14]. From this perspective, measures of consciousness should operate on the topology of the
state-transition diagram, rather than the logic of a particular physical implementation. That is, they
should probe the computational capacity of the system without being biased by a particular logical
architecture—allowing identifying equivalence classes of physical systems that could have the same or
similar conscious experience.

Our motivation in this work is to provide new roads to address the hard problem of consciousness
by raising new questions. Our framework focuses attention on the fact that we currently lack
a sufficiently formal understanding of the relationship between physical implementation and
computation to truly address the hard problem. The logical architectures in Figure 8a,c are radically
different, and yet, they perform the same computation. The fact that this computation allows a
feed-forward decomposition is a consequence of redundancies that allow a compressed description in
terms of a feed-forward logical architecture. There are symmetries present in the computation that
allow one to take advantage of shortcuts and reduce the computational load. This, in turn, shows
up as flexibility in the logical architecture that can generate the computation. In other words, the
computation in question does not appear to require the maximum computational power of a three-bit
logical architecture. For sufficiently complex eight-state computations, however, the full capacity of
a three-bit architecture is required, as there is no redundancy to compress. Such systems cannot be
generated without feedback, as the presence of feedback is accompanied by indispensable functional
consequences. In this case, the computation is special because it cannot be efficiently represented without
feedback—a relationship that can, in principle, be understood but is only tangentially accounted for in
current formalisms. It is up to the community to decide if the causal mechanisms of consciousness
are at the level of particular logical architectures or the computations they instantiate, our goal in this
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work is simply to point out where the distinction between the two sets of ideas is very apparent and
clear-cut mathematically, so that additional progress can be made.
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