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Abstract: Classifying nucleic acid trace files is an important issue in molecular biology researches.
For the purpose of obtaining better classification performance, the question of which features are used
and what classifier is implemented to best represent the properties of nucleic acid trace files plays a
vital role. In this study, different feature extraction methods based on statistical and entropy theory
are utilized to discriminate deoxyribonucleic acid chromatograms, and distinguishing their signals
visually is almost impossible. Extracted features are used as the input feature set for the classifiers
of Support Vector Machines (SVM) with different kernel functions. The proposed framework is
applied to a total number of 200 hepatitis nucleic acid trace files which consist of Hepatitis B Virus
(HBV) and Hepatitis C Virus (HCV). While the use of statistical-based feature extraction methods
allows representing the properties of hepatitis nucleic acid trace files with descriptive measures
such as mean, median and standard deviation, entropy-based feature extraction methods including
permutation entropy and multiscale permutation entropy enable quantifying the complexity of these
files. The results indicate that using statistical and entropy-based features produces exceptionally
high performances in terms of accuracies (reached at nearly 99%) in classifying HBV and HCV.

Keywords: hepatitis nucleic acid sequencing; permutation entropy; multiscale permutation entropy;
support vector machines

1. Introduction

Investigating sequencing of nucleotides from deoxyribonucleic acid (DNA) and ribonucleic acid
(RNA) is an important research area in the field of molecular genetics. Although next-generation
sequencing platforms have been getting more applicable than capiller electrophoresis recently, capiller
electrophoresis studies are required for the verification of next generation sequencing results. Since
assessing the huge number of subjects is time-consuming and cost-intensive, it is widely used in small
sized projects. In order to determine the sequencing of interested nucleic acid (DNA-RNA) regions,
millions of copies are amplified with the process named polymerase chain reaction (PCR). In PCR, the
interested RNA region is also converted to DNA copies. After that, the PCR product is prepared for
capiller electrophoresis. As a result, base calling signals (trace files) are obtained from the bases of
DNA, namely Adenine (A), Cytosine (C), Guanine (G), and Thymine (T) which are labeled with four
different fluorescent dyes. A different analysis (i.e., mutation analysis, identification of subtypes of a
virus known as a genotyping process and determination of species) can be accomplished from the
results of a chromatogram that includes related sequences for the specific purpose.

Sequential data modeling for the purpose of discriminating and classifying DNA chromatograms
becomes very popular with the rapid development of sequencing techniques in molecular genetics
and bioinformatics [1–4]. While some types of chromatograms can be manually recognized by an
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expert, it is hard to classify many of them without using any special software. Hepatitis B Virus (HBV)
and Hepatitis C Virus (HCV) base calling signals are two types of hepatitis DNA chromatograms, and
distinguishing these signals visually is impossible. Therefore, classification of hepatitis DNA trace files
is an important issue in utilizing resources efficiently. The illustrations of HBV and HCV trace file
samples are given in Figures 1 and 2, respectively. These figures show the peaks of bases A, C, G, and
T with different colors.
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different time series data such as cardiac inter-beat (RR) [10,11] and human gait [12]. MSE uses single 
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This study deals with classification of HBV and HCV trace files with support vector machines
(SVM) using statistical and entropy-based feature extraction methods. Trace files are also accepted
in a time-series manner and exhibit complex characteristics. In order to measure the complexity,
approximate entropy (ApEn) was suggested by Pincus with the application of an electroencephalogram
(EEG) series [5]. ApEn depends on the length of series and it takes a lower value than expected
when the length is short. Since the sample entropy (SampEn) proposed by [6] is not affected by the
length, it is more consistent than ApEn [7]. In addition, the calculation of SampEn is easier than ApEn.
Permutation entropy (PE) [8] estimates the complexity of non-stationary, noisy and non-linear series
by comparing neighboring values. These traditional entropy measures have been utilized for different
purposes, especially in fault diagnosis and vibroarthographic (VAG) and electroencephalogram (EEG)
signal-processing studies. However, none of these entropy measures are applicable for the systems
which show structures on multiple spatial and temporal scales. In order to estimate multiscale
complexity, multiscale entropy (MSE) was first suggested by Costa, Gollberg and Peng for the
physiologic time series data [9]. The superiority of MSE was then showed by different time series
data such as cardiac inter-beat (RR) [10,11] and human gait [12]. MSE uses single scale SampEn in
order to quantify the complexity of coarse-grained series and different studies showed that it has
some limitations based on the characteristics (e.g., existence of outliers, stationary) and length of
the series [13–15]. A modification of MSE, namely multiscale permutation entropy (MPE), uses PE
instead of SampEn, and the procedure is more robust to artifacts and observational noise in the time
series data [16]. Except for techniques based on statistical theory, various researchers have offered
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suggestions with regard to using single and multiscale entropy measures as a feature extraction
technique for classification of sequential data. While some studies investigate the performance of
different sophisticated classifiers with extracted features using ApEn, SampEn and/or PE [17–22],
others handle multiscale-based technique such as MPE [23,24]. These entropy measures have been
used in biological time series data for the purpose of both quantifying complexity and the extraction of
features in classification. However, there is no work available that uses entropy-based feature extraction
methods for DNA trace files, especially for hepatitis DNA trace files. On the other hand, sophisticated
classifiers within the concept of machine learning have been investigated in terms of their classification
ability in the studies of DNA sequencing [25–28]. However, SVM [29,30] has been reported as a
powerful classification tool compared with other supervised algorithms in recent years [31], and to the
best our knowledge, none of the hepatitis DNA studies have examined SVM as a classifier.

In this study, a new framework for the classification of HBV and HCV trace files based on
features extracted from four bases (i.e., A, C, G, D) of hepatitis DNA chromatograms is presented.
Statistical-based and entropy-based features are extracted from the hepatitis DNA trace files. By using
a statistical-based feature extraction method, it is intended to capture the statistical properties of four
bases belonging to HBV and HCV with computing the values of mean, median and standard deviation.
On the other hand, an entropy-based feature extraction method based on PE and MPE is utilized for the
purpose of quantifying the complexity of these bases. Therefore, 24 computationally efficient features
are extracted and later their different combinations are fed to SVM with different kernel functions such
as linear, polynomial (Poly.) and radial bases (RBF).

The rest of this study is organized as follows. Section 2 includes materials and methods of the
study. The proposed framework is also given in this section. Model comparison results are presented
in Section 3. A discussion and some concluding remarks are provided in Sections 4 and 5, respectively.

2. Material and Methods

2.1. Dataset

Hepatitis DNA trace files are obtained by “Phred” [32], which is widely used in academic and
commercial laboratories as a base-calling software, embedded in a ABI-3730 capillary sequencer device
(Applied Biosystems, Foster City, CA, USA) for DNA sequence traces. The data consists of 200 trace
files, of which 96 are HBV and 104 are HCV. Type of hepatitis is taken as the dependent variable of
constructed SVM models, which has a binary form. Therefore, hepatitis type is labeled as +1 if the
trace file represents HBV, otherwise it is labeled as –1. Each trace file consists of four base calling
signals time series shaped like Gaussian peaks (A, C, G, T bases). A typical segment of a DNA trace
file is illustrated in Figure 3. Each base calling signal in the trace file is converted to an array using the
“scfread” function of MATLAB 2017a software [33].
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2.2. Feature Extraction

Identifying features extracted from the raw data correctly plays a vital role in the purpose of
achieving better classification. Since the intensities of four base calling signals are different from each
other, the raw data include trace files which cannot be directly used as an input for the classification
process. For this reason, raw data should be converted to a mathematical representation which gives
constant values. Different methods can be used in order to represent the raw data. Two types of
extraction methods for arrays obtained from hepatitis DNA trace files are introduced in this study:
(1) statistical-based feature extraction and (2) entropy-based feature extraction. Following subsections
which provide the formulations of how features are extracted from a given base calling signal based on
statistical and entropy theory. All calculations are carried out using MATLAB 2017a software [33].

2.2.1. Statistical-Based Feature Extraction Method

Three statistical features based on descriptive statistical theory, including central tendency
measures (mean and median) and a central dispersion measure (standard deviation), are used. These
are frequently used statistics that reflect the property of DNA trace files [26,27].

Let N denote the length of each base-calling signal. The data points (located on X-axis in Figure 3)
corresponding to signal intensities (located on Y-axis in Figure 3) for base calling signals A, C, G,
and T can be expressed as yA(1, 2, . . . , N), yC(1, 2, . . . , N), yG = (1, 2, . . . , N), and yT = (1, 2, . . . , N),
respectively. The mean and standard deviation formulas for each base calling signal are given as
follows where j = A, C, G, T:

µ j =
1
N

N∑
i=1

y j(i) (1)

σ j =

 1
N

N∑
i=1

(
y j(i) − µ j

)2


1
2

(2)

The intensities of base calling signal j are ordered and then the middle value is found by Equation
(3) as median j, where j = A, C, G, T:

Prob
(
y j(i) ≤ median j

)
= Prob

(
y j(i) ≥ median j

)
=

1
2

(3)

2.2.2. Entropy-Based Feature Extraction Method

Two entropy-based feature extraction methods including PE and MPE are given in this section.
The procedures of obtaining PE and MPE for a given base calling signal are presented below.

• Permutation Entropy

The procedure of measuring PE of a given time series is a process of calculating Shannon entropy
(ShEn) with mapping the original series to ordinal patterns. Using ordinal patterns has numerous
advantages from different aspects [34]. For a given base calling signal j ( j = A, C, G, T), the intensities,
which exhibit the characteristics of a time series Y j =

{
y j(i)

}
i=1,2,...,N

with length N, m-dimensional
vector, can be expressed as:

y j(i) =
{
y j(i), y j(i + τ), . . . , y j(i + (m− 1)τ)

}
(4)

where the embedding dimension is denoted by m (≥ 2), and time lag is denoted by τ (ε N). Here,
y j(i) denotes overlapping segments with length m. According to parameter m, the number of possible
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permutations will be m! with permutation patterns πp where p = 1, 2, . . . , m!. For each y j(i), Equation
(4) can be arranged in ascending order such that:

y j(i + (r1 − 1)τ) ≤ y j(i + (r2 − 1)τ) ≤ . . . ≤ y j(i + (rm − 1)τ) (5)

where 1 ≤ ri ≤ m. Let the probability distribution for each permutation pattern π be shown with
P(π1), P(π2), . . . , P(πk) where k ≤ m! and satisfy the condition

∑k
l=1 P(πl) = 1. Based on the ShEn,

the PE of order m is now obtained as:

HPE j(m) = −
∑
{π}

P(πl)ln(P(πl)) (6)

When the relative frequencies of all permutation patterns are equal, the probabilities take the
value of 1

m! , and the maximum value for HPE j(m) is obtained as ln(m!) [35,36]. To make HPE j(m)

scale-independent and comparable among different m, normalized PE
(
HNPE j ∈ [0, 1]

)
is calculated by

the following equation:

HNPE j =
HPE j(m)

ln(m!)
(7)

• Multiscale Permutation Entropy

The procedure of measuring MPE for a given intensity Y j =
{
y j(i)

}
i=1,2,...,N

of base calling signal
j ( j = A, C, G, T) with length N starts with creating a coarse-grained structure. The coarse-grained
method introduced by Costa, Goldberg and Peng divides the original time series into non-overlapping
windows of increasing length s, also called scale parameter [9]. The z-th element of multiple
coarse-grained time series is obtained by:

c(s)j,z =
1
s

zs∑
i=(z−1)s+1

y j(i) (8)

where 1 ≤ z ≤ N
s . Here, N

s is the length of the constructed coarse-grained time series. After determining
the multiple coarse-grained time series, SampEn is then calculated. Instead of SampEn, Aziz and Arif
suggested using PE (given in Equations (5) and (6)) to calculate the complexity of each coarse-grained
series C j =

{
c j(z)

}
z=1,2,...,m

with length m where m-dimensional embedded vector can be expressed as
follows [16]:

c j(z) =
{
c j(z), c j(z + τ), . . . , c j(z + (m− 1)τ)

}
(9)

It should be noted that MPE j reduces to HNPE j when the scale parameter is equal to 1. HNPE j and
MPE j are the entropy values of base calling signals’ intensities and calculated for all j = A, C, G, T bases.
These entropy measures are used as features that will be included into the SVM classification models.

2.3. Support Vector Machines

Binary class SVM aims to find the most appropriate hyperplane that separates two classes. The
training set X with n samples has the form:

X =
{
(x1, y1), . . . , (xn, yn), xi ∈ Rd, yi ∈ {−1,+1}

}
(10)

where xi denotes the set of input vectors, and yi is the set of corresponding labels which has a binary
form [37]. The purpose is to estimate the parameters w and b which define the optimal hyperplane
obtained from decision function expressed as sign ( f (x)). Here, f (x) is the discriminant function used
as the seperating hyperplane and can be defined as follows:
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f (x) = wTxi + b, w ∈ Rd and b ∈ R (11)

where the following constraint should be satisfied for this hyperplane:

yi
(
wTxi + b

)
≥ +1, i = 1, . . . , n (12)

A quadratic optimization problem which has the objective function min 1
2‖w‖

2 with linear constraints
given in Equation (12) is defined in order to obtain a maximum margin band. Using Lagrangian
multipliers and Karush-Kuhn-Tucker conditions, the following dual problem can be obtained:

Ld =
n∑

i=1
αi −

1
2

n∑
i=1

n∑
j=1

αiα jyiy jxi
Tx j

s.t.
∑n

i=1 αiyi = 0 and αi ≥ 0
(13)

where xi inputs are named as support vectors corresponding to αi’s, and the values of αi’s are found by
using one of the quadratic optimization methods for Equation (13). After that, the unknown parameters
w and b are determined (for more details, see [38]). The slack variable (ξi) is added to the problem in the
case of linearly non-separable data. The value of ξi represents the total number of misclassifications.

When the data is linearly separable, the linear SVM mentioned above is applied; otherwise
non-linear SVM should be preferred. The non-linear SVM outperforms the linear SVM when the
complex-structured time series has many features. In non-linear SVM, the inputs are transformed from
nonlinear to linear space with a specific kernel function. The aim is to find the hyperplane with the
highest margin in the new space where the transformation is successfully achieved by kernels [39].
In the problem, the penalty parameter of the error term is shown by C and the term of C

∑n
i=1 ξi is

added to the object function [40]. After the transformation process of inputs, a linear SVM problem can
be formulated for the new space [41]. Also, depending on kernels, Equation (13) is revised as the new
dual optimization problem for the non-linear SVM given below:

Ld =
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiα jyiy jK
(
xi

Tx j
)

(14)

where K
(
xi

Tx j
)
= φ(xi)

Tφ(xi) is the kernel function. Linear, RBF and Poly. kernels are frequently
used in SVM, and the preferability of a kernel over the others is based on expert knowledge and data
structure. Table 1 shows the formulations of kernels used in this study, and γ and d are the kernel
parameters. While only C parameter can be tuned in linear SVM, γ and d can be tuned in addition to C
in RBF and Poly. kernel SVM, respectively.

Table 1. Kernel functions.

Kernel K(xi
Txj)

Linear xi
Tx j

Radial basis function exp
(
−γ‖xi − x j‖

2
)
,γ > 0

Polynomial
(
xi

Tx j + 1
)d

,γ > 0

2.4. Performance Evaluation

Different measures are used in evaluating the performance of SVM models with different kernel
functions. Most of these can be derived from a confusion matrix which is a 2 × 2 table that holds
information about the predicted versus actual class of observation. A typical confusion matrix is given
in Table 2:
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Table 2. Confusion matrix.

Classifier Prediction Value

Positive Negative

Actual Value Positive True positives (TP) False negatives (FN)
Negative False positives (FP) True negatives (TN)

In the confusion matrix, TP and TN denote the number of correctly classified HBV and HCV trace
files, respectively. Sensitivity (Se), sometimes called the TP rate, indicates the proportion of correctly
classified HBV trace files. Analogously, specificity (Sp), also called the TN rate, shows the proportion
of correctly classified HCV trace files. Accuracy (Acc) gives the the proportion of overall trace files
that are classified correctly. Kappa (κ) statistics is an important agreement measure in the process of
assessing the discriminative power of the relevant SVM model. κ statistics lies in the range between
[–1,+1] and the perfect classification between HBV and HCV trace files is achieved when κ is found
as 1.

2.5. Proposed Framework

The experimental setup of the proposed framework is described in the following steps:

Step 1: Preparing Dataset and Extracting Features

Two hundred trace files belong to Hepatitis DNA are obtained with Phred software. Hepatitis
types (96 traces for HBV and 104 traces for HCV) are labeled as +1 and –1 if the related trace represents
HBV and HCV, respectively. In order to extract features for the classification process, all trace files that
contain four base calling signals are converted to arrays.

In total, 24 features are extracted by two different feature extraction methods, namely
statistical-based and entropy-based for SVM classification. Twelve features are obtained in the
concept of statistical-based extraction and given in Table 3 where µ j, σ j and median j denote mean,
standard deviation and median of base calling signal j(= A, C, G, T) respectively. The remaining 12
features are extracted with the entropy-based method; four of them are with single scale PE and eight
are with multiscale PE. MPE(2)

J and MPE(3)
J demonstrate the multiscale PE of base calling signal j with

scale parameters s = 2 and s = 3, respectively. The higher values of s correlated well with those from
the results with s = 2 and s = 3. For this reason, other values of s are not considered. In addition,
since choosing the parameters of embedding dimension m and time lag τ is an important issue which
depends on the structure of time series, Bandt and Pompe suggested using the values of m = 3, 4, . . . , 7
and τ = 1 in performing PE and MPE [8]. Also, Nalband, Prince and Agrawal followed this suggestion,
using the same values [19]. Thus, these parameters are chosen as m = 3 and τ = 1. All calculations are
carried out using MATLAB 2017a software [33].

Table 3. Feature Descriptions.

Feature Base Calling Signal

Method Description Adenine Cytosine Guanine Thymine

Statistical Based
Mean µA µC µG µT

Median medianA medianC medianG medianT
Standard Deviation σA σC σG σT

Entropy Based
PE HNPEA HNPEC HNPEG HNPET

MPE with s = 2 MPE(2)
A MPE(2)

C MPE(2)
G MPE(2)

T
MPE with s = 3 MPE(3)

A MPE(3)
C MPE(3)

G MPE(3)
T
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Step 2: Creating Training and Testing Dataset

Data is split into train and test sets by random selections with a ratio of 10%, 20%, 30%, 40%,
and 50% for each built SVM model in the training process. The grid-search technique on the kernel
parameters using 10-fold cross-validation is utilized for the purpose of potentially obtaining a good
combination of hyper-parameter values that produce a high generalization performance. The optimal
regularization parameter (i.e., C) and kernel functions parameters (i.e., γ and d) are searched with
defined values: C = (0, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 5), γ = (0, 0.01, 0.05, 0.1, 0.25, 0.5,
0.75, 1), and d = (1, 2, 3, 4, 5).

Step 3: Performing Classification Process and Evaluating Results

The classification process of hepatitis DNA trace files is performed by using SVM with three
different kernel functions. In this step, features extracted with statistical-based methods are used at first
separately, and then together. Likewise, classification is performed using PE (i.e., MPE at s = 1), MPE at
s = 2 and MPE at s = 3 features separately, and then together. SVM models using the mentioned features
are built for each splitting proportion. Then performance evaluation measures Acc, Se, Sp, and κ are
obtained for training and testing pairs. In addition, the number of support vectors (nSV) generated by
the training phase of the relevant SVM model is found. This process is run a total of 10 times in order
to aviod the random selection process effect. Thus, the performance evaluation measures and nSVs are
calculated 10 times for each model. Acc, Se, Sp, κ, and nSV denote the mean values of Acc, Se, Sp, κ,
and nSV, respectively. When training and testing errors are defined as εtraining = 1 −Acctraining and
εtesting = 1−Acctesting, the error of the relevant SVM model is calculated by εdi f f =

∣∣∣εtraining − εtesting
∣∣∣.

“Caret” and “Kernlab” libraries in R studio (version 1.2.1335, RStudio, Inc., Boston, MA, USA)
programming language [42,43] are used in step 2 and step 3.

3. Results

3.1. Classification with Statistical-Based Features

Table 4 reports the classification performance of SVM models using statistical-based features for
10%, 20%, 30%, 40%, and 50% training sets and their corresponding testing sets.

Table 4. Overall performance measures of classifications using statistical-based features.

Feature SVM
Training (10%) Testing

εdiff
Acc ¯

κ Se Sp nSV Acc ¯
κ Se Sp

Mean
Linear 0.983 0.966 0.969 1.000 10.9 0.961 0.923 0.927 0.999 0.022

Poly. Kernel 0.970 0.940 0.945 1.000 11.8 0.960 0.921 0.924 1.000 0.010

RBF Kernel 0.995 0.989 0.992 1.000 15.3 0.980 0.960 0.987 0.973 0.015

Median
Linear 0.793 0.532 0.669 0.861 12.9 0.708 0.425 0.590 0.844 0.085

Poly. Kernel 0.905 0.782 0.761 1.000 10.2 0.772 0.555 0.637 0.928 0.133

RBF Kernel 0.825 0.618 0.740 0.891 17.6 0.718 0.442 0.613 0.836 0.107

Standard
Deviation

Linear 0.958 0.902 0.937 0.969 10.7 0.903 0.809 0.854 0.958 0.055

Poly. Kernel 0.980 0.957 0.979 0.974 8.9 0.922 0.846 0.871 0.979 0.058

RBF Kernel 0.970 0.932 0.972 0.958 15.1 0.963 0.927 0.967 0.960 0.007

All
Statistics

Linear 0.992 0.984 0.985 0.999 8.9 0.953 0.906 0.913 0.996 0.039

Poly. Kernel 0.985 0.969 0.975 1.000 10.7 0.938 0.878 0.885 0.996 0.047

RBF Kernel 0.990 0.979 1.000 0.977 15.5 0.972 0.945 0.994 0.948 0.018
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Table 4. Cont.

Training (20%) Testing εdiff

Mean
Linear 0.981 0.961 0.963 1.000 18.4 0.967 0.935 0.938 0.999 0.014

Poly. Kernel 0.997 0.995 0.995 1.000 19.4 0.964 0.928 0.934 0.996 0.033

RBF Kernel 0.995 0.989 0.991 1.000 30.4 0.983 0.966 0.990 0.975 0.012

Median
Linear 0.801 0.604 0.621 0.991 22.5 0.770 0.547 0.585 0.971 0.031

Poly. Kernel 0.905 0.796 0.892 0.890 19.2 0.834 0.671 0.812 0.863 0.071

RBF Kernel 0.832 0.661 0.674 0.982 27.2 0.773 0.554 0.620 0.945 0.059

Standard
Deviation

Linear 0.955 0.908 0.932 0.978 17.7 0.931 0.863 0.884 0.982 0.024

Poly. Kernel 0.987 0.973 1.000 0.971 12.7 0.947 0.895 0.926 0.970 0.040

RBF Kernel 0.990 0.979 0.993 0.985 26.0 0.964 0.928 0.976 0.951 0.026

All
Statistics

Linear 0.989 0.978 0.979 1.000 17.0 0.970 0.941 0.945 0.998 0.019

Poly. Kernel 0.990 0.979 0.979 1.000 16.3 0.970 0.941 0.945 0.998 0.020

RBF Kernel 0.997 0.994 1.000 0.993 30.1 0.975 0.950 0.995 0.953 0.022

Training (30%) Testing εdiff

Mean
Linear 0.986 0.972 0.974 1.000 22.7 0.968 0.937 0.939 1.000 0.018

Poly. Kernel 0.995 0.989 0.990 1.000 16.8 0.976 0.952 0.958 0.995 0.019

RBF Kernel 0.991 0.983 0.983 1.000 43.2 0.984 0.968 0.991 0.976 0.007

Median
Linear 0.807 0.617 0.638 0.989 31.0 0.784 0.574 0.608 0.976 0.023

Poly. Kernel 0.921 0.839 0.897 0.934 20.4 0.839 0.681 0.809 0.879 0.082

RBF Kernel 0.846 0.696 0.719 0.990 36.6 0.764 0.533 0.564 0.977 0.082

Standard
Deviation

Linear 0.954 0.908 0.925 0.984 25.5 0.936 0.872 0.897 0.978 0.018

Poly. Kernel 0.988 0.975 0.993 0.980 14.6 0.955 0.909 0.947 0.963 0.033

RBF Kernel 0.985 0.969 0.987 0.982 31.6 0.972 0.945 0.986 0.958 0.013

All
Statistics

Linear 0.990 0.980 0.981 1.000 21.3 0.976 0.952 0.954 0.999 0.014

Poly. Kernel 0.995 0.989 0.989 1.000 22.1 0.972 0.945 0.952 0.995 0.023

RBF Kernel 0.996 0.993 0.996 0.996 41.5 0.980 0.959 0.995 0.962 0.016

Training (40%) Testing εdiff

Mean
Linear 0.984 0.969 0.970 1.000 25.0 0.970 0.941 0.944 1.000 0.014

Poly. Kernel 0.990 0.979 0.985 0.994 29.1 0.980 0.960 0.963 0.998 0.010

RBF Kernel 0.993 0.987 0.987 1.000 57.3 0.990 0.979 0.991 0.987 0.003

Median
Linear 0.818 0.636 0.651 0.990 38.5 0.789 0.586 0.624 0.975 0.029

Poly. Kernel 0.916 0.829 0.931 0.894 29.0 0.840 0.682 0.855 0.829 0.076

RBF Kernel 0.828 0.661 0.684 0.989 48.0 0.827 0.656 0.678 0.984 0.001

Standard
Deviation

Linear 0.954 0.907 0.923 0.987 33.2 0.932 0.865 0.890 0.979 0.022

Poly. Kernel 0.995 0.989 0.997 0.991 17.1 0.968 0.936 0.971 0.964 0.027

RBF Kernel 0.986 0.972 0.989 0.981 33.1 0.974 0.948 0.982 0.965 0.012

All
Statistics

Linear 0.992 0.984 0.985 1.000 23.8 0.975 0.951 0.954 0.999 0.017

Poly. Kernel 0.995 0.989 0.990 1.000 21.0 0.981 0.963 0.967 0.996 0.014

RBF Kernel 0.996 0.992 0.995 0.997 41.5 0.984 0.968 0.983 0.984 0.012
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Table 4. Cont.

Training (50%) Testing εdiff

Mean
Linear 0.987 0.974 0.975 1.000 25.4 0.971 0.941 0.943 1.000 0.016

Poly. Kernel 0.992 0.983 0.986 0.998 29.8 0.980 0.959 0.968 0.993 0.012

RBF Kernel 0.993 0.985 0.990 0.995 73.4 0.989 0.977 0.988 0.988 0.004

Median
Linear 0.817 0.639 0.655 0.995 47.8 0.803 0.611 0.632 0.987 0.014

Poly. Kernel 0.913 0.823 0.959 0.857 34.4 0.867 0.735 0.900 0.837 0.046

RBF Kernel 0.841 0.679 0.677 1.000 54.4 0.802 0.614 0.643 0.992 0.039

Standard
Deviation

Linear 0.949 0.898 0.919 0.981 41.1 0.937 0.874 0.900 0.977 0.012

Poly. Kernel 0.984 0.967 0.990 0.976 32.2 0.970 0.939 0.965 0.974 0.014

RBF Kernel 0.987 0.973 0.995 0.977 35.7 0.968 0.935 0.977 0.954 0.019

All
Statistics

Linear 0.995 0.990 0.991 1.000 21.3 0.980 0.961 0.963 0.999 0.015

Poly. Kernel 0.998 0.995 0.996 1.000 18.0 0.979 0.957 0.966 0.992 0.019

RBF Kernel 0.996 0.991 0.996 0.995 37.8 0.991 0.981 0.989 0.990 0.005

When the statistical-based features are taken into account for 10%, 20%, 30%, 40%, and 50%
training samples, the SVM-RBF kernel classifier with mean and all statistics features produces better
classification performances in terms of both Acc and κ. Additionally, the SVM models built with mean
and all statistics features in all proportions of training samples indicate high classification accuracies
ranging from nearly 93% to 99%. All the SVM models (with linear, Poly. and RBF kernels) for each
training sample using median have the lowest classification performances among other statistical-based
features. When the difference of error value between training and testing sets approaches to zero,
it may be indicated that the model is not suffering from the over-fitting problem. The last column of
Table 4 provides εdi f f , and these values are close to zero in general. On the other hand, Han and Jiang
pointed out that the over-fitting problem in classification can be detected by using the expected values
of sensitivity and specifity [44]. When these values are complementary, it can be said that the model
has an over-fitting problem. It is shown in Table 4 that Se and Sp take on non-complementary values.

3.2. Classification with Entropy-Based Features

The classification performance of SVM models with entropy-based features for 10%, 20%, 30%,
40%, and 50% training sets and their corresponding testing sets are given in Table 5.

Table 5. Overall performance measures of classifications using entropy-based features.

Feature SVM
Training (10%) Testing

εdiff
Acc ¯

κ Se Sp nSV Acc ¯
κ Se Sp

PE
Linear 0.944 0.880 0.984 0.894 10.8 0.933 0.867 0.957 0.909 0.011

Poly. Kernel 0.960 0.919 1.000 0.921 8.4 0.950 0.900 0.977 0.921 0.010

RBF Kernel 0.965 0.928 1.000 0.931 16.1 0.950 0.900 0.994 0.902 0.015

MPE with
s = 2

Linear 0.954 0.904 0.995 0.911 10.8 0.941 0.882 0.973 0.905 0.013

Poly. Kernel 0.995 0.990 1.000 0.990 9.7 0.945 0.890 0.954 0.935 0.050

RBF Kernel 0.945 0.890 1.000 0.894 15.5 0.956 0.911 1.000 0.909 0.011

MPE with
s = 3

Linear 0.949 0.894 0.984 0.909 11.3 0.937 0.874 0.963 0.909 0.012

Poly. Kernel 0.980 0.959 1.000 0.958 8.5 0.935 0.871 0.934 0.937 0.045

RBF Kernel 0.955 0.905 1.000 0.892 15.6 0.955 0.909 1.000 0.907 0.000

All
Entropies

Linear 0.954 0.903 0.987 0.915 10.1 0.945 0.890 0.981 0.905 0.009

Poly. Kernel 0.980 0.956 1.000 0.950 11.0 0.954 0.908 0.987 0.919 0.026

RBF Kernel 0.970 0.938 1.000 0.940 15.7 0.955 0.909 0.994 0.911 0.015
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Table 5. Cont.

Feature SVM
Training (10%) Testing

εdiff
Acc ¯

κ Se Sp nSV Acc ¯
κ Se Sp

Training (20%) Testing εdiff

PE
Linear 0.945 0.889 0.990 0.897 20.6 0.949 0.899 0.988 0.908 0.004

Poly. Kernel 0.980 0.959 1.000 0.956 12.7 0.946 0.893 0.953 0.940 0.034

RBF Kernel 0.955 0.906 1.000 0.896 31.4 0.953 0.907 1.000 0.905 0.002

MPE with
s = 2

Linear 0.946 0.889 0.992 0.894 21.2 0.950 0.901 0.989 0.909 0.004

Poly. Kernel 0.977 0.954 0.995 0.958 16.1 0.947 0.894 0.989 0.901 0.030

RBF Kernel 0.955 0.909 1.000 0.907 32.9 0.955 0.909 1.000 0.906 0.000

MPE with
s = 3

Linear 0.948 0.894 0.992 0.904 20.4 0.950 0.900 0.989 0.907 0.002

Poly. Kernel 0.970 0.938 0.991 0.952 16.9 0.949 0.897 0.982 0.912 0.021

RBF Kernel 0.965 0.928 0.993 0.933 31.2 0.941 0.883 0.972 0.910 0.024

All
Entropies

Linear 0.952 0.902 0.989 0.911 19.8 0.950 0.900 0.988 0.909 0.002

Poly. Kernel 0.987 0.971 1.000 0.964 10.6 0.966 0.932 0.977 0.955 0.021

RBF Kernel 0.975 0.948 1.000 0.947 34.4 0.950 0.899 0.995 0.901 0.025

Training (30%) Testing εdiff

PE
Linear 0.949 0.897 0.989 0.906 29.4 0.948 0.896 0.987 0.906 0.001

Poly. Kernel 0.986 0.973 1.000 0.972 17.5 0.957 0.915 0.970 0.944 0.029

RBF Kernel 0.956 0.911 1.000 0.905 49.9 0.954 0.908 1.000 0.906 0.002

MPE with
s = 2

Linear 0.953 0.905 0.993 0.909 28.6 0.949 0.897 0.990 0.905 0.004

Poly. Kernel 0.996 0.993 0.996 0.995 11.7 0.964 0.928 0.970 0.959 0.032

RBF Kernel 0.950 0.896 1.000 0.888 50.2 0.956 0.912 1.000 0.911 0.006

MPE with
s = 3

Linear 0.950 0.899 0.993 0.904 30.7 0.950 0.899 0.989 0.907 0.000

Poly. Kernel 0.981 0.962 0.989 0.972 15.8 0.937 0.874 0.918 0.961 0.044

RBF Kernel 0.963 0.924 1.000 0.917 50.0 0.951 0.902 1.000 0.901 0.012

All
Entropies

Linear 0.960 0.920 0.991 0.928 28.2 0.948 0.896 0.990 0.901 0.012

Poly. Kernel 0.996 0.996 1.000 0.992 10.6 0.983 0.967 0.983 0.983 0.013

RBF Kernel 0.983 0.965 1.000 0.963 36.1 0.970 0.939 1.000 0.937 0.013

Training (40%) Testing εdiff

PE
Linear 0.951 0.901 0.989 0.909 39.0 0.947 0.893 0.987 0.903 0.004

Poly. Kernel 0.990 0.979 0.995 0.982 13.5 0.969 0.938 0.968 0.970 0.021

RBF Kernel 0.948 0.896 1.000 0.891 70.0 0.959 0.917 1.000 0.914 0.011

MPE with
s = 2

Linear 0.951 0.901 0.994 0.905 37.4 0.950 0.899 0.989 0.906 0.001

Poly. Kernel 0.996 0.992 1.000 0.991 14.6 0.961 0.923 0.960 0.963 0.035

RBF Kernel 0.948 0.897 1.000 0.898 68.8 0.959 0.917 1.000 0.912 0.011

MPE with
s = 3

Linear 0.949 0.896 0.991 0.903 40.7 0.951 0.901 0.990 0.908 0.002

Poly. Kernel 0.976 0.951 0.995 0.952 21.3 0.952 0.904 0.971 0.933 0.024

RBF Kernel 0.956 0.911 1.000 0.904 68.4 0.954 0.908 1.000 0.907 0.002

All
Entropies

Linear 0.964 0.927 0.994 0.928 30.3 0.952 0.904 0.990 0.912 0.012

Poly. Kernel 0.993 0.987 1.000 0.986 14.0 0.977 0.954 0.987 0.967 0.016

RBF Kernel 0.996 0.992 1.000 0.991 29.3 0.989 0.978 1.000 0.977 0.007
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Table 5. Cont.

Feature SVM
Training (10%) Testing

εdiff
Acc ¯

κ Se Sp nSV Acc ¯
κ Se Sp

Training (50%) Testing εdiff

PE
Linear 0.948 0.895 0.990 0.903 49.5 0.951 0.901 0.989 0.909 0.003

Poly. Kernel 0.992 0.983 0.995 0.987 11.1 0.960 0.919 0.971 0.948 0.032

RBF Kernel 0.959 0.917 1.000 0.916 76.6 0.955 0.908 1.000 0.903 0.004

MPE with
s = 2

Linear 0.952 0.904 0.996 0.905 41.4 0.950 0.900 0.989 0.907 0.002

Poly. Kernel 0.996 0.991 0.996 0.995 13.4 0.972 0.943 0.966 0.977 0.024

RBF Kernel 0.947 0.893 1.000 0.893 84.4 0.963 0.924 1.000 0.919 0.016

MPE with
s = 3

Linear 0.951 0.902 0.992 0.907 46.6 0.949 0.898 0.991 0.904 0.002

Poly. Kernel 0.984 0.967 0.996 0.969 16.0 0.946 0.891 0.960 0.931 0.038

RBF Kernel 0.954 0.907 1.000 0.903 86.4 0.956 0.911 1.000 0.909 0.002

All
Entropies

Linear 0.966 0.932 0.994 0.935 30.8 0.956 0.912 0.991 0.919 0.010

Poly. Kernel 0.999 0.997 1.000 0.997 14.6 0.981 0.962 0.991 0.971 0.018

RBF Kernel 0.988 0.975 1.000 0.975 41.9 0.979 0.957 1.000 0.953 0.009

For 10% training samples, SVM-RBF kernel classifier with features of MPE at s = 2 has the highest
performance in terms of Acc (95.6%) and κ (0.911). For the same training proportion, SVM-RBF kernel
classifier with MPE at s = 3 and all entropies have the same values of Acc = 95.5% and κ = 0.909. In the
case 20% and 30% training, the highest values of Acc are obtained with SVM-Poly. kernel classifier that
uses all entropies as 96.6% and 98.3%, respectively. Also, this classifier produces the highest value of
κ for 20% and 30% training samples. Results for 40% training samples show that SVM-RBF kernel
classifier using all entropy-based features achieves better classification performance in terms of Acc
and κ (98.9% and 0.978, respectively). Besides, SVM-Poly. kernel classifier with all entropy-based
features takes the highest values of Acc and κ (98.1% and 0.962, respectively) for 50% training samples.
Additionally, SVM models using entropy-based features in all training proportions achieve substantial
classification performances where accuracies are ranging from nearly 93% to 99%. According to εdi f f ,
Se and Sp values, it can be concluded that the over-fitting problem does not appear in SVM models for
10%, 20%, 30%, 40%, and 50% training samples. SVM models using entropy-based features indicate
very low εdi f f , ranging from 0.000 and 0.050.

4. Discussion

The characteristic of sequential data exhibits a complex structure. Due to the difficulty of
distinguishing this type of data visually, the classification of sequential data has attracted notable
attention of researchers in different areas. Most recent studies dealt with the complexity of the system,
and therefore, used various types of entropy to extract features from the raw data. Features which
reflect the behaviour of data truthfully do not only reduce the dimensionality of space, but also improve
the classification quality.

Recent studies for biological systems offered novel approaches to extract features based on single
and multiscale entropy measures in order to achieve high classification accuracy. Especially, extracted
features from EEG signal-based entropy helps researchers in the early diagnosis of epilepsy, different
types of sleep disorders, and brain-related disorders such as Alzheimers [45]. Acharya et al. [46]
extracted features from EEG signals by using ApEn, SampEn, and Phase Entropies (S1 and S2) for the
purpose of detecting epilepsy. After applying different machine learning classification algorithms,
it was shown that fuzzy classifier produced better classification performance (98%) in terms of the
performance measures used in the study. Collected EEG signals from the brain were also discriminated
with various classifiers after the extraction process, including entropy-based methods (i.e., ApEn and
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SampEn) in another important study [47]. AverageShEn, Renyi’s (RE), ApEn, SampEn, and S1 and
S2 entropies were utilized to extract features from focal and non-focal epilepsy EEG signals in the
study of Sharma, Pachori and Acharya [48]. It was reported that the least squares SVM with Morlet
wavelet kernel function reached an 87% accuracy rate in classifying signals. For the classification of
focal and non-focal EEG, Arunkumar et al. [49] proposed a methodology based on ApEn, SampEn and
RE. Extracted features were fed into different classifiers such as NaïveBayes (NBC), SVM, k-nearest
neighborhood (KNN), and non-nested generalized exemplars (NNGe). The results demonstrated that
NNGe has the best classification performance with 98% accuracy. Also, a review about entropy-based
feature extraction methods was presented for the diagnosis of epilepsy in [50]. To detect epileptic
seizures, MSE was utilized as the feature extraction method, and SVM classifier was performed in [51].
The classification accuracies in classifying seizure, seizure-free and normal EEG signals were found to
be higher than 98%. In sleep scoring classification, features were extracted from EEG signals using
MSE, and SVM-based classifiers were performed in [52]. The overall accuracy rate was found to be
91.4%. To make accurate classifications of sleep stages, Rodríguez-Sotelo et al. [53] proposed a method
based on J-means classification with EEG features extracted by fractal dimension, detrended fluctuation
analysis, ShEn, ApEn, SampEn, and MSE. Extracted features were optimized with Q−α method,
and then were fed to J-means classifier which achieved an average of 80% accuracy rate. Another
important study which deals with sleep disorders was conducted by using 22 different EEG features
including ApEn, SampEn and PE [54]. Extracted features were then fed to Wavelet transform and SVM
classifiers. Recent studies have also showed that features extracted from entropy measures produce
high classification performance in classifying human sleep EEG signals with different supervised and
unsupervised machine learning methods [55–57]. To detect Alzheimer’s disease, various EEG features
including entropy (e.g., ApEn, SampEn, PE) and statistical (e.g., mean, variance, standard deviation)
measures were extracted in [58] and then fed to six classifiers including SVM, artificial neural network,
KNN, NBC, and random forest. The proposed method indicated high classification accuracy ranging
from nearly 89% to 97%.

Some of the important studies presented above can be seen as pioneers in classifying the sequential
data obtained from biological systems and they demonstrated the usefulness of entropy-based feature
extraction methods. On the other hand, an increasing number of studies in recent years have
investigated the classification abilities of machine learning-based methods for genomic data [59,60].
Genomics is defined as one of the most important domains in bioinformatics [59] where computational
methods need to be carefully utilized in order to discover useful but hidden information from biological
systems. Extracting a set of features from the bases of DNA and then feeding to any supervised
classifier for the purpose of labeling DNA trace files (e.g., high/low quality, genotyping of the viruses,
species identification) is an important step to achieve high classification accuracy, as in all classification
paradigms. To the best of our knowledge, there is no work which deals with entropy-based feature
extraction methods for gene sequencing data. In this study, a new framework is proposed to classify
hepatitis DNA trace files with SVM using extraction methods based on both statistics and entropy
(i.e., PE and MPE) measures. The mathematical formulations of two extraction methods are introduced.
The offered extraction methods are applied for the hepatitis DNA trace files and hence, the classification
of the files as HBV and HCV is performed via SVM with three different kernel functions.

SVM models built with median features have low accuracies compared to models with other
statistical-based features. In general, SVM-RBF kernel classifier using mean and all statistics features
outperforms SVM models with other statistical-based features. On the other hand, SVM-RBF or
SVM-Poly. kernel classifiers using all entropies achieve higher classification performances than
SVM-linear classifier for all training samples except 10%. SVM models using both statistical and
entropy-based features exhibit very close classification performances in terms of accuracies.

When the best-performing SVM models for each training proportions are compared, it is found
that the models with entropy-based features produce lower nSVs than models with statistical-based
features and consequently yield lower complexity in the decision process.
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According to Table 5, SVM-RBF kernel classifiers with entropy-based features have a higher
percentage of nSVs compared with SVM-linear and SVM-Poly. kernel classifiers for all training
proportions. Therefore, one can conclude that an over-fitting problem can appear. On the contrary,
for each training proportion, it is found that εdiff values are close to 0, Se values are close to 1, and
Sp values are above 0.90. In addition, Se and Sp do not take complementary values. Thus, according
to these values, it is not expected that an over-fitting problem can arise. On the other hand, SVM
models using all entropies have lower nSVs compared with models using PE, MPE at s = 2 and MPE
at s = 3 separately for training proportions from 30% to 50%. Thus, it can be concluded that less
parameters are enough to define hyperplanes of problem complexity in the situation of SVM using all
entropies. Moreover, cross-validation utilized in the training phase also contributes to overcome the
over-fitting problem.

5. Conclusions

The results demonstrate that the proposed framework produces remarkable classification
performances based on both statistical and entropy features. By integrating this framework into the
DNA sequencing devices, autonomous classification of DNA trace files, especially hepatitis DNA trace
files that cannot be distinguished visually, can be achieved successfully.

The proposed framework, which offers two different feature extraction methods, demonstrates
that SVM models with statistical-based features have high performance as well as models with
entropy-based features. Hence, it is suggested that entropies can be effectively used in the extraction of
features from DNA trace files which produce non-stationary, noisy and non-linear signals. This feature
extraction method can be considered either alone or combined with other extraction methods with the
purpose of obtaining higher classification performance.

Although this study is designed for the classification of two class trace files (HBV and HCV),
further studies can be concentrated on multi-class trace files such as the genotypes (sub-types) of
hepatitis, other viruses and bacteria DNA trace files. Also, different supervised machine learning
methods can be implemented and compared in terms of their classification ability.
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