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Abstract: Congestive heart failure (CHF) is a cardiovascular disease related to autonomic nervous
system (ANS) dysfunction and fragmented patterns. There is a growing demand for assessing CHF
accurately. In this work, 24-h RR interval signals (the time elapsed between two successive R waves
of the QRS signal on the electrocardiogram) of 98 subjects (54 healthy and 44 CHF subjects) were
analyzed. Empirical mode decomposition (EMD) was chosen to decompose RR interval signals
into four intrinsic mode functions (IMFs). Then transfer entropy (TE) was employed to study the
information transaction among four IMFs. Compared with the normal group, significant decrease in
TE (*→1; information transferring from other IMFs to IMF1, p < 0.001) and TE (3→*; information
transferring from IMF3 to other IMFs, p < 0.05) was observed. Moreover, the combination of TE (*→1),
TE (3→*) and LF/HF reached the highest CHF screening accuracy (85.7%) in IBM SPSS Statistics
discriminant analysis, while LF/HF only achieved 79.6%. This novel method and indices could
serve as a new way to assessing CHF and studying the interaction of the physiological phenomena.
Simulation examples and transfer entropy applications are provided to demonstrate the effectiveness
of the proposed EMD decomposition method in assessing CHF.

Keywords: autonomic nervous system (ANS); congestive heart failure (CHF); empirical mode
decomposition (EMD); heart rate variability (HRV); transfer entropy (TE)

1. Introduction

Congestive heart failure (CHF) is a common chronic cardiovascular syndrome, rendering the
inability of heart to pump sufficient blood as required by the body [1]. Around 26 million people are
suffering from CHF all over the world [2]. CHF may also herald a newly diagnosed cardiac disease or
the deterioration of an underlying heart disease [3]. Thus the assessment for CHF patients is essential
in clinical circumstance.

CHF is associated with autonomic nervous system (ANS) abnormality and fragmented patterns
of the heart [4,5]. Heart rate variability (HRV), being able to access the function of ANS and some
non-autonomic influence [5,6], is frequently used while investigating CHF [4]. Frequency-domain
HRV indices are commonly used to analyze HRV [7,8]. Binkley et al. [9] and Pecchia et al. [6] proposed
that the frequency-domain indices could indicate the autonomic imbalance characteristic of CHF.
The power spectral density of HRV signal could be divided into the four bands: very low frequency
VLF (0.003–0.04 Hz), low frequency LF (0.04–0.15 Hz), high frequency HF (0.15–0.4 Hz) and very
high-frequency VHF (0.4–1 Hz) [10]. Power in VLF [11–13] has been proved to be indicators of activity of
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ANS, which is not susceptible to a simple autonomic branch interpretation [14]. LF band is related to the
sympathetic nerve system (SNS) while the power at HF is mainly associated with the parasympathetic
nerve system (PNS) [15]. Fragmented patterns, like sinus rhythm fragmentation, can contribute to
those very-high frequency oscillations, and thus have an effect on cardiac contractility [5,8,16]. Though
most studies mainly focused on independent changes of these indices, recent studies showed that the
interactions between these bands could suggest the pathogenesis of diseases in depth. Luo et al. [17]
studied directed interaction between SNS and PNS employing transfer entropy (TE), revealing the
disturbed balance of the equilibrium of the ANS in CHF group. Zheng et al. [18] demonstrated that TE
between LF and HF could differentiate patients with ANS dysfunction from the normal by evaluating
the interaction between LF and HF.

The decomposition of HRV signals in the frequency domain is essential but hard. Linear filtering
decomposition methods are traditionally utilized when analyzing HRV signals in the frequency
domain [19,20]. However, cardiovascular control mechanisms are nonlinear and dynamic. Its behavior
cannot be described accurately by the high-gain instability oscillation model, upon which power
spectral density is predicted in linear filtering methods [21]. Besides, inaccuracy could happen because
of its involvement of decomposition of low frequency component. It can lead to serious error when
the frequency band is divided into several parts. Therefore, only LF and HF value are chosen in
research in most cases using linear filter [17,18], while VLF and VHF values are ignored, to ensure
the accuracy as much as possible. As a result, better and more refined decomposition methods are
needed to obtain HRV feature accurately. Empirical mode decomposition (EMD), capable of adaptively
decomposing a complex signal into a collection of relatively stationary and infinite vibration modes
(intrinsic mode functions, IMFs), was proposed to deal with this problem [22,23]. Anas et al. revealed
the similarity between IMFs and ECG signals and exploited EMD to separate ventricular fibrillation
from other cardiac pathologies [24]. Pan et al. decomposed four subsystems from HRV signals with
EMD method, of which the correspondence with the four frequency bands (VLF, LF, HF and VHF) was
further validated by the Hilbert-Huang transform (HHT) [25].

Being able to estimate the causality between two variables, TE is an ideal tool to assess the
flowing information among systems and subsystems [18]. Luca et al. demonstrated the ability of
the TE method to gauge the interaction of simulated linear and nonlinear multivariate processes [26].
Zheng et al. inferred TE was useful to analyze respiration movement asymmetry between the left
and right lungs [27]. The relationship between SNS and PNS can also be evaluated by analyzing TE
between LF and HF [17,18].

As a result, the asymmetry correlation among various body functions could be better investigated
utilizing the combination of EMD and TE. In this paper, the EMD method was employed to decompose
HRV signals into several IMFs. Next, TE was extracted among IMFs to study the interactions between
subsystems. Finally, various combinations of indices would be tested to clarify each sample as normal
or CHF using Fisher’s discriminant function.

2. Methods

In this study, the HRV features of the normal and the CHF would be analyzed. The framework
of the analysis system is shown in Figure 1. First, 24-h RR interval (the time elapsed between two
successive R waves of the QRS signal on the electrocardiogram) recordings were segmented into epochs
and resampled. Then, 5-min RR segments were decomposed using the EMD method. Afterwards,
LF/HF ratio and TEs of the decomposed results were extracted. Finally, these indices were validated by
statistical analysis and CHF assessments.
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Figure 1. The framework of the proposed signal processing. 

2.1. Data 
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61.38 ± 11.63) were acquired from the Normal Sinus Rhythms RR Interval database. Forty-four CHF 
subjects (19 males and six females, 19 subjects’ gender were unknown, aged 55.51 ± 11.44) consisted 
of 15 from the Beth Israel Deaconess Medical Center (BIDMC) Congestive Heart Failure and 29 from 
the Congestive Heart Failure RR Interval database [28]. 

The first and last RR interval segments of each 24-h recordings, as well as any RR interval longer 
than 3 s [29], were eliminated to minimize the influence of error and noise. Considering that RR 
intervals of CHF patients are usually lower than normal controls [30], we do not pay particular 
attention to and remove the lower outliers in this study. Next, the remaining signals were divided 
into non-overlapping 5-min fragments. Then, each fragment was resampled to 2 Hz using the spline 
interpolation for applying short-term HRV analysis [4]. 

2.2. HRV Analysis 
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The adaptivity and applicability of the EMD method to nonlinear and non-stationary systems 
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Figure 1. The framework of the proposed signal processing.

2.1. Data

In this study, we used electrocardiogram (ECG) recordings derived from the open database
of Physionet website. The 24-h RR interval signals of 54 normal people (31 males and 23 females,
aged 61.38 ± 11.63) were acquired from the Normal Sinus Rhythms RR Interval database. Forty-four
CHF subjects (19 males and six females, 19 subjects’ gender were unknown, aged 55.51 ± 11.44)
consisted of 15 from the Beth Israel Deaconess Medical Center (BIDMC) Congestive Heart Failure and
29 from the Congestive Heart Failure RR Interval database [28].

The first and last RR interval segments of each 24-h recordings, as well as any RR interval longer
than 3 s [29], were eliminated to minimize the influence of error and noise. Considering that RR
intervals of CHF patients are usually lower than normal controls [30], we do not pay particular
attention to and remove the lower outliers in this study. Next, the remaining signals were divided
into non-overlapping 5-min fragments. Then, each fragment was resampled to 2 Hz using the spline
interpolation for applying short-term HRV analysis [4].

2.2. HRV Analysis

2.2.1. Empirical Model Decomposition

The adaptivity and applicability of the EMD method to nonlinear and non-stationary systems
has been proved for its direct extraction of energy with regard to local characteristic time scale.
Four intrinsic mode functions (IMFs) would be generated from the preprocessed signals, which can
yield meaningful instantaneous frequencies with Hilbert transform [22]. Each IMF should satisfy two
requirements: (1) the number of extremes and zero crossings should either be the same or differ at
most by one. (2) The mean value of the envelopes defined by the local maxima and by the local minima
at any point is supposed to be zero [31].
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Given the original signal s(t) and the algorithm is shown as follows: [32]

1. s(t) is represented as x j,k(t) ( j = 1, k = 1) with subscript j represents the number of IMF and
subscript k represents the time of sifting process to get IMF j;

2. Identify all the local maxima and minima and use cubic fitting to obtain upper envelope emax(t)
and lower envelope emin(t) of x j,k(t). Then the mean values are calculated by;

m j,k(t) =
emax(t) + emin(t)

2
. (1)

3. The detail is computed by
x j,k+1(t) = x j,k(t) −m j,k(t). (2)

If x j,k+1(t) meets the two requirements mentioned above,

IMF j(t) = x j,k+1(t). (3)

If not, repeat steps 2–3.
4. To find more IMF components of input data, x j+1,k(t) (k = 1) is calculated by

x j+1,k(t) = x j,k(t) − IMF j(t). (4)

If x j+1,k(t) is monotone, the residual signal

r(t) = x j+1,k(t). (5)

The origin signal can be shown as

s(t) =
n∑

j=1

IMF j(t) + r(t). (6)

If not, repeat steps 2–4.

2.2.2. Indices Calculation

• LF/HF ratio:

In this study, the power spectral density of the RR intervals was computed by fast Fourier
transform. The value of LF (0.04–0.15 Hz) and HF (0.15–0.4 Hz) components were chosen to calculate
the LF/HF ratio [33], which is widely accepted to describe ANS balance. The formula is as follows:

LF/HF ratio =
LF power
HF power

. (7)

• Transfer entropy:

TE is used as an estimation technique to detect coupling strength among two time series, and the
results are computed between any two in both directions. Given two sequences: [34]{

x(l) = (xn, xn−u, . . . , xn−(l−1)u)

y(k) = (yn, yn−u, . . . , yn−(k−1)u)
, (8)
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where l and k represent the order of the Markov process, which means the future probabilities of a
system are determined by its last l or k values.

The formula is proposed as:

TEX→Y =
∑

p(yi+1, y(k)i , x(l)i−u−1)log2

p(yi+1

∣∣∣∣y(k)i , x(l)i−u−1)

p(yi+1

∣∣∣∣y(k)i )
, (9)

where u is the predicting delay time. p(yi+1, y(k)i , x(l)i−u−1) represents the joint probability

of yi+1, y(k)i , x(l)i−u−1 while p(yn+1|y
(k)
i , x(l)i−u−1) and p(yn+1|y

(k)
i ) are the conditional probabilities.

Considering the Markov properties of our data, k and l were defined as 1 while u equaled 0 in
this study. Then, the equation can be expressed as follows:

TEX→Y =
∑

p(yi+1, yi, xi)log2
p(yi+1|yi, xi)

p(yi+1|yi)
. (10)

2.2.3. Simulated Data of EMD

Based on the local characteristic time scale of the data, EMD is an adaptive and efficient
decomposing method on extraction of features for nonlinear and nonstationary signals [23]. In order to
validate the superiority of the EMD method in the face of various oscillatory signals, the performance
of EMD and the linear filtering method was compared.

In the simulated experiment, we compared the performance of the linear filter and EMD facing
nonlinear signal. The simulated experiment was conducted on autoregressive (AR) processes as the
following system [35]:

LFn =
∑k

i=1
αiLFn−i + Jϑn. (11)

HFn =
∑l

i=1
βiHFn−i + Kεn + γ

∑l

i=1
δiLFn−i. (12)

In order to simulate the ANS signals, the frequency band of LF oscillations was set with
fLF ∈ [0.04, 0.15] while HF oscillations with fHF ∈ [0.15,0.4]. ϑn and εn stand for Gaussian white noises
with mean of zero and variance of 1. αi, βi and δi, calculated based on the Akaike information criterion
(AIC), are the main parameters of this autoregressive model. J and K was set to 0.1 and k = l = 10 in
this model. γ, which was set to 0.5, was caused by the time delay of the LF sequence. Characteristics
of this synthesized signal in time and frequency domain are shown in Figure 2A,B. The frequency
spectrum of LF and HF component are drawn in Figure 2C,D for ease of comparison.

2.3. Statistical Analysis

Statistical analysis was performed to verify whether the features showed significant difference
between different groups via one-way ANOVA [36]. Further, Fisher’s discriminant function would
classify each sample as normal or CHF. The significance test and discriminant analysis test were
performed using SPSS version 22.0.0.0 (SPSS Inc., Chicago, IL, USA).
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Figure 2. Decomposition results of the simulated heart rate variability (HRV) signals.
(A,B): The synthesized signal in the time domain and frequency domain. (C,D) The high frequency
(0.15–0.4 Hz) and low frequency (0.04–0.15 Hz) components in frequency domain. (E,F): Decomposition
results of linear filter. (G,H): Decomposition results of empirical mode decomposition (EMD). (I,J): Error
between the original component signals and decomposed signals in the high and low frequency band.

3. Results

3.1. Simulated Analysis by EMD

From the simulated results, EMD was superior to linear filtering method when facing the simulated
ANS signals. The results are shown in Figure 2E,H. From this perspective, EMD had especially better
performance than linear filter when it comes to low frequency components. The EMD spectrum,
though still had slight difference with the original signal, conformed more to the raw components.
Nevertheless, the linear filter brought a particularly inaccurate outcome in the low frequency band,
which is shown in Figure 2J. The energy leakage of linear filter may be a reason for this large error.
As for the HF components, both linear filter and EMD had good performance and decomposed
the synthesized signal successfully. Generally speaking, the linear filtering method presented more
serious error in this experiment, especially in low frequency band. EMD was preferable to linear filter
processing simulated nonlinear signals. In the above simulation, it has been proved that EMD is a
suitable way to investigate HRV signals.

3.2. HRV Analysis by EMD

The results of EMD of a typical 5-min HRV segment are shown in Figure 3. The first four IMFs
contained almost the entire energy of the original signal. Hence, the first four IMFs of the HRV signal
of each subject were selected for further analysis.
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TEs among all IMFs were calculated and TE (X→Y) estimates information transfer from processes
X (driver system) to Y (target system) [18]. The mean ± standard deviation (SD) values of TE are listed
in Table 1. Averages of all indices of CHF group were lower compared with the normal. The TE (2→1),
TE (3→1), TE (4→1) and TE (3→4) showed a very significant difference (p < 0.001), and TE (3→2)
showed a significant difference (p < 0.05) between the normal and CHF groups.

Table 1. Values of transfer entropy (TE) among intrinsic mode function (IMF)1, IMF2, IMF3 and IMF4.

Indices Normal
(Mean ± SD)

CHF
(Mean ± SD) p-Value

TE (2→1) 0.5275 ± 0.12805 0.3995 ± 0.17607 0.000 ***
TE (1→2) 0.3523 ± 0.08306 0.3313 ± 0.13262 0.364
TE (3→1) 0.5866 ± 0.13141 0.4245 ± 0.17261 0.000 ***
TE (1→3) 0.2664 ± 0.03964 0.2531 ± 0.07634 0.299
TE (4→1) 0.6323 ± 0.14308 0.4625 ± 0.17730 0.000 ***
TE (1→4) 0.2161 ± 0.02868 0.2010 ± 0.04566 0.060
TE (3→2) 0.3999 ± 0.06272 0.3600 ± 0.11196 0.039 *
TE (2→3) 0.2770 ± 0.03107 0.2623 ± 0.06932 0.198
TE (4→2) 0.4283 ± 0.06653 0.3972 ± 0.10781 0.099
TE (2→4) 0.2205 ± 0.01821 0.2102 ± 0.03837 0.109
TE (4→3) 0.3442 ± 0.02340 0.3269 ± 0.05502 0.056
TE (3→4) 0.2526 ± 0.01196 0.2359 ± 0.03023 0.001 ***

*, *** represent p < 0.05 p < 0.001 between normal and CHF groups, respectively.

Figure 4 shows the results of TE (*→1; the target system of TEs are IMF1) between the normal
and CHF groups. The information flew from any other IMFs to IMF1 of normal people was obviously
more than CHF groups. The value of TE (3→*; the driver system of TEs are IMF3) is shown in Figure 5.
Statistically, these indices showed the information transferring from IMF3 to other IMFs of normal
group was obviously more than CHF subjects.
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3.3. Disease Analysis by TE

TE (2→1), TE (3→1), TE (4→1), TE (3→4) and TE (3→2) were chosen as representative indices
in CHF assessment according to above results, along with the LF/HF ratio, which has already been
proved a powerful index in the past study [6]. The Fisher’s discriminant function was carried out to
classify all the 98 samples. The accuracy (Acc), sensitivity (Sen), specificity (Spe) are defined as the
percentage of correctly classified samples, correctly classified CHF samples and correctly classified
healthy samples respectively. As demonstrated in Table 2, the combination of TEs the target systems
of which are IMF1 (TE (2→1), TE (3→1), TE (4→1)) and of TEs the driver systems of which are IMF3
(TE (3→1), TE (3→2), TE (3→4)) both achieved a better performance than discrimination based on
separate features. The combination of all the six indices reached the best performance with 85.7% Acc
and 85.2% Spe. Furthermore, as the receiver operating character (ROC) curves shown in Figure 6,
the combination of all indices led to the highest area under the curve (AUC) value (0.8570).

Table 2. Performance of classification.

Indices Acc (%) Sen (%) Spe (%)

LF/HF 79.6 86.4 74.1
TE (2→1) 69.4 70.5 68.5
TE (3→1) 70.4 70.5 70.4
TE (4→1) 70.4 70.5 70.4
TE (3→2) 63.3 63.6 63.0
TE (3→4) 78.6 75.0 81.5

TE (2→1) and TE (3→1) and TE (4→1) 81.6 81.8 81.5
TE (3→1) and TE (3→2) and TE (3→4) 80.6 81.8 79.6

LF/HF and TE (2→1) and TE (3→1) and TE (4→1) and
TE (3→2) and TE (3→4)

85.7 86.4 85.2
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As demonstrated in the results, the combination of LF/HF, TE (2→1), TE (3→1), TE (4→1), TE
(3→2) and TE (3→4) can classify the CHF from the normal with the highest accuracy in this study.

4. Discussion

CHF is a chronic cardiovascular syndrome related to dysfunction of ANS and erratic rhythm [4,5,17].
Linear methods are usually applied to analyze HRV signals [19–21] and detect CHF [18] in the past.
However, a consensus seems to emerge in recent years that autonomic nerve system is non-linear
and dynamic [37,38]. As a result, new applicable methods are needed to analyze such signals. In the
present study, we explored the most appropriate method to analyze HRV signals in the CHF group.

4.1. Motivation of EMD

EMD is a reliable method for nonlinear and non-stationary signals like ANS signals [22,23,39,40].
In our study, the superiority of EMD was proved in the simulation. Unlike traditional linear filtering
method, which would lead to inaccurate decomposition of LF components and cause an especially
large error in boundary area, EMD showed a good performance dealing with the simulated ANS
signals. EMD was employed in previous studies due to its efficiency and accuracy. Shafqat et al. [41]
reported EMD was a potential tool to analyze physiological signals. Acharya et al. [37] used EMD
to improve accuracy of detection of people with CHF alarming. Thus, EMD is a suitable way to
investigate HRV signals and to differentiate CHF patients from normal group.

4.2. Analysis of IMFs

Any complicated data set can be decomposed into finite components (IMFs) through EMD, which
contain the local characteristic signals of the original signal at different time scales [38]. The IMF
components are able to represent the energy in specific frequency bands when the central frequency
lies within the band limits and the standard deviations are less than twenty percent outside the
boundary [41]. By the Hilbert transform (HT), instantaneous attributes of different time series were
calculated [25,42]. The instantaneous frequency is no longer affected by the unnecessary fluctuation
caused by the asymmetric waveform thanks to the modified requirements, which makes EMD more
suitable for nonstationary signals [37]. Furthermore, Pan et al. extracted instantaneous frequency of
IMFs and demonstrated their correspondence with four physiological subsystems through HT [25].
The results explained why IMFs were meaningful and could stand for the energy in specific frequency
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bands. We obtained the first four IMFs through EMD method. By HT, the instantaneous frequency
(IF) parameters of IMFs were obtained. The mean value (MIF) and standard variation of IFs are
shown in Table 3. IMF1 corresponded to the VHF component. Physiological significance of VHF
band is still controversial, while it is reported recently that VHF could represent erratic rhythm of
heart [5,16]. Wang et al. also reported that VLF was associated with heart contractility in the research [8].
IMF2 was the HF component and IMF3 was the LF component, which are influenced by PNS and SNS
respectively IMF4 was the VLF component. Constituting the majority of total power in HRV, VLF band
is a powerful risk predictor of CHF [11]. It has been reported that power in VLF band can reflect
the activity of ANS [11–13]. VLF power is speculatively related to thermoregulatory mechanisms,
the renin–angiotensin system and peripheral chemoreceptors in the past studies [29,43,44] Therefore,
the first four IMFs corresponded to four frequency components of the HRV signal respectively.

Table 3. Frequency parameters.

Symbol MIF ± SD (Hz) Frequency Band

IMF1 0.431 ± 0.152 VHF
IMF2 0.199 ± 0.081 HF
IMF3 0.076 ± 0.037 LF
IMF4 0.027 ± 0.012 VLF

4.3. Physiological Significance

CHF disease is a chronic cardiovascular syndrome along with ANS dysfunction and erratic
patterns [4,16]. There are usually more complex respiratory pattern [25], imbalance of ANS [18],
sinus rhythm fragmentation [5] and morpho-functional disorders [45] in people with CHF. HRV has
been demonstrated to be a noninvasive tool to estimate the function of ANS and erratic rhythm of the
heart [5,6,16]. Previous studies have investigated the power changes in HRV, revealing the tone of
HRV is different between CHF patients and normal controls [6,9,17].

Transfer entropy can estimate the amount of uncertainty reduced in future values of one time
series by knowing the past values of another series and thus quantify different coupling zones of
physiological systems [17,27]. Since IMFs can represent different physiological subsystems to some
degree, TE values among IMFs can calculate information transaction among these subsystems, and
thus estimate the coupling strength. As a result, TE could stand as an important marker of modulation
in this study. TEs between any two IMFs in CHF patients are lower in value than normal group,
which suggested that the interaction of CHF subjects, not only the intra autonomic system but also
between ANS and non-autonomic components, is weakened. Vincenza et al. reported the absence of
a significant influence of feedback on the heart in cardiac patients [46]. Furthermore, TE (*→1) and
TE (3→*) shows a significant difference between CHF subjects and normal ones. The estimation of
TE (*→1) is significantly lower in CHF subjects, revealing less amount of information transmission
to the VHF band in CHF patients. Those very-high frequency oscillations are usually referred to as
fragmented patterns of heart, the apparent dynamical signature of which is frequent changes in heart
rate acceleration sign in CHF group [5]. This weak coupling strength between ANS (represented by HF,
LF and VLF) and non-autonomic components (represented by VHF) suggests a physiological disorder
happening in CHF group. It can be inferred that the control of ANS over non-autonomic components is
weakened after perturbation, resulting in an increase in the overall amount of short-term variability [5].
TE (3→*) in the CHF group is also lower than the normal. The less information flowing from LF to
HF and VLF implies the reduced transmission among ANS branches and thus an ANS dysfunction,
consistent with past studies [26,47]. Besides, Liu et al. [36] and Rovere et al. [48] reported that LF
proportion was reduced in CHF subjects. In conclusion, as an innovative indicator, TE provides a new
insight into the complicated interaction among physiological systems.
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4.4. Limitation

This study had some limitations. First, although the combination of indices could differentiate
CHF subjects from normal people, the severity of multistage risk was not clarified. Second, though LF
component has been commonly seen as the reflection of the combination of PNS and SNS activity [49],
it only represented SNS activity in our study in order to simplify the analysis process. Finally, age and
gender were not consistent in CHF and control groups. Since it was not significantly different, it might
still have some influence on the results. Thus, this limitation would be taken into consideration in
future study.

5. Conclusions

In this study, EMD was applied to decomposing RR intervals of the CHF group. The TE method
was used afterwards to investigate the interaction features. This paper defined EMD as an effective tool
to analyze RR intervals signals and TE a powerful marker to detect physiological modulation. Moreover,
the results suggested the weakened coupling zones not only intra autonomic system but also between
ANS and non-autonomic components, inferring a physiological disorder in CHF patients. Therefore,
this study provided a new sight into assessing CHF and interaction of physiological phenomena.
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