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Abstract: We describe how to analyze the wide class of non-stationary processes with stationary
centered increments using Shannon information theory. To do so, we use a practical viewpoint
and define ersatz quantities from time-averaged probability distributions. These ersatz versions of
entropy, mutual information, and entropy rate can be estimated when only a single realization of the
process is available. We abundantly illustrate our approach by analyzing Gaussian and non-Gaussian
self-similar signals, as well as multi-fractal signals. Using Gaussian signals allows us to check that
our approach is robust in the sense that all quantities behave as expected from analytical derivations.
Using the stationarity (independence on the integration time) of the ersatz entropy rate, we show
that this quantity is not only able to fine probe the self-similarity of the process, but also offers a new
way to quantify the multi-fractality.
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1. Introduction

Many real-world processes, like global weather data, water reservoir levels, biological or medical
signals, economic time series, etc., are intrinsicaly non-stationary [1–5]: their probability density
function (PDF) deforms when time evolves. Analyzing such processes requires a stationary hypothesis
in order to apply classical analysis, like, e.g., two-point correlations assessment [6]. The stationary
hypothesis can be either strict or weak: while a strict stationarity requires all moments of the
process—and hence its PDF—to be time-independent, a weak stationarity is achieved when the
first moment and the covariance function are time-independent and the variance is finite at all
time [7]. Even the weaker hypothesis is often very restrictive and not realistic over long time periods.
When the signal has a drift or a linear trend, another approach is to focus on its time-increments or
time-derivatives. Indeed, assuming that the increments or time derivative are stationary is then a more
realistic hypothesis. For real-world processes, the stationarity of the increments or even the stationarity
of the signal is often argued to be valid when considering small chunks of data spanning short enough
time range [8–10], so that slow evolutions of higher order moments can be neglected. The present
article focuses on non-stationary processes with increments that are stationary and centered—this
hypothesis ensures that the processes do not have any trend or drift.

Shannon information theory provides a very general framework to study stationary
processes [11,12], and some attempts to analyze non-stationary processes have been reported [13–15].
Contrary to most classical approaches, like, e.g., linear response theory in statistical physics or solid
state physics, this framework is not restricted to the study of two-point correlations and linear
relationships, and it allows to quantify higher order dependences [16] and nonlinear dynamics [12].
Information theory can be straightforwardly applied to any non-stationary time-process X = {xt}t∈R:
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by carefully studying how the probability density and dependences of the process evolve in time,
a time-evolving Shannon entropy Ht(X) can be defined. The drawback of this approach is that it
requires the knowledge of many realizations of the time-evolution of the process, as it relies on having
enough statistics over the realizations [15].

Unfortunately, obtaining enough data is very difficult in real-world systems where in the best
case scenario a few realizations can be recorded experimentally, and usually only a single realization is
accessible. In this paper, we develop a methodology that can be applied to a single realization, in order
to analyse a non-stationary signal with stationary centered increments. We describe a time-averaged
framework that gathers all available data points in a time window representing a single realization,
whether it is the full experimental time duration, or just a fraction of it [13].

The present paper is organized as follows. In Section 2, we present the general framework of
information theory for a non-stationary signal, and our new framework that exploit time averages.
We then give a particular emphasis on self-similar processes. In Section 3, we report a benchmarking
of our framework in the special case of Gaussian self-similar signals, a model situation where it
is possible to obtain analytical developments. In Section 4, we explore the case of non-Gaussian
self-similar processes. Finally, in Section 5, we drop the hypothesis of self-similarity and we apply our
framework to a multifractal process.

2. Information Theory for Non-Stationary Processes

2.1. Non-Stationary Processes with Stationary Increments

In this article, we consider non-stationary processes with stationary increments. Such a process
can be written as a motion M = {mt}t∈R obtained by integrating a stationary noise W = {wt}t∈R :

mt = m0 +
∫ t

0
wt′dt′ . (1)

where m0 and w0 are the values at time t = 0, both of which can be set to 0 without loss of generality.
Nowadays, signals are recorded and stored on digital media, which amounts to consider in

practice a set of data sampled at discrete times tk where k ∈ N+. We further assume that the signals
are equi-sampled, i.e., dt is constant and we choose dt = 1. So we consider in this article discrete time
processes and we express them as motions M = {mt}t∈N+ obtained by integrating a stationary noise
W = {wt}t∈N+ according to:

mt = m0 +
t

∑
k=1

wk , t > 0 , (2)

where again m0 = w0 = 0. Equation (2) can also be replaced by

mt = mt−1 + wt , t > 0 . (3)

If the noise W is not centered, i.e., has a statistical mean E(W) = β 6= 0, we introduce the centered
noise w′t = wt − β. The equations for the motion M read:

mt = m0 + βt +
t

∑
k=1

w′k , t > 0 , (4)

= mt−1 + β + w′t , t > 0 . (5)

The process M can be interpreted as a motion built on the stationary centered noise W ′ together
with an additive deterministic drift, which is the linear trend βt.

In this article, we study motions without trend, so we impose that the noise W is centered,
i.e., that its statistical mean E(W) = β = 0. Besides the simple centering of the increments W 7→ W −
E(W), any detrending method can be applied to M, e.g., using moving averages. As a consequence,



Entropy 2019, 21, 1223 3 of 21

the motion M is centered: its statistical mean is E{mt} = m0 = 0 at all times t > 0. Nevertheless,
its variance, and all its higher order moments, may depend on time: the motion M is a non-stationary
process with stationary increments. Typical examples of such processes are Brownian motion and
fractional Brownian motion [17], both of which have a variance that evolves with time.

2.2. General Framework

For a generic non-stationary process Xt = {xt}t∈R, the probability density function (PDF) pxt(xt)

changes with time. The information theory framework can be applied to each random variable xt,
i.e., at each time t. To do so, the PDF of xt needs to be estimated at each time t, which in practice
requires to have many realizations available [15].

To analyze the temporal dynamics of a random processes at a given time t, we consider the
m-dimensional vector obtained with the Takens time-embedding procedure [18]:

x(m,τ)
t =

(
xt, xt−τ , · · · , xt−(m−1)τ

)
. (6)

The embedding dimension m controls the order of the statistics that are considered, and the delay
τ defines a time scale. We define below some information theory quantities that are functionals of
the m-point joint-distributions p

x(m,τ)
t

(x(m,τ)
t ), in order to characterize linear and non-linear temporal

dynamics.

2.2.1. Shannon Entropy

The entropy of x(m,τ)
t is:

H(x(m,τ)
t ) = −

∫
Rm

p
x(m,τ)

t
(x) log(p

x(m,τ)
t

(x))dx . (7)

This quantity depends on time t, as well as on embedding parameter m and delay τ. We further
note it H(m,τ)

t (X) = H(x(m,τ)
t ), where the index t indicates the time and the parameters (m, τ) are

indicated as upper indices. It measures the amount of information characterizing the m-dimensional
PDF of the process X at time t sampled at scale τ. When m = 1, the entropy does not depend on τ

and does not probe the dynamics of the process; we then note it Ht(X), dropping the (m = 1, τ) upper
indices. However, for embedding dimension m > 1 the entropy depends on the linear and non-linear
dynamics of the process. Indeed, the entropy involves arbitrarily high order moments of the joint PDF
p

x(m,τ)
t

(x(m,τ)
t ). As usual, the entropy does not depend on the first moment of the distribution.

Using the time-increments of size τ, δτxt ≡ xt − xt−τ , it can be shown (see Appendix A) that the
amount of information measured by H(m,τ)

t (X) is the same as the amount of information in the vector

x̃(m,τ)
t ≡ (xt, δτxt, δτxt−τ , ..., δτxt−(m−2)τ), i.e.,

H(m,τ)
t (X) = H(x̃(m,τ)

t ) (8)

= H
(

xt, δτxt, δτxt−τ , ..., δτxt−(m−2)τ

)
.

For processes with stationary increments, the marginal distribution of xt may be strongly
time-dependent, but the marginal distribution of any increment is time-independent. Equation (8)
thus suggests that the time-dependence of H(m,τ)

t (X) originates mainly from xt, the first component
of the rewritten embedded vector x̃m,τ

t . Nevertheless, it should be observed that although the m− 1
increments, considered by themselves, have a stationary dependence structure, the covariance of xt

with any of the increments is a priori non-stationary.
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2.2.2. Mutual Information and Auto-Mutual Information

The mutual information MI measures the amount of information shared by two processes. For two
non-stationary time-embedded vectors x(m,τ)

t1
and y(n,τ)

t2
, it is defined as :

MI(x(m,τ)
t1

, y(n,τ)
t2

) = Ht1(x
(m,τ)
t1

) + Ht2(y
(n,τ)
t2

)

− H(x(m,τ)
t1

, y(n,τ)
t2

) . (9)

In the following, we use auto-mutual information I(m,n,τ)
t (X) to measure, for a single process X,

the shared information between two successive time-embedded vectors of dimension m and n [19]:

I(m,n,τ)
t (X) = MI(x(n,τ)

t , x(m,τ)
t−nτ ) . (10)

Auto-mutual information defined in (10) probes the dynamics of the process Xt at time t by
measuring the dependencies between two consecutive chunks of m and n points sampled every τ.

2.2.3. Entropy Rate

The entropy rate, or entropy gain [20], of order m at time t measures the increase of Shannon
entropy when the embedding dimension is increased from m to m + 1. It is defined as the variation of
Shannon entropy between x(m,τ)

t−τ and x(m+1,τ)
t , two successive time-embedded versions of the process X:

h(m,τ)
t (X) = H(m+1,τ)

t (X)− H(m,τ)
t−τ (X) (11)

= Ht(X)− I(m,1,τ)
t (X) . (12)

Within the general framework, the entropy, mutual information, and entropy rate are well
defined at any time t for a non-stationary process. Although this framework can formally be used
to analyze non-stationary processes at any time t, in practice it is often impossible to assess statistics
at a fixed time t, as the number of available realizations from real-world datasets may be very small.
To overcome this issue, we propose in the next section another framework that considers averages
over a finite and possibly large time window, which represents for example the duration of an
experimental measurement.

2.3. Practical Time-Averaged Framework

We now focus on non-stationary processes with stationary increments. We develop in this section
a pragmatic approach which can be applied when a single time trace of a non-stationary signal
is available.

We first present a very formal perspective that defines a time-averaged PDF of a non-stationary
process. We then propose a practical approach which uses a very simple estimation of such a
time-average PDF. We finally use this practical approach to define all the information quantities
that we are interested in.

2.3.1. Time-Averaged Framework

Using a formal perspective, we consider the global statistics of the dataset, when forgetting its
time dynamics, and we formally consider the time-averaged probability density function in the time
window [t0, t0 + T] :

p̄T,t0,x(m,τ)(x) =
1
T

∫ t0+T

t0

p
x(m,τ)

t
(x)dt . (13)

Because of the time-average, this probability density function does not depend on a single time t
but on the starting time t0 and the duration T of the time window.
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In the case of a stationary process, the PDF p
x(m,τ)

t
(x) is independent of t, so the PDF p̄T,t0,x(m,τ)(x)

is independent of t0 and T.
In the case of a non-stationary process with stationary centered increments, the dependence on

t0 only appears on the mean of the time-averaged PDF p̄T,t0,x(m,τ)(x). As a consequence, since the
Shannon entropy does not depend on the mean, none of the information theoretic quantities depends
on t0.

In the case of a non-stationary process with stationary but non-centered increments, there is a drift:
the first moment of p

x(m,τ)
t

(x) evolves linearly with time. When integrated in time in Equation (13),

this induces a deformation of the time-averaged PDF p̄T,t0,x(m,τ)(x), which affects a priori moments of
any order. As a consequence, the Shannon entropy is then expected to depend on t0.

In the following, we focus on non-stationary processes with stationary centered increments,
described in Section 2.1.

2.3.2. Practical Framework

In practice, given a time series of length T, we propose to very roughly approximate the PDF
p̄T,t0,x(m,τ) defined in (13) with the normalized histogram ˆ̄pT,t0 of all data points x(m,τ)

t , t ∈ [t0, t0 + T]
available in the time window. This is a very strong assumption, as p̄T,t0,x(m,τ) is a priori very different
from any p

x(m,τ)
t

, and a priori very different from the histogram ˆ̄pT,t0 constructed after cumulating all

the available data in the interval. This pragmatic approach comes down to treating the set of available
data points in the time interval exactly in the same way as if it was a set of data points originating from
a stationary, albeit unknown, process and then estimate its PDF.

In the following, we drop the hat in the notations, and consider only the ersatz probabilities ˆ̄p in
place of the time-averaged probabilities p̄. As we discuss later in Section 6, if several experimental
realizations are available, it is of course possible to use them to enhance the estimation of the
time-averaged PDF.

2.3.3. Information Theory Quantities in the Practical Framework

Given a time series of length T, and considering the ersatz PDFs p̄T,t0,x(m,τ) , we define H̄(m,τ)
T (X) the

time-averaged Shannon entropy, Ī(m,n,τ)
T (X) the time-averaged auto-mutual information, and h̄(m,τ)(X)

T
the time-averaged entropy rate, as described below.

Ersatz Shannon Entropy

We define the ersatz entropy of the time-embedded signal as the entropy of the time-averaged
PDF p̄T,t0,x(m,τ) :

H̄(m,τ)
T (X) = −

∫
Rm

p̄T,t0,x(m,τ)(x) log( p̄T,t0,x(m,τ)(x))dx . (14)

H̄(m,τ)
T (X) gives the amount of information of the set of values of the signal x(m,τ)

t in the time
interval [t0, t0 + T] and hence it can be interpreted as the total information characterizing the temporal
trajectory {x(m,τ)

t , t ∈ [t0, t0 + T]} of the process. If the process has stationary centered increments,
the total amount of information in the trajectory depends only on its length T, and not on its starting
time t0. In that sense, the ersatz entropy H̄(m,τ)

T is not stationary.
Using the rewriting (8), we argue that this dependence in T originates from xt—the first component

of the vector x̃m,τ
t —which has a time-dependent marginal distribution. Because the m − 1 other

components of x̃m,τ
t are increments, they have by hypothesis a stationary dependence structure.

So increasing the embedding dimension does not impact the dependence of the ersatz entropy on the
window size T, but only its dependence on the increments size τ.
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Auto-Mutual Information

We define the ersatz auto-mutual information as:

Ī(m,n,τ)
T (X) = H̄(m,τ)

T (X) + H̄(n,τ)
T (X)− H̄(m+n,τ)

T (X) . (15)

Entropy Rate

We define the ersatz entropy rate over a time interval of size T as:

h̄(m,τ)
T (X) = H̄(m+1,τ)

T (X)− H̄(m,τ)
T (X) (16)

= H̄T(X)− Ī(m,1,τ)
T (X) . (17)

From (16), we may expect a cancelation of the main dependence in T which is the same for
H̄(m+1,τ)

T and for H̄(m,τ)
T . As a consequence, the ersatz entropy rate h̄(m,τ)

T should be stationary, in the
sense that it should not depend on the length T of the time interval that is considered.

If the available samples span a very large time window, one may consider using multiple
non-overlapping time windows of size T starting at various times. Because of the stationarity and
zero-mean of the increments and hence the independence of the ersatz quantities on t0, it is possible to
average the different estimations of the ersatz quantities obtained in each window. It is also possible to
use all the non-overlapping windows to populate the histogram and thus enhance the estimation of
the time-averaged PDF. Each of these two operations will increase the statistics and hence improve the
estimation.

2.4. Self-Similar Processes

In this section, we focus on the special case of self-similar processes, i.e., signals which exhibit
monofractal scale invariance [21]. Such processes have been used as a satisfying first approximation
to model or describe very various phenomena, such as ionic transport [22], fluid turbulence [23],
climate [24], river flows [25], cloud structure [26], or earthquakes [27], as well as neural signals [28],
stock markets [29,30], texture patterns [31], or internet traffic [32]. A process Xt is monofractal
scale-invariant if there exists a real number H such that for all a ∈ R+∗, the probability density
functions of xat and aHxt are equivalent. H is called the Hurst exponent. If H < 0, the process is
stationary and called a fractional noise. If 0 ≤ H < 1, the process is non-stationary with stationary
increments. The caseH = 1/2 corresponds to the traditional Brownian motion.

Assuming xt=0 = 0, the scale invariance property can be expressed as [33]:

pxat(x) =
1

aH
pxt

( x
aH
)

. (18)

The scale invariance property of a process Xt transfers to its increments, as well as any of its
time-embedded version:

p
x(m,aτ)

at
(x) =

1
amH p

x(m,τ)
t

( x
aH
)

. (19)

This relation allows to express the non-stationary PDF of x(m,τ)
t at any time t as a function of the

PDF at unit-time (t = 1). This is done by using the factor a = 1/t in Equation (19), i.e., by rescaling
each coordinate of the embedded vector by the factor tH.

Using Equation (13), it is straightforward to see that the scale invariant property of the form (19)
is also valid for the time-averaged PDF p̄T,t0,x(m,τ)(x).

Because of its definition (2) as a cumulative sum of a noise, a motion can be seen as accumulating
the correlations between successive points of the noise. When performing a time-embedding,
the particular case τ = 1 is interesting: considering the relation (8), we may expect that the information
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contained in the time-embedded motion m(m,τ=1)
t is closely related to the information contained in the

time-embedded noise w(m,τ=1)
t . This is not the case anymore when τ ≥ 2.

Fractional Brownian Motion

The fractional Brownian motion (fBm) was proposed by Mandelbrot and Van Ness [17] and
quickly became a benchmark for self-similarity and long-range dependence. The fBm is the only
Gaussian self-similar process with stationary increments. It is characterized by its Hurst exponent,H.

The fBm is a motion, obtained by integrating according to (2) a fractional Gaussian noise (fGn),
defined as a centered Gaussian process with the correlation structure

cfGn(τ) =
σ2

1
2

[
(τ − 1)2H − 2τ2H + (τ + 1)2H

]
. (20)

The fGn is a stationary noise with the standard deviation σ1. It is scale-invariant with a Hurst
exponentH− 1.

The non-stationary covariance structure of the fBm B reads

E{BtBt−τ} =
σ2

1
2

[
t2H + (t− τ)2H − τ2H

]
, (21)

where τ < t.

2.4.1. General Framework

We show below how the theoretical information quantities depend on time t and delay τ.
We start from the relation (8) between the entropy of the time-embedded vector and the entropy
of the increments and we normalize each component of the vector x̃(m,τ)

t by its standard deviation.
The standard deviation σt of the motion xt evolves with time as σt = σ1tH, while the standard
deviation στ of the increments xt− xt−τ is independent of t, thanks to the stationarity of the increments,
and evolves with the size of the increment as στ = σ1τH. So we have:

H(m,τ)
t (X) = H

(
xt/σt, δτxt/στ , ..., δτxt−(m−2)τ/στ

)
+ ln σt + (m− 1) ln στ , (22)

= H
(

xt/tH, δτxt/τH, ..., δτxt−(m−2)τ/τH
)

+H ln t + (m− 1)H ln τ + m ln σ1 . (23)

We then use the scaling law (19) for a = 1/t to relate the joint probability at a given time t to the
joint probability at unit-time t = 1, which leads to:

H
(

xt/tH, δτxt/τH, ..., δτxt−(m−2)τ/τH
)
= H

(
x1, δτ/tx1, ..., δτ/tx1−(m−2)τ/t

)
−m ln σ1 (24)

= H
(

x̃(m,τ/t)
t=1

)
−m ln σ1 . (25)

Using (8) again at time t = 1, we have H
(

x̃(m,τ/t)
t=1

)
= H(m,τ/t)

t=1 (X), so we can express the
time-dependent Shannon entropy (7) for self-similar processes as:

H(m,τ)
t (X) = H(m,τ/t)

t=1 (X) +H ln t + (m− 1)H ln τ . (26)

The entropy rate can be rewritten with (11) and (26) as:

h(m,τ)
t (X) = h(m,τ/t)

t=1 (X) +H ln τ , (27)
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where h(m,τ/t)
1 (X) is the entropy rate at time t = 1, using the rescaled time delay τ/t.

Although the two quantities H(m,τ/t)
t=1 (X) and h(m,τ/t)

t=1 (X) are considered at a fixed time t = 1,
they still depend on t via the delay τ/t. Because τ/t is small as soon as t � τ, we expect that the
dependence of the entropy H(m,τ)

t (X) on time t is mainly inH ln t, and that the entropy rate is almost
time-independent.

Fractional Brownian Motion

The PDF pBt of the fBm is Gaussian at any time t, so we can express its Shannon entropy and
entropy rate at time t by using Equation (26) and the expression of the Shannon entropy of a Gaussian
multivariate process [34]. We obtain the following approximated expressions:

H(m,τ)
t (B) ' mHFBM

1 +H ln t + (m− 1)H ln τ (28)

h(m,τ)
t (B) ' HFBM

1 +H ln τ , (29)

where HFBM
1 ≡ 1

2 ln
(
2πeσ2

1
)

is the entropy of the fBm at unit-time. These formulae are exact for
m = 1, 2, but for m ≥ 3, constant terms as well as corrections in τ/t have been omitted for clarity.

2.4.2. Practical Time-Averaged Framework

For a generic self-similar process, we are not able to derive any analytical results in the practical
time-averaged framework. Nevertheless, the behaviors expected for a generic non-stationary process
with stationary increments are holding: (i) the ersatz entropy H̄(m,τ)

T is not stationary, in the sense that

it depends on the length T of the time-interval, (ii) the ersatz entropy rate h̄(m,τ)
T is stationary.

Fractional Brownian Motion

The ersatz entropy of the fBm over a time window of size T � τ can be expressed by averaging
its covariance structure on a time window of size T. We obtain [35]:

H̄(1,τ)
T (B) = HFBM

1 +H ln T . (30)

The entropy of the fBm thus increases linearly with the logarithm of the window size T. The larger
the time window, the more there is information in the trajectory.

The auto-mutual information of the fBm can be derived in the same way using (15) for T � τ:

Ī(1,1,τ)
T (B) = −H ln

( τ

T

)
+ C

( τ

T

)
, (31)

where C
(

τ
T
)

is a correction in τ/T that reads

C
( τ

T

)
=

1
2

ln

(
τ

2T + 1
2H+1

( τ
T + 1

2H+1 )

)
(32)

= −2H+ 1
4

τ

T
+O

(( τ

T

)2
)

. (33)

The ersatz mutual information depends logarithmically on the scale τ and the window size T.
The larger the window-size T or the smaller the scale τ, the stronger the dependencies.

The ersatz entropy rate of order m = 1 is obtained by combining (30) and (31) according to (17):

h̄(1,τ)
T (B) = HFBM

1 +H ln τ − C
( τ

T

)
(34)
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which is independent of T up to corrections in τ/T, while being linear in ln(τ) with a constant slope
H. The correction −C(τ/T) in Equation (34) is positive, see Equation (33).

Comparing (28) with (30) shows that for the fBm, the ersatz entropy dependence on T is exactly
the same as the entropy dependence on t. Comparing (29) with (34) shows that the entropy rate and
the ersatz entropy rate do not depend on t or T up to corrective terms that are negligible if the scale τ

is not too large. We also see explicitly that both quantities evolves with the scale τ inH ln τ, again up
to corrections of order τ/t and τ/T.

The example of the fBm suggests that for a scale-invariant process the evolution of any information
theory quantity with the scale τ is the same within the practical time-averaged framework or the
general framework. We push this analysis further in the next sections, by exploring if this property
holds when the process is non-Gaussian.

3. Benchmarking the Practical Framework with the fBm

We focus in this section on the fractional Brownian motion, for which analytical expressions were
derived in the previous sections. We use the fBm not only to benchmark our estimators of information
theory quantities, but also to illustrate the use of the practical framework and the expected behavior of
the ersatz quantities when used on a self-similar process of Hurst exponentH.

3.1. Characterization of the Estimates

3.1.1. Data

To obtain a fBm, we integrate a fractional Gaussian noise (fGn). We use circulant matrix method [36]
to impose the correlation structure of the fGn (20). Then, we center and normalize the noise such
that the standard deviation, σfGn, is equal to one. We then take the cumulative sum to obtain the fBm.
Throughout all of this article,H = 0.7 for all the processes used to illustrate our results, but we have
checked that they hold for any other value 0 < H < 1.

3.1.2. Procedure

We estimate the Shannon entropy H̄(m,τ)
T with our own implementation of the k-nearest neighbors

estimate from Kozachenko and Leonenko [37]. We estimate the auto-mutual information Ī(m,p,τ)
T with

the algorithm provided by Kraskov, Stogbauer, and Grassberger [38]. This estimator is also based on a
nearest neighbors search and it provides—amongst several good properties—a build-in cancellation of
the bias difference originating from each of the two arguments. In the following, we note k the number
of neighbors, which is the only parameter of the estimators. The entropy rate h̄(m,τ)

T is then computed
using Equation (17).

We generate for each motion a set of 100 independent realizations of fixed size T with a Hurst
exponent H = 0.7. We compute averages of the estimates on the realizations and use the standard
deviation as error bars in the different graphs.

In Sections 3.1.3 and 3.1.4, we characterize respectively the bias and standard deviation (std) over
realizations of our estimators of entropy, auto-mutual information and entropy rate.

3.1.3. Convergence/Bias

We detail here how the ersatz entropy rate evolves with T and k. We report in Figure 1a our
results for all possible values of the couples (log2(T), k) ∈ [9, ..., 17]× [4, ..., 18], while τ is set to 1 here.
According to Equation (34), the ersatz entropy rate of the fBm converges for large T to the value HfBm

1
(horizontal black line in Figure 1a) thanks to the vanishing of the correction term C(τ/T), according
to (33).

Figure 1a can be interpreted as describing the behavior of the bias of the estimator. This bias

vanishes non-monotonically as k/T
1

m+1 . When k/T
1

m+1 is reduced, first the bias is positive and
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diminishes toward negative values and then converges to zero. This behavior was previously reported
for the k-nn mutual information estimator applied for stationary processes [16,38,39], and we confirm
it is valid for the fBm.

k/(T 1/2)

h̄
(1
,1
)

T

k/(T 1/2) k/(T 1/2)

(a) (b) (c)

0 0.2 0.4 0.6 0.80 0.2 0.4 0.6 0.80 0.2 0.4 0.6 0.8

1.2

1.2

1.4

1.6

Figure 1. Dependence of h̄(1,τ)
T (for τ = 1)) on k/T

1
2 for the fractional Brownian motion (fBm)

(a, in black) and for the Hermitian (b, in blue) and even-Hermitian (c, in red) log-normal processes.

We observed the same convergence for a large range of scales τ > 1: the ersatz entropy rate then
converges to H1

fBm +H ln τ for large T with the same behavior of the bias.

3.1.4. Standard Deviation of the Estimates

We present in Figure 2a the evolution of the standard deviation of the ersatz entropy, mutual
information, and entropy rate with T for τ = 1. The standard deviation of both the entropy and mutual
information is large, and does not decrease when T—and hence the number of samples—increases.
On the contrary, the standard deviation of the entropy rate is much smaller and decreases when T
increases. We attribute this feature to the dependence of the quantities on the observation time T,
see Equations (30) and (31) for the fBm. While H̄T and ĪT increase as ln T, this is not the case for h̄T
which is independent on T (up to small corrections, negligible for smallish τ). Although it is difficult
to explain why the standard deviation of the entropy and mutual information remain constant when
T increases, it seems that this results from a balance between the non-stationarity (in ln T) and the
increased statistics. On the contrary, for the entropy rate which is stationary, the decrease of the std is
as expected.

st
d

ln(T )

(a)

ln(T )

(b) std H̄
(1,1)
T

std Ī
(1,1,1)
T

std h̄
(1,1)
T

(c)

ln(T )
6 7 8 9 10 11 126 7 8 9 10 116 7 8 9 10 11

0

0.1

0.2

0.3

0.4

0.5

Figure 2. Standard deviations of H̄(1,τ)
T (triangles), Ī(1,1,τ)

T (circles), and h̄(1,τ)
T (stars), for τ = 1,

as functions of T, for the fBm (a, black) the Hermitian (b, in blue), and even-Hermitian (c, in red)
log-normal processes.

As a conclusion, both the bias and the standard deviation of the ersatz entropy rate increase when
k increases or T decreases and can be made arbitrarily small by increasing the window size T. In the
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remainder of this article, we choose k = 5 and when studying the behavior of information theoretic
quantities on the scale τ, we set T = 216.

3.2. Dependence on Times T and τ

In this section, we present a detailed numerical study of the ersatz entropy, auto-mutual
information, and entropy rate of the fBm with H = 0.7. In particular, we present a quantitative
comparison with the analytical expressions (28) and (29) in the general framework, as well as with
analytical expressions (30), (31) and (34) in the practical framework for the fBm. These comparisons
allow first to validate the analytical expressions obtained for fBm in the practical framework,
and second to show that the information theoretic quantities in the practical framework evolve in T
and τ exactly as their counterparts evolve in the general framework in t and τ. To compare analytical
and numerical results, we vary the window size T, the scale τ, and the embedding dimension m.

3.2.1. Entropy and Auto-Mutual Information

Dependence on T

The left column of Figure 3 shows the ersatz Shannon entropy H̄(m,τ)
T (Figure 3a) and auto-mutual

information Ī(m,1,τ)
T (Figure 3c) at a given scale τ = 1, as a function of ln T. The evolution of these two

quantities for m = 1 is very close toH ln T, which is represented by a continuous black line. This is in
agreement with Equation (30) and (31). For m > 1, we obtain in the practical framework the behaviors
predicted in the general framework, replacing t by T in the equations. We observe that the auto-mutual
information does not depend on the embedding dimension m, while the entropy does, with an offset
that seems to depend linearly on m. The dependence of the entropy and the auto-mutual information
on the time window T is the signature of the non-stationarity of the signal.

H̄
(m

,1
)

T

(a)

Ī
(m

,1
,1
)

T

(c)

ln(T )

(b) m = 1
m = 2
m = 3
m = 4

(d)

ln(τ )
0 1 2 3 4 5.6 7 8 9 10 11 12 13
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Figure 3. (a) Entropy H̄(m,τ)
T and (c) auto-mutual information Ī(m,1,τ)

T of the fBm in function of the
logarithm of the window size ln(T) for a fixed scale τ = 1. (b) Entropy and (d) auto-mutual information
in function of the logarithm of the scale of analysis ln(τ) for a fixed T = 216. Each symbol corresponds
to a different embedding dimension m. In (a,c) the black line has a slopeH = 0.7, while in (d) its slope
is −H = −0.7.
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Dependence on τ

The right column of Figure 3 shows the ersatz Shannon entropy and auto-mutual information
for a fixed window size T = 216 when varying the scale parameter τ. The ersatz Shannon entropy
behaves as (m− 1)H ln(τ), see Figure 3b, in agreement with Equation (26) or Equation (28). The ersatz
auto-mutual information behaves as −H ln(τ) for any embedding m, see Figure 3d, in agreement with
Equation (31), thus suggesting this formula is valid for any embedding dimension.

3.2.2. Stationarity of the Entropy Rate

Figure 4a shows that the ersatz entropy rate h̄(m=1,τ)
T with embedding dimension m = 1 is almost

constant when T is varied. For embedding dimensions m > 1, there is a small variation, of about 15%,
much smaller than the 200% variation observed for either the entropy or the auto-mutual information
(Figure 3a,c) on the same range of T. This small dependence on T can be due to the correction in
Equation (34), which may depend on m. We argue that it is mostly due to bias, which increases with
the embedding dimension. Indeed, we observe that the entropy rate seems to converge for larger
T to the same value close to HfBm

1 for all m. As a larger T corresponds to a larger sampling of the
statistics, the bias is reduced, as reported in Figure 1. Moreover, for m = 1, Equation (34) predicts
a positive correction that vanishes when T is large. On the contrary, we observe a convergence to a
value lower than HfBm

1 , which hints that the bias is negative and larger than the theoretical correction.
This suggests that the form of Equation (34) is still valid for embedding dimensions m > 1.

ln(T )

h̄
(m

,τ
)

T

(a)

ln(τ )

(b)

.....

m = 1
m = 2
m = 3

0 1 2 3 4 5.6 7 8 9 10 11 12 13
1

2

3

4

5

1.4

1.5

1.6

Figure 4. Ersatz entropy rate h̄(m,τ)
T of a fBm with H = 0.7. (a): as a function of the window size T

for fixed τ = 1. (b) : as a function of the scale τ for T = 216. Each symbol corresponds to a different
embedding dimension m. The horizontal black line in (a) indicates the theoretical value HfBm

1 . The black
line in (b) represents the linear function HfBm

1 +H ln τ withH = 0.7.

3.2.3. Entropy Rate Dependence on Scale τ

Figure 4b shows that for a fixed window size T = 216, the ersatz entropy rate is proportional
to H ln(τ). We have added a black line defined by the linear function HFBM

1 +H ln τ, as suggested
by Equation (34) without the corrective term. This black line perfectly describes the evolution of the
entropy rate with the scale τ, which is independent on the embedding dimension m.

To observe the finer evolution of the entropy rate on the scale τ, we subtract the main contribution
H ln τ to the entropy rate and we plot h̄(m,τ)

T −H ln τ for different embedding dimensions in Figure 5.
We observe a slight increase, which is larger for larger embedding dimensions. For m = 1, the correction
term can be evaluated from Equation (32), and is at most 2.10−3, and does not account for the evolution
reported here, which is probably due to the bias, which increases when the number of points—which
is proportional to T/τ—decreases and when the embedding m increases.

For a scale invariant self-similar process, the standard deviation στ of the increments of
size τ behaves as στ = σ1τH. Subtracting H ln τ amounts to subtracting ln στ : for each scale τ,
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this corresponds to normalizing the down-sampled data (taking one point every τ points) by the
standard deviation στ of the increments of size τ. When the Hurst exponent is a priori unknown,
στ can be computed and used to compute the main contribution − ln(στ). Thus, the fine evolution of
the entropy rate with τ can be used as a tool to probe the deviation from the self-similarity assumption,
which is interesting for multifractal signals.

ln(τ)

h̄
(m

,τ
)

T
−

ln
(σ

τ
)

m = 1

m = 2

m = 3

0 1 2 3 4 5

1.4

1.5

1.6

1.7

Figure 5. Ersatz entropy rate h̄(m,τ)
T − ln(στ) of the fBm as a function of ln(τ) for fixed T = 216 and

varying embedding dimension m. The thick horizontal black line represents the constant value HfBm
1 .

4. Application of the Practical Framework to Non-Gaussian Self-Similar Processes

In this section, we turn to non-Gaussian processes and describe the results obtained in the
time-average framework generalized in this larger class of processes.

4.1. Procedure

We construct two different motions, in the very same way as we did for the fBm. We integrated
two log-normal noises synthesized with the same log-normal marginal distribution and with the
same correlation function (20) as the fGn, but different dependance structure. To generate these
noises, we use the methodology proposed in [36] to obtain the log-normal marginal by applying two
different transformations to the cumulative distribution function FZ of a Gaussian white noise Z:
the Hermitian transformation of rank 1 ( f 1(z) = F−1(FZ(z))) and the even-Hermitian transformation
of rank 2 : f 1(z) = F−1(2(FZ(|z|)− 1

2 )), where F is the cumulative distribution function of the targeted
log-normal distribution. This synthesis is performed with the toolbox provided at www.hermir.org.
Once the two log-normal noises have been generated, they are integrated using Equation (2) to obtain
two non-stationary scale invariant processes with non-Gaussian statistics.

The dependence structures of the two log-normal noises were previously studied in detail [16]:
while the correlation function is the same for the two noises—and identical to the targeted one of the
fBm given by (20)—the complete dependence structure was shown to be different.

To study these two non-stationary and non-Gaussian motions, we use again realizations of T = 216

points, k = 5 neighbors, and we focus on the case where embedding dimension m = 1 and Hurst
exponentH = 0.7.

http://www.hermir.org
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4.2. Bias and Standard Deviation

We report in Figure 1b,c the evolution of the ersatz entropy rate of the Hermitian and the
even-Hermitian log-normal processes in function of k

T1/2 . We observe exactly the same behavior as
for the fBm: the entropy rate converges to Hln

1 , the entropy of the log-normal process at unit-time
(horizontal blue/red line in Figure 1b,c). If X is a log-normal process of mean µ and standard deviation

σ, then the process log X is Gaussian with the mean µ′ = log
(

µ2√
µ2+σ2

)
and the standard deviation

σ′ = 2 log
(

1 + σ2

µ2

)
and the entropy of X can be expressed as Hln

1 = 1
2 log(2πeσ′) + µ′ [16]. Figure 1b,c

thus gives an estimation of the bias of our estimator, which appears to be the same as for the fBm.
We report in Figure 2b,c the behavior of the standard deviation of the estimators. Again, exactly

as for the fBm, the standard deviation is large for the ersatz entropy and the ersatz auto-mutual
information, while it is much smaller for the ersatz entropy rate.

Again, both the bias and the standard deviation of the entropy rate increase when k increases or
T decreases and can be made arbitrarily small by increasing T. These results do not depend on the
marginal distribution: they have been obtained not only for the fBm with Gaussian statistics, but also
for two motions built on log-normal noises.

4.3. Dependence on Times T and τ

The evolution of h̄(1,τ)
T on the time window size T for the two motions is presented in Figure 6a.

As it was the case for the fBm, h̄(1,τ)
T depends only weakly on T, and seems to converge for larger T to

the value Hln
1 , up to a small corrective term.

ln(T )

h̄
(1
,τ
)

T

(a)

ln(τ )

(b)

fBm
standard logn
even logn
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1
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Figure 6. h̄(1,τ)
T for a motion built from a Hermitian (blue) or even-Hermitian (red) log-normal noise,

as a function of (a) the time window size T or (b) the time scale τ. Results for the fBm (from Figure 4
with m = 1) are reported in black for comparison. T = 216 and k = 5. The horizontal lines in (a)
indicates the entropy H1 of the noise (in black for the fBm and in red and blue for a log-normal process).

The evolution of h̄(1,τ)
T with the time scale τ is presented in Figure 6b. In the same way as for

the fBm, we again observe a large increase, almost proportional to ln τ. Because this strong tendency
originates from the increase of the standard deviation στ of the increments of size τ when τ increases,
we again normalize the entropy rate by subtracting ln στ = H ln τ. Results are presented in Figure 7,
together with results for the fBm with m = 1 for comparison.
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h̄
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T
−

ln
(σ

τ
)

ln(τ)
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1.1
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Figure 7. Ersatz entropy rate h̄(m=1,τ)
T − ln(στ) for motions built on Hermitian (blue) or even-Hermitian

(red) log-normal noise, together with results for the fBm (black) as a function of ln τ. T = 216 and k = 5.
The horizontal straight lines indicate the theoretical values of the entropy of the processes.

The normalized ersatz entropy rate of the motion built from the even-Hermitian log-normal
noise appears as almost independent of τ. This behavior is identical to the one observed for the
fBm, but the remaining constant value is different (HfBm

1 or Hln
1 ). The ersatz entropy rate of the fBm

(in black) and the even-Hermitian motion (in red) both behaves exactly asH ln τ, which is the expected
behavior for a self-similar process, see Equation (27). On the contrary, the motion built with the
Hermitian transformation of rank 1 exhibits an additional variation in τ: the normalized entropy rate
h̄(m,τ)

T − ln(στ) evolves from the value Hln
1 at τ = 1—expected for the motion built with a log-normal

noise and obtained for the even-Hermitian process at any τ—up to the value HfBm
1 —expected for a

Gaussian process, and obtained for the fBm at any τ.
As a conclusion, one can estimate the Hurst exponent of a perfectly self-similar process as the slope

of the linear fit in ln τ of the ersatz entropy rate. This is a valid approach for the fBm and the motion built
from the noise constructed with the even-Hermitian transformation, because the ersatz entropy rate
then behaves linearly in ln τ. On the contrary, the motion built using an Hermitian transformation of
rank 1 does not appear as perfectly self-similar. This can be indeed verified by plotting the normalized
PDFs (setting the standard deviation to unity) of the increments mt −mt−τ of the motions for various
values of τ. As can be seen in Figure 8, the PDFs of the increments of the “standard log-normal
process” vary with the scale τ, while those of the “even-Hermitian motion” remain identical. For τ = 1,
the increments are nothing but the log-normal noises, which are log-normal, as prescribed. For large
τ, the increments of the “even-Hermitian motion” remain log-normal, while the increments of the
“standard log-normal motion” deforms and seems to become more Gaussian. The ersatz entropy rate
catches this fine evolution perfectly.
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Figure 8. Probability density function (PDF) of the increments of the (a) Hermitian and
(b) even-Hermitian log-normal motions of size τ = 2j, from j = 0 (bottom) up to j = 6 (up). Curves
have been arbitrarily shifted on the Y-axis for clarity.

5. Application of the Practical Framework to a Multifractal Process

We now explore the proposed time-averaged framework on the Multifractal Random Walk, to
illustrate how it performs on a multifractal process. The multifractal random walk (MRW) [40,41]
is a popular multiplicative cascade process widely used to model systems that exhibit multifractal
properties [42]. Like the fBm, the MRW is a motion obtained by integrating—again with Equation (2)—a
stationary noise WMRW = {wMRW

t }t∈R such that

wMRW
t = wfGn

t eωt (35)

where WfGn = {wfGn
t }t∈R is a fGn with parameter HfGn and Ω = {ωt}t∈R is a Gaussian random

process, independent of XfGn with a correlation function

cω(τ) = −c2 log
(

L
|τ|+ 1

)
if |τ| < L (36)

= 0 otherwise

where L is the integral scale, set here to L = T.
The MRW is a scale invariant process: the power spectrum of its time-derivative WMRW behaves

as a power law with an exponent 2(HfGn − c2) + 1, which would be the Hurst exponent obtained for a
fGn with parameterHfGn − c2. Any moment of order q of the increments of size τ behaves as a power
law of τ with the exponent ζ(q). Contrary to the fBm, the MRW is not exactly self-similar and exhibits
intermittency: ζ(q) = HfGnq− c2

2 q2 is not a linear function of q, as expected for a self-similar process.
As a consequence, the shape of the PDF of the increments depends on the scale.

We choose the parameterHfGn such that the power spectrum of the noise WMRW is identical to
the one of the fBm used in the former sections, i.e.,HfGn = 0.7 + c2. We set the parameter c2 = 0.025,
a value widely used to model the intermittency of Eulerian turbulent velocity field [23].

Figure 9 compares the evolution of the PDF of the increments of the fBm and the MRW.
As expected, no change is observed for the fBm, while the PDF of the MRW has wider tails for
smaller τ. The fBm is perfectly self-similar, while the MRW exhibits intermittency [43]: the PDF of its
increments is deformed when the scale τ of the increments is varied, although no analytical expression
of the PDF is available.
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Figure 9. PDF of the increments of the (a) fBm and (b) of a multifractal random walk (MRW) of size
τ = 2j, from j = 0 (bottom) up to j = 6 (up). Curves have been arbitrarily shifted on the Y-axis
for clarity.

We apply our practical framework and plot in Figure 10a the evolution of the ersatz entropy rate
of the MRW with T. Again, the entropy rate seems to be independent of T. We nevertheless observe
a small tendency to increase towards the value HMRW

1 the entropy of the MRW at unit-time. Here,
because there is no analytical expression of the PDF, HMRW

1 cannot be derived analytically and we
numericaly estimate its value.
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Figure 10. Ersatz entropy rate h̄(m=1,τ)
T of a MRW withH = 0.7. (a): as a function of the window size

T for fixed τ = 1. (b): as a function of the scale τ for T = 216. The horizontal line in (a) indicates the
numerical value HMRW

1 of the noise. The straight line in (b) has a slopeH = 0.7.

The dependence in τ is plotted in Figure 10b. We again observe a strong linear evolution of
the ersatz entropy rate inH ln τ. After subtracting this strong tendency (Figure 11), we still observe
an evolution with τ, but this evolution appears much weaker than for the Hermitian log-normal
(blue curve in Figure 7). Indeed, the deformation of the PDFs of the increments when varying τ is
much slower for the MRW (Figure 9b) than for the Hermitian log-normal (Figure 8a).
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Figure 11. Ersatz entropy rate h̄(m=1,τ)
T − ln(στ) of the MRW as a function of ln(τ) for fixed T = 216.

6. Discussion and Conclusions

We proposed a new framework in information theory to analyze a non-stationary process by
considering it as resulting from a gedanken stationary process and estimating the PDF by cumulating
all available samples in a time interval of size T. This framework hence considers a PDF obtained
by time-averaging over a time window [t0 : t0 + T], and then proceeds to compute the associated
information theory quantities. In particular, the ersatz entropy H̄T(X) that is then defined can be
interpreted as the amount of information characterizing the complete trajectory {Xt, t ∈ [t0, t0 + T]}
of the process X. If we assume that the increments of X are stationary and centered, then H̄T(X) and
all other information ersatz theoretical quantities depend only on the duration T and not of the first
time t0.

We illustrated our approach by focusing first on a model system: the fractional Brownian
motion. We derived in this context the analytical expressions of the ersatz entropy, ersatz auto-mutual
information, and ersatz entropy rate, which allowed a pedagogical description of our new information
theory quantities. We also reported how the ersatz quantities behave when the time-interval size
T and the embedding time scale τ are varied: we obtained analytical expressions for embedding
dimension m = 1, and confirmed them numerically for m ≥ 1. Besides the fBm, we reported numerical
observations for various self-similar or multifractal processes. The ersatz entropy H̄(m,τ)

T always

diverges logarithmically in T, while the ersatz entropy rate h̄(m,τ)
T always behaves almost independently

of T. The examination of how the ersatz entropy rate h̄(m,τ)
T depends on the scale τ provides a fine

exploration of either the self-similarity or the multifractality of the process.
This exploration of the multifractality of a non-stationary process with stationary increments

using the ersatz entropy rate h̄(m,τ)
T (M) gives a viewpoint very similar to the one reported when

analyzing the increments of the process with the regular Shanon entropy, as reported in [43]. We are
currently investigating how to relate quantitatively the two approaches.

In the same vein, the ersatz entropy rate allowed us to discriminate two different non-stationary
processes, and obtain fine differences in their self-similarity properties (Figure 7), in close relation to a
method using the entropy rate of the increments of the signal, as exposed in [16]. A possible connection
is also under investigation.

Through all this article, we have estimated the ersatz quantities of a process on a single trajectory
[t0; t0 + T] of this process; this situation corresponds to the worst case scenario where only a single
realization of the process is know. If enough experimental data are available, one can improve the
estimation of the ersatz quantities in two ways. First, if the same experiment has been conducted
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multiple times, and thus multiple realizations are available over the time interval [t0; t0 + T], one can
use all these independent realizations to enhance the estimation of the time-averaged PDF. Second, if a
single but long enough realization of size T is available, one can split it into multiple time intervals
[kT; (k + 1)T], k ∈ [0..bT /Tc] and the use these intervals as independent realizations as in the first
case. This later situation is made possible by the assumption that the increments of the signal are not
only stationary, but also centered.
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Appendix A. Entropy of a Time-Embedded Signal

The time-embedded vector x(m,τ)
t (Equation (6)) can be mapped into the vector x̃(m,τ)

t ≡
(xt, δτxt, δτxt−τ , ..., δτxt−(m−2)τ) by the linear transformation Qm:

x(m,τ)
t 7→ x̃(m,τ)

t = Qm.x(m,τ)
t , (A1)

where Qm is the band matrix defined as:

Qm ≡



1 0 0 · · · 0 0
1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 0
0 0 0 · · · 1 −1


(A2)

the determinant of which satisfies |det(Qm)| = 1. As a consequence, H(x̃(m,τ)
t ) = H(x(m,τ)

t ),
which proves (8).
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