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Abstract: This study investigated the application of a modified percussion entropy index (PEIPPI) in
assessing the complexity of baroreflex sensitivity (BRS) for diabetic peripheral neuropathy prognosis.
The index was acquired by comparing the obedience of the fluctuation tendency in the change between
the amplitudes of continuous digital volume pulse (DVP) and variations in the peak-to-peak interval
(PPI) from a decomposed intrinsic mode function (i.e., IMF6) through ensemble empirical mode
decomposition (EEMD). In total, 100 middle-aged subjects were split into 3 groups: healthy subjects
(group 1, 48–89 years, n = 34), subjects with type 2 diabetes without peripheral neuropathy within
5 years (group 2, 42–86 years, n = 42, HbA1c ≥ 6.5%), and type 2 diabetic patients with peripheral
neuropathy within 5 years (group 3, 37–75 years, n = 24). The results were also found to be very
successful at discriminating between PEIPPI values among the three groups (p < 0.017), and indicated
significant associations with the anthropometric (i.e., body weight and waist circumference) and
serum biochemical (i.e., triglycerides, glycated hemoglobin, and fasting blood glucose) parameters
in all subjects (p < 0.05). The present study, which utilized the DVP signals of aged, overweight
subjects and diabetic patients, successfully determined the PPI intervals from IMF6 through EEMD.
The PEIPPI can provide a prognosis of peripheral neuropathy from diabetic patients within 5 years
after photoplethysmography (PPG) measurement.

Keywords: percussion entropy index; baroreflex sensitivity; autonomic nervous function;
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1. Introduction

Microvascular diseases are prevalent among patients with long-term type 2 diabetes mellitus [1,2].
In general, diabetic microvascular diseases are classically characterized by exudate leakage from retinal
small vessels (i.e., diabetic retinopathy), persistent proteinuria and progressive decline in kidney
function (i.e., diabetic nephropathy), and diabetic peripheral neuropathy (DPN). DPN is one of the
most common chronic complications of diabetes [3,4]. Not only is the quality of life much lower
among type 2 diabetes mellitus patients with cardiovascular complications and DPN, but the mortality
rate has also been shown to be higher than either illness alone [5]. Early detection of the signs of
DPN through signal analysis methods, therefore, is of utmost urgency. Moreover, type 2 diabetic
patients were reported to be at increased risk of developing atherosclerosis and autonomic nervous
dysfunction [6–9]. Hence, those parameters addressed for atherosclerosis and autonomic nervous
dysfunction measurements were considered for DPN prediction in the study.

In the frequency domain analysis of heart rate variability (HRV), R-R interval (RRI) measurement is
used as a conventional method of autonomic function and baroreflex sensitivity (BRS) assessments [10].
The low-/high-frequency power ratio (LFP/HFP, LHR) is the index for frequency domain analysis.
The LHR index is considered to reflect human autonomic failure [10,11], because physiological
signals from the human body are almost nonstationarity and nonlinear [12–14]. Recently, several
new parameters based on nonlinear HRV calculations were reported for autonomic function
and BRS assessments [15–17]. Among these parameters, a small-scale multiscale entropy index
(MEIRRI) was addressed to reflect on autonomic function based on a nonlinear method for studying
HRV using only the RRI datasets [15]. In recent years, the percussion entropy index (PEI) using
synchronized ECG and photoplethysmography (PPG) signals has been used effectively to assess
BRS complexity in the aged and diabetic patients associated with type 2 diabetes-associated
autonomic dysfunction [16,17]. The peak-to-peak intervals (PPIs) acquired by the PPG sensor
were reported to assess HRV [18–23]. Moreover, PPG-derived digital volume pulse (DVP) signals
were further used for clinical applications (i.e., ubiquitous blood pressure monitoring, congestive
heart failure, and hypertension assessment) [24–26]. However, the compatibility of PPI with RRI
is controversial [18,23]. In general, PPI could provide surrogate data for RRI as an alternative
means of evaluating cardiac autonomic function in healthy young individuals with normal BMIs.
However, it appears to be inappropriate to use PPI to replace RRI for overweight, elderly, and diabetic
individuals [18,19]. In Figure 1, we can observe the failure of the digital volume pulse to detect the
peak-to-peak interval (PPI) for an aged, overweight subject and a diabetic subject, as reflected in some
of its subtle corresponding peaks; this means a further process is needed for PPI to be a surrogate
of RRI.

Although the above algorithms have been reported to increase the accuracy of PPI, most efforts
have been made to reduce computation load [21–23]. The objectives of this study are to test two
hypotheses. First, we hypothesize that the ensemble empirical mode decomposition (EEMD) method
could be utilized for PPG-derived DVP signals to obtain an intrinsic mode function with cardiac
cycle information in overweight, elderly, and diabetic individuals. Using synchronized RRI and
PPG-derived amplitude series, a previous study successfully identified poor blood-glucose-controlled
diabetic patients with a significantly low percussion entropy index (i.e., PEIRRI) [16]. Our second
hypothesis is that a modified percussion entropy index (i.e., PEIPPI) in which PPG-derived PPI series
and PPG-derived amplitude series were adopted could provide a prognosis of diabetic peripheral
neuropathy for diabetic patients as much as 5 years in advance.

This paper describes the surrogate data for percussion entropy in assessing the complexity of BRS
for diabetic peripheral neuropathy prognosis. Descriptions of the study population, study protocol,
the modified percussion entropy index using synchronized {PPI} and {Amp} signals, and statistical
analysis are presented in Section 2. Baseline characteristics of the age-controlled healthy and diabetic
subjects; failure of DVPs in detecting peak-to-peak intervals in an aged overweight subject and a
diabetic subject; agreement assessment between PPI (DVP) and PPI (IMF6) for the three groups; and
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comparisons among PEIPPI, PEIRRI, MEIRRI, and LHRRRI to differentiate future peripheral neuropathy
from type 2 diabetic patients are addressed in Section 3. Our findings are discussed in Section 4.
Section 5 concludes the manuscript.
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Figure 1. A lead II electrocardiogram (ECG) obtained using the conventional method and synchronous
volume pulse from an infrared photoplethysmography (PPG) sensor attached to the dominant index
finger. The PPG-derived digital volume pulse (DVP) signals for certain time periods are shown.
R-R interval: the period between consecutive ECG R waves; peak-to-peak interval (PPI): the period
between the peaks of two consecutive volume pulses. (a) Healthy subject (age: 52 years), (b) overweight
and elderly subject (age: 66 years), and (c) type 2 diabetic patient (age: 42 years).

2. Materials and Methods

2.1. Study Population

In total, 108 right-hand dominant, middle-aged subjects were prospectively recruited for ECG
and PPG examinations at Hualien Hospital (Hualien City, Taiwan) between June 2009 and June 2011.
Of the 108 subjects recruited, 8 participants were excluded due to a history of atherosclerosis-associated
complications, including ischemic stroke, coronary heart disease, peripheral vascular disease, atrial
fibrillation, heart failure, and permanent pacemaker implantation, with 100 subjects remaining for
the study. Diabetes mellitus was defined as a fasting glucose level higher than 126 mg/dL and
an HbA1c level larger than 6.5%. Of these, 34 middle-aged subjects were not diabetic patients
(group 1, age range: 48–89 years, n = 34), and 66 had type 2 diabetes. The diabetic patients were then
divided into two groups; namely, middle-aged subjects diagnosed as having type 2 diabetes without
peripheral neuropathy within 5 years (group 2, age range: 42–86 years, n = 42, glycated hemoglobin
(HbA1c) ≥ 6.5%), and type 2 diabetic patients with peripheral neuropathy within 5 years (group 3,
age range: 37–75 years, n = 24). There were 10 diabetic patients in group 3 with good blood glucose
control (i.e., 6.5% 5 HbA1c < 8%) in our present study, and 14 diabetic patients who originally had
poor blood glucose control (i.e., HbA1c = 8%) [17]. The screening DPN of type 2 diabetes patients
at baseline of PPG measurement and follow-up periods (i.e., 5 years) was based on the presence of
symptoms of numbness, tingling, or pain of distal extremities lasting for more than 3 months, along
with a confirmed diagnosis by the clinic doctor. For unbiased analysis, the subjects in the three groups
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were age-controlled. This study was reviewed and approved by the Institutional Review Board of
Hualien Hospital (Hualien City, Taiwan) and Ningxia Medical University Hospitals (Yinchuan City,
Ningxia, China) (No. 2018-229). Each patient signed an informed consent.

2.2. Study Protocol

Demographic, anthropometric, and laboratory data for the analysis as well as medical history
were obtained at the clinic visit. Body mass index was calculated as body weight (kilograms)/height
(meters)2. Each participant’s resting blood pressure was measured once with the left arm in a supine
position by a oscillometric device (BP3AG1, Microlife, Taiwan) with an appropriately sized cuff.
Total cholesterol, triglycerides, low-density lipoprotein cholesterol, and high-density lipoprotein
cholesterol concentrations were obtained from blood samples after a 12-h fast. Caffeine-containing
beverages and theophylline-containing drugs were forbidden for 12 h before each hospital visit.
All measurements were taken in the morning (i.e., 08:30–10:30). Moreover, to minimize latent erroneous
readings from the PPG sensors arising from involuntary body vibrations of the test subjects and a low
environmental temperature, possibly resulting in constriction of the peripheral vessels, all participants
underwent blood sampling before data acquisition. All the test subjects were allowed to relax in a
supine position for 5 min in a quiet room with the temperature controlled at 26 ± 1 ◦C. Data from the
first 1000 cardiac cycles were used for analysis in the present study.

2.3. Calculation of the Percussion Entropy Index (PEIPPI) Using Synchronized {PPI} and {Amp} Signals

The PPG infrared sensor was applied to a dominant index fingertip of the subjects for data
acquisition. After being performed through an USB-based analog-to-digital converter (USB-6009 DAQ,
National Instruments, Austin, TX, USA) with a sampling frequency of 500 Hz, the digitized signals
were subsequently stored on a personal computer (PC) and were analyzed by Matlab 7.7 software
package (MathWorks, MA, USA) [27]. In each DVP cycle, the potential difference between the peak
(the highest point determined by Matlab software) and the valley (the lowest point after the peak)
was defined as the pulse amplitude of the DVP signals. The {PPI} series were calculated from IMF6
after decomposition of DVP signals by EEMD. The DVP and IMF6 signals had to be synchronized.
Each peak and valley of the DVPs were obtained between two consecutive ECG R waves (Figure 1).

2.3.1. Surrogate Data for Baroreflex: Synchronized {PPI} and {Amp} Signals

The baroreflex is one of the body’s homeostatic mechanisms that is reflected in a physiological
phenomenon where a decrease in blood pressure makes the RRI shorter, and an increase in blood
pressure makes the RRI longer. In our previous study [16,17], synchronized RRI and amplitude series
from DVP signals were used to develop a percussion entropy index to assess diabetic autonomic
nervous dysfunction. However, an ECG is not convenient for real-time application. In the current
study, we attempted to generate a modified index using only DVP signals (i.e., PPI to replace RRI)
under the concept of surrogate data and cost reduction.

• Synchronized {PPI} and {Amp} signals

{Amp} = {Amp(1), Amp(2), . . . , Amp(n)} for time series of DVP amplitude signals,
and {PPI} = {PPI(1), PPI(2), . . . , PPI(n − 1)} for the PPI of IMF6 after EEMD, were simultaneously
synchronized for each subject, as shown in Figure 2.

{Amp} = {Amp(1), Amp(2), Amp(3), . . . , Amp(n)}, (1)

{PPI} = {PPI(1), PPI(2), PPI(3), . . . , PPI(n − 1)}. (2)

After EEMD was implemented via the Matlab package using a PC, the 6th intrinsic mode function
(IMF6) was decomposed from DVPs, which are sine-wave-like, caused by the impact of heart pulsation
on the DVP.
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Figure 2. DVP amplitudes of the dominant finger {Amp(1), Amp(2), . . . , Amp(n)} and peak-to-peak
intervals (PPIs) of IMF6 {PPI(1), PPI(2), . . . , PPI(n− 1)} were simultaneously acquired from a six-channel
ECG-based pulse wave velocity system [28].

• Synchronized {BPPI} and {BAmp} signals for fluctuation t patterns

Baroreflex sensitivity (BRS) had been shown to be a novel parameter of autonomic function.
BRS can quantitatively reflect the matching degree between a change in DVP amplitudes of
dominant fingers (i.e., {Amp} in Equation (1)) and a change in the peak-to-peak intervals (PPIs) of
IMF6 (i.e., {PPI} in Equation (2)). Therefore, the fluctuations among successive DVP waveform
amplitudes and PPIs from IMF6 undergo binary transformation to get two binary sequences (i.e.,
{BAmp} and {BPPI}, respectively). In that way, {BAmp} and {BPPI} represented the fluctuations of
series {Amp} and {PPI}, respectively.

The four fluctuation patterns of length two, and the eight fluctuation patterns of length three,
representing fluctuations of {Amp} and {PPI} time series, are shown in Figure 3. We used these patterns
to calculate obedience in the fluctuation tendency for represented BRS.

{BAmp} = {a1 a2 a3 . . . an}, ai = 0, if Amp(I + 1) < Amp(i); or ai = 1, if Amp(I + 1) > Amp(i), (3)

{BPPI} = {p1 p2 p3 ... pn}, pi = 0, if PPI(i + 1) < PPI(i); or pi = 1, if PPI(i + 1) > PPI(i). (4)
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Figure 3. (a) The four fluctuation patterns of length two and (b) the eight fluctuation patterns of length
three, representing fluctuations of {Amp} and {PPI} time series. Here, “1” represents Amp(i + 1) up from
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2.3.2. Surrogate Data for Percussion Entropy in Assessing the Complexity of BRS

In a previous study [16], variations in BRS caused 1 to 5 cardiac cycle delays under the effects
of blood pressure (i.e., DVP amplitude) changes on synchronized RRIs. Accordingly, obedience in
the fluctuation tendency, the percussion entropy with a length of the fluctuation pattern equal to two,
was represented as baroreflex sensitivity, while the percussion entropy with a length of the fluctuation
pattern equal to three was represented as the complexity of a biological system.

• Fluctuation patterns with length of two

Any two consecutive values [a1 a2] form one of the four fluctuation patterns, not six
ordinal patterns, because only “ups and downs” are focused on BRS, as shown in Figure 3a.
If one cardiac cycle delay exists between {Amp} and {PPI}, then {a1 a2 a3 · · · · · · an} and
{p2 p3 p4 · · · · · · pn+1} are used to match the obedience in fluctuation tendency with every two
dimension counts, and then the percussion number (i.e., the numbers of matches) is acquired
and divided by the total number of the two dimensions of fluctuation patterns. This is called
percussion frequency with one cardiac cycle delay, and it is expressed by the following equation:

PL = 2
s = 1 =

1
n− 2

∑n−2

i = 1
count(i). (5)

If two cardiac cycle delays exist between {Amp} and {PPI}, then {a1 a2 a3 · · · · · · an} and
{p3 p4 p5 · · · · · · pn+2} are used for matching obedience in the fluctuation tendency with every
two dimension counts, and then the percussion number (i.e., the number of matches) is acquired
and divided by the total number of the two dimensions of fluctuation patterns. This is called
percussion frequency with two cardiac cycle delays, expressed by the following equation:

PL = 2
s = 2 =

1
n− 2

∑n−2

i = 1
count(i). (6)

Thus, percussion frequency with five cardiac cycle delays between {Amp} and {PPI} is expressed
as follows:

PL = 2
s = 5 =

1
n− 2

∑n−2

i = 1
count(i). (7)

Hence, the percussion entropy with length two of obedience in the fluctuation tendency can be
defined as follows:

ϕL = 2(n) = ln
(∑5

s = 1
PL = 2

s

)
, ln : natural logarithmic operation. (8)

The higher the value in (8), the higher the BRS.
• Fluctuation patterns with length three

Similarly, the percussion entropy with length three of obedience in the fluctuation tendency can
be expressed as follows:

ϕL = 3(n) = ln
(∑5

s = 1
PL = 3

s

)
, ln : natural logarithmic operation. (9)

The higher the value in Equation (9), the lower the human biological complexity.
• PEIPPI calculation

PEIPPI = ϕL = 2(n) −ϕL = 3(n). (10)
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The calculation of the new percussion entropy index (PEIPPI) comprises the flow chart shown in
Figure 4. Compared with PEIPPI, PPG and ECG signals were synchronized and sampled on the
same system. The previous parameter (i.e., PEIRRI) was then computed from {Amp} and {RRI} for
every subject. In addition, LHRRRI and MEIRRI were computed with only the RRI dataset used
for comparison.
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Figure 4. The modified percussion entropy index (PEIPPI) computation flow chart. Amp: DVP
amplitudes of the dominant finger; PPI: peak-to-peak interval of IMF6. The standard deviation of the
added noise was set as α = 0.2, and the trial number of the ensemble N = 200 for ensemble empirical
mode decomposition (EEMD). After two synchronized series, {Amp} and {PPI} series were acquired.
The computational length of the series {Amp} and {PPI} was set as 1000. Taking into account baroreflex
sensitivity (BRS) regulation, the binary sequence transformations for {Amp} and {PPI} were conducted.
Subsequently, the proposed PEIPPI was computed as Equation (10).

2.4. Statistical Analysis

All values in the Tables 1 and 2 are expressed as the mean ± SD. The Statistical Package for
the Social Sciences (SPSS, version 14.0 for Windows, SPSS Inc. Chicago, IL, USA), a powerful and
user-friendly software package for statistical analysis of data, was adopted for all statistical analyses in
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the study. A one-sample Kolmogorov–Smirnov test in SPSS was adopted by testing the normality of
the distribution, and the homoscedasticity of the data was verified subsequently. The comparisons of
demographic, hemodynamic, anthropometric, and serum biochemical information of the test subjects
were analyzed using a Student’s unpaired t test with Bonferroni correction, and the differences between
categorical variables were assessed using a chi-square test. A Bland–Altman plot and Pearson’s
correlation test with Bonferroni correction were performed for verification of the statistical agreement
and judgment between PPI (IMF6) and PPI (DVP). The significance of differences in anthropometric,
hemodynamic, and parameters (i.e., PEIPPI, PEIRRI, MEIRRI, and LHRRRI) among different groups were
illustrated using independent sample t-tests with Bonferroni correction. The Pearson’s correlation
test in SPSS was also adopted for the correlations verification between risk factors and the compared
parameters. A corrected p-value with a test-specific significance level of 0.017 was regarded as
statistically significant.

3. Results

3.1. Characteristics of the Age-Controlled Healthy and Diabetic Subjects

Table 1 shows the baseline characteristics of the three age-controlled groups. Compared with test
subjects in the healthy group (i.e., group 1), those in the diabetes groups (i.e., group 2 and group 3) had
higher weight, body mass index, triglyceride, fasting blood glucose, and glycosylated hemoglobin
levels (p < 0.001). There were no notable differences between group 2 and group 3 in terms of
demographic (i.e., age), anthropometric (i.e., body weight and waist circumference), hemodynamic (i.e.,
SBP, DBP, PP), and serum biochemical information (i.e., triglycerides, glycated hemoglobin, and fasting
blood glucose) of the test subjects (p > 0.017).

Table 1. Characteristics of the study population.

Parameters

Group 1 Group 2 Group 3

Number: 34 Number: 42 Number: 24

Female/Male Female/Male Female/Male

(15/19) (14/28) (10/14)

Age, year 59.78 ± 9.74 65.90 ± 11.10 62.26 ± 8.67
Body height, cm
Body weight, kg

WC, cm
BMI, kg/m2

160.95 ± 7.16
61.51 ± 10.02
82.56 ± 10.57
23.59 ± 3056

159.58 ± 7.97
68.74 ± 10.31 **

93.85 ± 8.99
27.02 ± 3.93 **

164.35 ± 9.67
71.98 ± 7.54
95.44 ± 6.88
26.85 ± 3.94

SBP, mmHg
DBP, mmHg
PP, mmHg

HDL, mg/dL
LDL, mg/dL

Cholesterol, mg/dL

123.88 ± 18.69
75.01 ± 8.99
48.88 ± 14.41
51.76 ± 21.05

113.23 ± 30.25
190.08 ± 48.99

128.80 ± 16.61
75.66 ± 10.35
51.88 ± 16.05
45.14 ± 17.82

124.11 ± 47.08
174.53 ± 50.79

125.09 ± 31.64
72.01 ± 18.04
53.09 ± 18.76
39.32 ± 6.18

106.23 ± 25.08
179.78 ± 31.38

TG, mg/dL 94.81 ± 36.16 148.95 ± 67.84 ** 164.18 ± 68.05
HbA1c, % 5.92 ± 0.32 7.99 ± 1.68 ** 8.48 ± 1.58

FBS, mg/dL 100.42 ± 26.80 150.73 ± 48.52 ** 162.69 ± 58.24

All values are expressed as mean ± SD. Group 1: healthy aged subjects; group 2: diabetic patients without
peripheral neuropathy; group 3: type 2 diabetic patients with peripheral neuropathy within 5 years. BMI: body mass
index; WC: waist circumference; SBP: systolic blood pressure; DBP: diastolic blood pressure; PP: pulse pressure;
LDL low-density lipoprotein cholesterol; HDL: high-density lipoprotein cholesterol; TG: triglyceride; HbA1c:
glycosylated hemoglobin; FBS: fasting blood glucose. Note: ** p < 0.001 group 1 versus group 2, a p-value < 0.017
was noted as statistically significant.

3.2. Failure of DVPs to Detect Peak-to-Peak Intervals in an Aged Subject and a Diabetic Subject

Figure 5 shows the failure of the digital volume pulse measured at the dominant fingertip in
detecting the peak-to-peak interval (PPI) in an aged subject and a diabetic subject, as compared with the
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chaotic and subtle peaks of a middle-aged nondiabetic subject. The tangled results can be attributed to
the interfering noises, including the signals of impaired peripheral circulation, respiration, involuntary
vibrations, and whispering cough, and also mechanical signals such as those from the system of
measurements. By implemented EEMD in the study, these noises were then removed to obtain refined
DVP signals (i.e., IMF6) for exact PPI calculation.
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Figure 5. Digital volume pulse (DVP) signals and their corresponding decomposed 6th intrinsic
mode function (IMF6) from one representative subject in each group showing: (a) subject A: healthy
elderly subject in group 1 (age: 55 years, HbA1c: 5.5%, WC: 73 cm, BMI: 22.7); (b) subject B: diabetic
patient without peripheral neuropathy in group 2 (age: 71 years, HbA1c: 8.2%, WC: 94 cm, BMI: 26.5);
(c) subject C: type 2 diabetic patient with peripheral neuropathy within 5 years in group 3 (age: 62 years,
HbA1c: 8.5%, WC: 98 cm, BMI: 28.6). The peaks of DVP and IMF6 were in phase for subject A, {PPI}
series in (2) were the same from DVP or from IMF6. Nevertheless, it was difficult to calculate exact PPI
from DVP for subject B and subject C. (a–c) For all IMF6 values, exact PPI could be calculated.
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3.3. Agreement Assessment between PPI (DVP) and PPI (IMF6) for the Three Groups

Figures 6 and 7 were added to verify the hypothesis: the IMF6 signal can replace DVP for PPI
determination. Figure 6 shows Bland–Altman plots of these two measurements (i.e., PPI (IMF6) and
PPI (DVP)) for subjects from the three groups. The mean difference and the limits of agreement
(mean ± 1.96SD) are also indicated in Figure 6. Good agreements were again shown between the two
measurements for all test subjects.

Interestingly, a significant correlation was noted between PPI (IMF6) and PPI (DVP) in group 1
subjects (r = 0.52, p = 0.001) (Figure 7a). Similarly, notable correlations were also demonstrated in
group 2 and group 3 (r = 0.30, r = 0.37, respectively, all p = 0.001) (Figure 7b,c). The regression line
describes the 95% confidence interval in Figure 7.
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Figure 6. All Bland–Altman plots demonstrated that PPI (DVP) series have a good agreement with PPI
(IMF6) series for (a) group 1, (b) group 2, and (c) group 3. Group 1: healthy aged subjects; group 2:
diabetic subjects; group 3: diabetic peripheral neuropathy patients. The mean difference and the limits
of agreement (mean ± 1.96SD) are also represented.
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Figure 7. (a) Correlation between PPI (IMF6) and PPI (DVP) for test subjects in group 1 (r = 0.52,
p = 0.001); (b) Correlation between PPI (IMF6) and PPI (DVP) for test subjects in group 2 (r = 0.30,
p = 0.001); (c) Correlation between PPI (IMF6) and PPI (DVP) for test subjects in group 3 (r = 0.37,
p = 0.001). Group 1: healthy aged subjects; group 2: diabetic patients without DPN; group 3: diabetic
peripheral neuropathy patients within 5 years. The regression line describes the 95% confidence interval.

3.4. Performance Compared among PEIPPI, PEIRRI, MEIRRI, and LHRRRI to Differentiate Future Peripheral
Neuropathy from Type 2 Diabetic Patients

The results of comparing the three previous parameters (i.e., LHRRRI, MEIRRI, and PEIRRI) with
the proposed PEIPPI for autonomic function and BRS evaluation in test subjects of the three groups are
shown in Table 2. Although MEIRRI was significantly higher for test subjects in group 1 than those
in group 2 (p < 0.001), there was no notable difference between the test patients in groups 2 and 3.
Relatively speaking, PEIPPI and PEIRRI successfully discriminated for the test subjects among the three
groups with significant differences (p < 0.017) (Table 2).
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Table 2. Performance comparison in BRS and autonomic function assessment among the three groups
of test subjects.

Parameters Group 1 (n = 34) Group 2 (n = 42) Group 3 (n = 24)

LHRRRI 1.59 ± 1.03 2.09 ± 2.09 2.25 ± 2.38
MEIRRI 0.49 ± 0.16 0.36 ± 0.20 ** 0.37 ± 0.19
PEIRRI 0.73 ± 0.47 0.60 ± 0.11 ** 0.56 ± 0.10 †

PEIPPI 0.69 ± 0.03 0.66 ± 0.04 ** 0.63 ± 0.06 †

All values are expressed as the mean ± SD. Group 1: healthy aged subjects; group 2: diabetic patients without
peripheral neuropathy; group 3: diabetic peripheral neuropathy patients. PEIPPI: percussion entropy index
using synchronized {PPI} and {Amp} signals; PEIRRI: percussion entropy index using synchronized RRI and Amp
signals; MEIRRI: mean value of sample entropy on a scale from 1 to 5 using the RRI dataset only; and LHRRRI:
low-/high-frequency power ratio using the RRI dataset only. ** p < 0.001 group 1 versus group 2, † p < 0.017 group 2
versus group 3, a p-value less than 0.017 was noted as statistically significant.

3.5. Correlations of Risk factors with PEIPPI, PEIRRI, MEIRRI, and LHRRRI

The associations of the computational parameters (i.e., LHRRRI, MEIRRI, PEIRRI, and PEIPPI)
with the anthropometric (i.e., body weight and waist circumference) and serum biochemical (i.e.,
triglycerides, fasting blood glucose, and glycated hemoglobin) factors of the test subjects in three
groups were delivered and analyzed using the Pearson’s correlation test in SPSS (Table 3).

Table 3. Associations of anthropometric and serum biochemical risk factors with parameters in all
test subjects.

PEIPPI PEIRRI MEIRRI LHRRRI

r p r p r p r p

BW, kg −0.20 0.04 −0.19 0.06 −0.07 0.53 −0.07 0.53
WC, cm −0.20 0.05 −0.31 0.00 −0.02 0.85 −0.01 0.95

TG, mg/dL −0.27 0.01 −0.33 0.00 −0.09 0.39 0.05 0.64
HbA1c, % −0.38 0.00 −0.43 0.00 −0.26 0.01 −0.14 0.17

FBS, mg/dL −0.23 0.03 −0.40 0.00 −0.28 0.01 −0.05 0.63

PEIPPI: percussion entropy index using synchronized {PPI} and {Amp} signals; PEIRRI: percussion entropy index
using synchronized RRI and {Amp} signals; MEIRRI: mean value of sample entropy on a scale from 1 to 5 using the
RRI dataset only; and LHRRRI: low-/high-frequency power ratio using the RRI dataset only. BW: body weight; WC:
waist circumference; TG: triglyceride; HbA1c: glycosylated hemoglobin; FBS: fasting blood glucose. A p-value less
than 0.05 was noted as statistically significant.

4. Discussion

Although a previous study [19] showed that PPG-based PPI could be reliably used for HRV
computation, other authors [18,23,28] stated that PPI should be used carefully in overweight, elderly,
or diabetic individuals. In contrast with the major problems focused at the beginning of this study are
the chaotic and subtle peaks of DVP signals obtained from the fingertip (as shown in Figures 1 and 5).
EEMD is a nonlinear technique based on the orthogonal decomposition resulting from IMF6 being
analyzed effectively in overweight, elderly, or diabetic individuals for exact PPI determination. In this
way, the confusing noises were separated, including the signals of impaired peripheral circulation,
respiration, involuntary vibrations, and whispering cough; as well as mechanical signals, such as those
from the measuring system. Using EEMD in this study, these noises were separated to acquire refined
DVP signals (i.e., IMF6) for exact PPI calculation on clinical applications (Figures 6 and 7).

Type 2 diabetes and related complications are related with the long-term damage and failure
mechanisms of various organ systems [29]. The impact of lowering glucose on vascular complications
and clinical outcomes in type 2 diabetes is still an open problem. While intensive glucose control in
patients with type 2 diabetes has undoubted benefits for major microvascular endpoints [30–33], good
glucose control improves microvascular disease, and should be achieved early and maintained over a
very long period of time. Previous reviews [29,33] highlighted the need for program implementation
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for early screening, detection, and awareness to reduce the burden of managing complications.
Diabetic peripheral neuropathy (DPN) is not only one of the most common chronic complications of
diabetes, but also a leading cause for disability due to foot ulceration and amputation, fall-related
injury, and gait disturbance [3]. Hence, this study addressed results from the indices LHRRRI, MEIRRI,
PEIRRI, and PEIPPI, which were first computed for diabetic subjects with peripheral neuropathy within
five years after PPG baseline measurement (i.e., group 3) for comparison with diabetic patients without
peripheral neuropathy in the same period (i.e., group 2). However, the value of autonomic function
indices, including MEIRRI, were significantly different in group 2 compared with group 1 subjects
(p < 0.017). There were no notable differences between groups 3 and 2 (p > 0.017) (Table 2). On the
other hand, both baroreflex sensitivity assessment indices (i.e., PEIRRI and PEIPPI) showed highly
significant differences among the three groups (p < 0.017) (Table 2). Significantly smaller values of
PEIPPI were noted for group 3 compared to the other two groups (e.g., group 1 versus group 2 versus
group 3: 0.69 ± 0.03 versus 0.66 ± 0.04 versus 0.63 ± 0.06, respectively), which is consistent with the
same finding that diabetic peripheral neuropathy was found to be a more important determining factor
of spontaneous BRS assessment than elasticity of carotid arteries in type 2 diabetics [34].

Although PEIRRI has recently been reported to assess the complexity of BRS [16,17], the significance
of smaller PEIRRI values concerning the identification of subjects with type 2 diabetes who are more
prone to develop DPN is unknown. In addition, there were no notable differences between the test
diabetic patients in groups 2 and 3 with anthropometric, demographic, hemodynamic, and serum
biochemical parameters (p > 0.017) (Table 1). That is to say, it would be difficult to predict how many
and who will develop peripheral neuropathy in advance. Finally, 24 diabetic patients in the study were
identified with peripheral neuropathy (i.e., group 3): 10 subjects had good blood glucose control (i.e.,
6.5% 5HbA1c < 8%), and the other 14 subjects had poor blood glucose control (i.e., HbA1c = 8%). Thus,
nearly 42% (10 out of 24) of DPN patients originally had good blood glucose control but developed
further peripheral neuropathy within five years after PPG baseline measurement. The impact of poor
glycemic control and sedentary status are well-known risk factors of DPN [35,36]. These results are
consistent, finding that the associations of the PEIRRI and PEIPPI indices with the anthropometric (i.e.,
body weight and waist circumference) and serum biochemical (i.e., triglycerides, glycated hemoglobin,
and fasting blood glucose) parameters of all test subjects were noted (Table 3). Significantly, peripheral
neuropathy dysfunction has been associated with the development of macrovascular diseases, such as
ischemic stroke, peripheral vascular disease, and acute myocardial infarction in diabetes [37–39].

This study has some limitations. First, the number of test subjects enrolled was relatively
low. Second, this was an outpatient clinical study, and details on dietary information and medical
management of diabetes may not be integrated. Third, real-time processing and stream processing
were not possible for PEIPPI computation because EEMD required lots of operations. Immediate PEIPPI

information available to the examinees, therefore, could not be provided for the test subjects.
This limitation may hopefully be overcome by the application of a real time Labview-based package in
the future.

5. Conclusions

The results of this study not only indicate that PPG-derived digital volume pulse signals capable
of being de-noised by ensemble empirical mode decomposition may be an important contributor to
peak-to-peak interval detection success for aged overweight subjects and diabetic patients, but also
recommend the possibility of clinical application of a modified percussion entropy index (i.e., PEIPPI)
for DVP signals used only as a simple and noninvasive prognostic indicator for diabetic patients with
peripheral neuropathy dysfunction. This manuscript reported a study to investigate the application of
a modified percussion entropy index in accessing the complexity of baroreflex sensitivity for diabetic
peripheral neuropathy prognosis. On the other hand, there are no obvious symptoms at their early
stages. Early detection of the signs of diabetic peripheral neuropathy through signal analysis methods,
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therefore, is of utmost importance in the field of preventive medicine that requires collaborative efforts
of clinicians and medical technologists.
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Abbreviations

BMI Body Mass Index
BRS Baroreflex Sensitivity
DBP Diastolic Blood Pressure
DVP Digital Volume Pulse
DPN Diabetic Peripheral Neuropathy
ECG Electrocardiography
EEMD Ensemble Empirical Mode Decomposition
FBS Fasting Blood sugar
HbA1c Glycosylated hemoglobin
HDL High-Density Lipoprotein cholesterol
HFP High Frequency Power
HRV Heart Rate Variability
IMF6 The 6th decomposed Intrinsic Mode Function
LDL Low-Density Lipoprotein cholesterol
LFP Low Frequency Power
LHRRRI Low-/High-frequency power Ratio (LFP/HFP, LHR) using the RRI dataset
MEIRRI Multiscale Entropy Index using the RRI dataset only
PC Personal Computer
PEIPPI Percussion Entropy Index using synchronized {PPI} and {Amp} signals
PEIRRI Percussion Entropy Index using synchronized {RRI} and {Amp} signals
PP Pulse Pressure
PPG Photoplethysmography
PPI Peak-to-Peak Interval
RRI R-R Interval of ECG
SBP Systolic Blood Pressure
SPSS Statistical Package for the Social Sciences
TG Triglyceride
WC Waist Circumference
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