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Abstract: The information required to specify a liquid structure equals, in suitable units,
its thermodynamic entropy. Hence, an expansion of the entropy in terms of multi-particle correlation
functions can be interpreted as a hierarchy of information measures. Utilizing first principles
molecular dynamics simulations, we simulate the structure of liquid aluminum to obtain its density,
pair and triplet correlation functions, allowing us to approximate the experimentally measured
entropy and relate the excess entropy to the information content of the correlation functions.
We discuss the accuracy and convergence of the method.
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1. Introduction

Let pi be the probability of occurrence of a state i, in thermodynamic equilibrium. The Gibbs’ and
Von Neumann’s formulas for the entropy [1,2],

S/kB = −∑
i

pi ln pi, (1)

are mathematically equivalent to the information measure defined by Shannon [3]. Entropy is thus a
statistical quantity that can be calculated without reference to the underlying energetics that created the
probability distribution, as recognized by Jaynes [4]. Previously we applied this concept to calculate
the entropy of liquid aluminum, copper and a liquid aluminum-copper alloy binary alloy [5], using
densities and correlation functions obtained from first principles molecular dynamics simulations that
are nominally exact within the approximations of electronic density functional theory. In this paper
we discuss the convergence and principal error sources for the case of liquid aluminum. As shown
in Figure 1, we are able to reproduce the experimentally known entropy [6,7] to an accuracy of
about 1 J/K/mol, suggesting that this method could provide useful predictions in cases where the
experimental entropy is not known.

In a classical fluid [8], the atomic positions ri and momenta pi (i = 1, . . . , N for N atoms in
volume V) take a continuum of values so that the probability becomes a function, fN(r1, p1, . . . , rN , pN),
and the entropy becomes

SN/kB = − 1
N!

∫
V

∏
i

dridpi fN ln (h3N fN) (2)

in the canonical ensemble. In this expression, the factor of N! corrects for the redundancy of
configurations of identical particles, and the factors of Planck’s constant h are derived from the

Entropy 2019, 21, 131; doi:10.3390/e21020131 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-5972-5696
http://www.mdpi.com/1099-4300/21/2/131?type=check_update&version=1
http://dx.doi.org/10.3390/e21020131
http://www.mdpi.com/journal/entropy


Entropy 2019, 21, 131 2 of 10

quantum mechanical expression. For systems whose Hamiltonians separate into additive terms
for the kinetic and configurational energies, fN factorizes into a product ∏i fig

(N)
N of independent

Maxwell-Boltzmann distributions for individual atomic momenta,

f1(p) = ρ(2πmkBT)−3/2e−|p|
2/2mkBT , (3)

times the N-body positional correlation function g(
)

N N(r1, . . . , rN).
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Figure 1. Calculated entropies compared with experimental values [6,7]. sIdeal is from Equation (12),
s1 is from Equation (11), s2 is the pair-correlation correction from Equation (14), and Se is from
Equation (27)). We expect the best liquid state result from s1 + s2 + se. In the solid state, below melting
at Tm = 933 K, sQuasiharmonic is the vibrational entropy in the quasiharmonic approximation.

Equation (2) can be reexpressed in terms of n-body distribution functions [8–11], g(n)N with n < N, as

S/NkB = s1 + s2 + s3 + . . . , (4)

where the n-body terms are

s1 = −1
ρ

∫
V

dp f1(p) ln (h3 f1(p)) (5)

s2 = −1
2

ρ2
∫

V
dr1r2 g(2)N ln g(2)N , (6)

s3 = −1
6

ρ3
∫

V
dr1r2r3 g(3)N ln (g(3)N /g(2)N g(2)N g(2)N ). (7)

The subscripts N indicate that the correlation functions are defined in the canonical ensemble,
with a fixed number of atoms N, and they obey the constraints

ρn
∫

V
∏

i
dri g(n)N =

N!
(N − n)!

. (8)

Each term sn can be interpreted in terms of measures of information. Briefly, s1 is the entropy
of a single particle in volume V = 1/ρ, and hence in the absence of correlations. s2 is the difference
between the information content of the pair correlation function g(2)N , and the uncorrelated entropy,
which must be added to s1. Similarly, s3 is the difference between the information contents of the
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three-body correlation g(3)N and the two-body correlation g(2)N , which must be added to s1 + s2. Notice
that the information content of the n-body is also contained in the (n + 1)-body and higher-body
correlations because of the identity

g(n)N (r1, . . . , rn) =
ρ

N − n

∫
V

drn+1g(n+1)
N (r1, . . . , rn, rn+1) (9)

that expresses g(n)N as a marginal distribution of g(n+1)
N .

Mutual information measures how similar a joint probability distribution is to the product of
its marginal distributions [12]. In the case of a liquid structure, we may compare the two-body
joint probability density [13,14] ρ(2)(r1, r2) = ρ2g(2)N (|r2 − r1|) with its single-body marginal, ρ(2)(r).
The mutual information per atom

I[ρ(2)(r1, r2)] =
1
N

∫
V

dr1dr2 ρ(2)(r1, r2) ln (ρ(2)(r1, r2)/ρ(r1)ρ(r2)) (10)

tells us how much information g(r) gives us concerning the positions of atoms at a distance r from
another atom. Mutual information is nonnegative definite. We recognize the term s2 in Equation (6)
as the negative of the mutual information content of g(2)N , with the factor of 1/2 correcting for
double-counting of pairs of atoms.

2. General Theory

2.1. One-Body Term

The one-body term s1 in Equation (5) can be evaluated explicitly, yielding

s1 =
3
2
− ln (ρΛ3), (11)

where Λ =
√

h2/2πmkBT is the quantum De Broglie wavelength. Both terms in Equation (11) have
simple information theoretic interpretations [15]. While an infinite amount of information is required to
specify the exact position of even a single particle, in practice, due to quantum mechanical uncertainty
we should only specify position with a resolution of Λ. Consider a volume V = 1/ρ. In the absence
of other information, the probability that a single particle is localized within a given volume Λ3 is
p = Λ3/V. Summing −p ln p over the (V/Λ3)-many such volumes yields − ln (Λ3/V) = − ln (ρΛ3).
Similarly, the 3/2 in Equation (11) is simply the entropy of the Gaussian momentum distribution,
Equation (3).

Notice that s1 resembles the absolute entropy of the ideal gas,

SIdeal =
5
2
− ln (ρΛ3). (12)

The difference lies in the constant term 3/2 in s1 vs. 5/2 in SIdeal. We shall discover that the
difference 5/2− 3/2 = 1 is accounted for in the many-body terms s2, s3, . . . . Indeed, this is clear
if we place N particles in the volume V = N/ρ. The derivation of Equation (11) generalizes to
s/NkB = 3

2 − ln (Λ3/V), but this must be corrected [15] by the irrelevant information, ln N!, that
identifies the individual particles in each separate volume Λ3. The leading term of the Stirling
approximation ln N! ≈ N ln N − N converts ln (Λ3/V) into ln (ρΛ3), while the second term adds 1 to
3/2 yielding 5/2.

Either s1 or sIdeal can be taken as a starting point for an expansion of the entropy in multi-particle
correlations. Prior workers [11,16–19] tend to favor sIdeal, while we shall find it more natural to
begin with s1.
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2.2. Two- and Three-Body Terms

Translational symmetry allows us to replace the double integral over positions r1 and r2 in
Equation (6) for s2 with the volume V times a single integral over the relative separation r = r2 − r1.
A similar transformation applies to the integral for s3. However, the canonical ensemble constraint
Equation (8) leads to long-range (large r) contributions to the remaining integrations. Nettleton
and Green [16] and Raveche [17,18] recast the distribution function expansion in the grand-canonical
ensemble and obtained expressions that are better convergent. We follow Baranyai and Evans [11] and
apply the identity

ρ2
∫

V
dr1dr2 g(2)N (r1, r2) = N(N − 1) (13)

to rewrite the two-body term as

s2 = S(2)
Fluct + S(2)

Info (14)

S(2)
Fluct =

1
2
+

1
2

ρ
∫

dr [g(2)(r)− 1] (15)

S(2)
Info = −1

2
ρ
∫

dr g(2)(r) ln g(2)(r). (16)

The combined integrand {[g(2)(r)− 1]− g(2)(r) ln g(2)(r)} of s2 falls off rapidly, so that the sum
of the two integrals converges rapidly as the range of integration extends to large r. Furthermore,
the combined integral is ensemble invariant, which allowed us to substitute the grand canonical
ensemble radial distribution function g(r) in place of the canonical g(2)N . The same trick applies to the
three-body term,

s3 = S(3)
Fluct + S(3)

Info (17)

S(3)
Fluct =

1
6
+

1
6

ρ2
∫

dr2(g(3) − 3g(2)g(2) + 3g(2) − 1) (18)

S(3)
Info = −1

6
ρ2
∫

dr2g(3) ln (g(3)/g(2)g(2)g(2)). (19)

The contribution of 1/2 in s2 as given by Equation (14), together with an added 1/6 + 1/12 +

· · · = 1/2 from the three-body Equation (17) and higher terms, reconciles the one-body entropy
with the ideal gas. For consistency with previous workers [11,16–19] who omit the 1/2 from S(2)

Fluct

and the 1/6 from S(3)
Fluct, and to make connection with the ideal gas, we can add the entire series

1/2 + 1/6 + 1/12 + · · · = 1 to s1 and write

S/NkB = SIdeal + (s2 − 1/2) + (s3 − 1/6) + · · · (20)

which is equivalent to Equation (4).
In the grand-canonical ensemble, the S(2)

Fluct term in Equation (14) arise from fluctuations in the
number of atoms, N, and can be evaluated in terms of the isothermal compressibility χT as

S(2)
Fluct/kB =

1
2

γ, (21)

where
γ = ρkBTχT (22)
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is the dimensionless compressibility. Note that χT , and hence also §(2)Fluct, are positive definite.
The remaining term is the entropy reduction due to the two-body correlation. As noted above,
the mutual information content of the radial distribution function g(2)(r) reduces the entropy by

S(2)
Info/kB ≡ −

1
2

ρ
∫

dr g(2)(r) ln g(2)(r). (23)

The complete two-body term is now s2 = S(2)
Fluct + S(2)

Info.
The three-body fluctuation term (see Equation (16)) also relates to isothermal compressibility [18], with

S(3)
Fluct =

1
2

γ− 1
3

γ2 +
1
6

ργ
∂γ

∂ρ

∣∣∣
β
. (24)

The final term in Equation (17) reduces to a difference of three- and two-body entropies, and its
sign is not determined. Essentially, the g(3) ln (g(3)/g(2)g(2)g(2)) term adds back the two-body mutual
information I[g(2)] and then subtracts the information contained in the three-body correlation g(3).
Note that g(3) necessarily contains all the information in g(2) because of the identity Equation (9).

The pattern illustrated in Equations (21) and (24) holds for the analogous higher-body correlations
as well, because integrals of the correlation function g(n) can be written in terms of integrals and density
derivatives of g(n−1). One limit of special interest is the incompressible limit, where the initial terms
of Equations (14) and (17) vanish and only the information-derived g ln g terms survive. This limit
should apply to dense fluids at low temperatures. Another limit occurs at high temperature, where the
density drops and the correlation functions approach 1. In this limit all integrals involving g(n) vanish
so that S(n)

Info = 0 and all the S(n)
Fluct terms sum to 1/2 + 1/6 + 1/12 + · · · = 1.

Truncation of the series of terms S(n)
Info is accurate if higher many-body correlation functions can

be approximated by products of fewer-body correlations. That is, if the higher correlation functions
contain no new information. For example, the Kirkwood superposition approximation

δg(3)N (r, s, t) ≡ g(3)(r, s, t)/g(2)N (r)g(2)N (s)g(2)N (t) ≈ 1 (25)

causes S(3)
Info to vanish.

3. Results

To provide the liquid state correlation functions needed for our study we perform ab-initio
molecular dynamics (AIMD) simulations based on energies and forces calculated from first principles
electronic density functional theory (DFT). We apply the plane-wave code VASP [20] in the generalized
gradient approximation [21]. Simulations are performed at fixed volume for each temperature.
In order to determine the proper volumes (i.e., liquid densities ρ) we performed simulations at several
volumes to identify the volume at which the pressure (including the kinetic term) vanished. Most runs
were performed using Normal precision FFT grids, however the smallest system (N = 100 atoms) was
found to require accurate precision.

Figure 2 shows the result of convergence studies in both volume and plane-wave cutoff energy.
Briefly, we found minimal dependence on the plane wave energy cutoff, but strong and non-monotone
dependence on the number of atoms. We accept N = 500 atoms as a suitable target for convergence of
the volume and we use the same condition for collecting our correlation functions. Our calculated
density at 973 K falls below the experimentally assessed value by about 1%, similar to the discrepancy
for solid Al in the limit of low temperature. From the volume-dependence of pressure we obtain
estimates of the dimensionless compressibility γ ranging from 0.008 at T = 973 K up to 0.015 at
T = 2473 K.
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Figure 2. Calculated aluminum density vs. number of atoms N at various temperatures. All results
hold for the default energy cutoff of 240 eV except for red squares that hold for 320 eV.

Pair correlation functions g(2)(r) are collected as histograms in ∆ = 0.01 Å bins, normalized to
4πr2∆N2/V and subsequently smeared with a Gaussian of width σ = 0.025 Å. Triplet correlation
functions g(3)(r, s, t) utilize bin widths of ∆ = 0.10 Å , normalized to 8π2rst∆3N3/V2, and are not
smeared. Our run durations for data collection were 10 ps. All structures were thoroughly equilibrated
prior to data collection.

Figure 3 illustrates the pair correlation function g(2)(r) at various temperatures. Note the
oscillations that extend to large r; presumably these oscillations are responsible in part for the
oscillations in ρ as a function of N. Note also the decreasing amplitude of oscillation with increasing
temperature. Figure 4 illustrates the three-body correlation function for the special case of equilateral
triangles with r = s = t. The inset displays the ratio δg(3)(r, r, r) (see Equation (25)). Notice that δg(3)

is nearly a step function, with small decaying oscillations that diminish with increasing temperature.
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Figure 3. Pair correlation function g(2)(r) at various temperatures.
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Figure 4. Triplet correlation function g(3)(r, r, r) at various temperatures. Inset: Kirkwood ratio
Equation (25).

3.1. One-Body Term

The one-body term explicitly depends on density, and also depends implicitly on temperature
through the De Broglie wavelength Λ. Taking our calculated densities, and evaluating Λ, s1, and sIdeal,
we note that s1 and sIdeal are greater than, but rather close to, the experimental liquid entropies [6,7],
as shown in Figure 1. The differences drop as the temperature grows, as expected because nonideality
of the liquid metal becomes less important at high temperature.

3.2. Two-Body Term

In Figure 5 we plot the terms S(2)
Fluct and S(2)

Info as defined by Equations (21) and (23), respectively,
where we integrate from zero separation up to a cutoff of R. Owing to the R2 increase of the volume
differential dr, oscillations of g(2) are magnified at large R. The fluctuation term appears to converge
towards a value close to 0, consistent with the low compressibility of the liquid metal, while the
information term converges towards a negative value. Note that the oscillations are nearly opposites,
so that their sum converges rapidly towards a negative value of s2.
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Figure 5. Two-body terms SFluct and SInfo and their sum from simulated pair correlation function g(2)

at T = 973 K.
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Adding the entropy reduction s2 to the single-particle entropy s1 yields values that are close
to experiment but lie slightly below, as is evident in Figure 1 (blue triangles). However, we know
that liquid metals have an electronic entropy (see Section 3.3), SElec, and when we include that term
(Figure 1, orange crosses) the values lie within 1 J/K/mol of the experimental values. Had we chosen
to add s2 − 1/2 + SElec to sIdeal instead of adding s2 + SElec to s1 the values would have been greater
by R/2 = 4.157 J/K/mol, resulting in poorer agreement (Figure 1 magenta + signs). In Section 3.4 we
explain why s1 + s2 + . . . is a more suitable starting point for an expansion in multiparticle correlation
functions than sIdeal + (s2 − 1/2) + . . . is.

3.3. Electronic Entropy

The electronic density of states D(E), which comes as a byproduct of first principles calculations,
determines the electronic entropy [22]. At low temperatures, all states below the Fermi energy EF are
filled and all states above are empty. At finite temperature, single electron excitations vacate states
below EF and occupy states above, resulting in the Fermi-Dirac occupation function

fT(E) =
1

exp [(E− µ)/kBT] + 1
. (26)

Fractional occupation probability creates an electronic contribution to the entropy,

SElec = −kB

∫
D(E)[ fT(E) ln fT(E) + (1− fT(E)) ln 1− fT(E)]. (27)

We apply this equation to representative configurations drawn from our liquid metal simulations,
with increased k-point density in order to converge the density of states.

At low temperatures, the electronic entropy approaches (π2/3)D(EF)k2
BT, which depends

only on the density of states at the Fermi level. However, at the high temperatures of liquid
metals the electronic entropy requires the full integral as given in Equation (27), rather than its
low temperature approximation.

3.4. Three- and Higher-Body Terms

We saw in Figure 5 that the integral in Equation (21) converges slowly to the dimensionless
compressibility γ which is a positive but very small value. Accordingly, the same must be true for the
integral of the three-body fluctuation term, Equation (24), and all higher-body terms as well. Thus all
fluctuation terms are essentially negligible contributions to the entropy at the temperatures considered
here. This observation must break down at sufficiently high temperatures, because in the limit of
very high temperature all correlation functions approach 1, so that all integrals vanish. As noted
by Baranyai and Evans [11], s2 → 1/2, s3 → 1/6, s4 → 1/12 and s3 + s4 + · · · → 1. This limit only
holds at extreme high temperatures and low densities, however, the small shortfall in s1 + s2 + SElec at
T = 2473 K could reflect a need to include a small fluctuation contribution due to the many-body terms
S(n)

Fluct at high temperatures.

We still need to discuss the three-body information term, S(3)
Info (Equation (17)). Previous

studies have discussed this term for model Lennard-Jones and hard-sphere fluids [23,24]. This term
vanishes within the Kirkwood superposition approximation, δg(3) = 1, and as seen in Figure 4 this
approximation is quite accurate even at T = 973 K. Presumably the nearly free electron character of
aluminum, which causes its interactions to be well described by a nearly hard-sphere pair potential [25],
leads to the weak form of δg(3). The deviations of δg(3) from 1 are oscillatory, both in radial dependence
as seen in Figure 4, and in angle as shown in Figure 6. We lack sufficient resolution in g(3) to evaluate
the complete integral, however, integrating over r at fixed angle the terms are of magnitude 0.1 or less,
and they reverse sign as a function of angle, leading to further cancellation.
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4. Discussion

We find that the entropy of liquid aluminum is described rather accurately using the first two
terms in an expansion of the entropy in multiparticle correlations. We show in particular that it
is advantageous to start the series with s1 rather than sIdeal, and in compensation to include the
terms 1/2, 1/6, . . . within s(2)Fluct, s(3)Fluct, . . . , respectively, because each of these terms then becomes

of the order of the small dimensionless compressibility γ. The remaining terms, S(n)
Info, each have

a simple information-theoretic interpretation, with s1 being the information to specify individual
particle positions with resolution Λ3, S(2)

Info = −I[g(2)] being the mutual information content of the pair
correlation function, and the corresponding higher order terms reflecting the additional information
contained in g(n) that is not already present in the lower order terms.

In terms of accuracy, obtaining an accurate density is important. The difference between densities
predicted at different system sizes N can shift the value of s1 by about 0.5 J/K/mol, with greater
density reducing s1. More significant is the impact of density on s2, with the same difference in density
increasing the mutual information I[g(2)] by up to 6 J/K/mol. Both of these potential sources of error
substantially exceed the truncation error due to neglect of multiparticle correlations, a finding that may
hold generally for nearly-free-electron metals, while transition metals with angle-dependent forces
may require additional terms.
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