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Abstract: Characterizing and modeling processes at the sun and space plasma in our solar system
are difficult because the underlying physics is often complex, nonlinear, and not well understood.
The drivers of a system are often nonlinearly correlated with one another, which makes it a challenge
to understand the relative effects caused by each driver. However, entropy-based information theory
can be a valuable tool that can be used to determine the information flow among various parameters,
causalities, untangle the drivers, and provide observational constraints that can help guide the
development of the theories and physics-based models. We review two examples of the applications
of the information theoretic tools at the Sun and near-Earth space environment. In the first example,
the solar wind drivers of radiation belt electrons are investigated using mutual information (MI),
conditional mutual information (CMI), and transfer entropy (TE). As previously reported, radiation
belt electron flux (Je) is anticorrelated with solar wind density (nsw) with a lag of 1 day. However,
this lag time and anticorrelation can be attributed mainly to the Je(t + 2 days) correlation with solar
wind velocity (Vsw)(t) and nsw(t + 1 day) anticorrelation with Vsw(t). Analyses of solar wind driving of
the magnetosphere need to consider the large lag times, up to 3 days, in the (Vsw, nsw) anticorrelation.
Using CMI to remove the effects of Vsw, the response of Je to nsw is 30% smaller and has a lag time
<24 h, suggesting that the loss mechanism due to nsw or solar wind dynamic pressure has to start
operating in <24 h. Nonstationarity in the system dynamics is investigated using windowed TE.
The triangle distribution in Je(t + 2 days) vs. Vsw(t) can be better understood with TE. In the second
example, the previously identified causal parameters of the solar cycle in the Babcock–Leighton type
model such as the solar polar field, meridional flow, polar faculae (proxy for polar field), and flux
emergence are investigated using TE. The transfer of information from the polar field to the sunspot
number (SSN) peaks at lag times of 3–4 years. Both the flux emergence and the meridional flow
contribute to the polar field, but at different time scales. The polar fields from at least the last 3 cycles
contain information about SSN.

Keywords: information theory; radiation belts; solar dynamo; mutual information; conditional mutual
information; transfer entropy; solar cycle; sunspot number; solar wind drivers; geosynchronous orbit
electron flux

1. Introduction

For many complex systems, modeling can be physically or computationally difficult. The coupled
solar wind–magnetosphere system is nonlinear and complex. Successful predictions of phenomena
such as magnetic storms or substorms have remained notoriously elusive, despite numerous attempts
over several decades. It has been known for over a century that the Sun has cool regions of high
magnetic flux density that known as sunspots. The number of sunspots exhibits an 11-year cycle,
but predicting the sunspot number (SSN) has been largely unsuccessful. The dynamo that generates the
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sunspots is complex and nonlinear. There have been significant advances in physics-based modeling
of solar, magnetospheric, and ionospheric processes, but the global computations are beyond present
and/or near future computational capabilities without appropriate approximations. Empirical models
that employ intuition assume a priori a dynamical framework that may or may not apply to the system.
Moreover, care must be taken because it may be possible to fit the data by choosing enough free
parameters at the expense of losing physical understanding or overfitting.

Dependency is a key discriminating statistic that is commonly used to understand how systems
operate. The standard tool used to identify dependency is cross-correlation. Considering two variables,
x and y, the correlation analysis essentially tries to fit the data to a 2D Gaussian cloud, where the
nature of the correlation is determined by the slope and the strength of correlation is determined
by the width of the cloud perpendicular to the slope. The correlational analyses are useful, fast,
and simple. However, they cannot describe nonlinear relationships and usually cannot be used to
establish causalities.

The entropy-based information theory can help identify nonlinearities in the system, information
transfer between input and output parameters, and the lag response times. This nonparametric,
statistics-based method is not constrained by the assumption of an underlying dynamics—rather
the underlying (physics-based) dynamics is discovered by the approach and then ultimately utilized
to improve predictions. Moreover, it can help untangle the input parameters that are correlated or
anti-correlated with each other. It can also help modelers select input parameters and determine
prediction horizon. The latter refers to how far ahead can one predict a variable. Hence, it can be
a useful tool to study many complex systems. This approach should be considered complimentary to
correlational analyses and to physics-based and empirical modeling approaches.

In the present paper, we review our recent work applying information theory to two complex
systems: (1) solar wind–radiation belt system and (2) solar dynamo. The information theoretic tools
that we use are mutual information [1,2], conditional mutual information [3], and transfer entropy [4].

The rest of paper is organized as follows. Section 2 describes the datasets and Section 3 summarizes
briefly the information theoretic tools. Section 4 describes the application to solar wind–radiation belt
system. Section 5 describes the solar dynamo. Section 6 presents the concluding remarks.

2. Data Set

The solar wind–radiation belt system study uses daily averages of MeV electron fluxes obtained
from Energetic Sensor for Particles (ESP) [5] and Synchronous Orbit Particle Analyzer (SOPA) [6] on
board of all seven Los Alamos National Laboratory (LANL) geosynchronous satellites from 22 Sep
1989 to 31 Dec 2009. The data and format description can be found at ftp://ftop.agu.org/apend/ja/
2010ja015735. We only examine the fluxes of electrons with energy range of 1.8–3.5 MeVs. A detailed
description of the dataset and its processing are given in [7]. The daily and hourly averaged solar
wind data 1989–2009 come from OMNI dataset provided by NASA (http://omniweb.gsfc.nasa.gov/).
The LANL and solar wind data are merged. The LANL dataset has 7187 data points (days of data),
out of which, 6438 data points have simultaneous solar wind observations.

The solar dynamo study uses multiple datasets of the Sun and Earth. The SSN record 1749–2016
is provided by Sunspot Index and Long-term Solar Observations (SILSO) website at http://www.sidc.
be/silso/datafiles. The meridional flow dataset 1986–2012 is derived from Mount Wilson Observatory
(MWO) dopplergrams and magnetograms as described in [8] and is available at http://www.astro.
ucla.edu/~{}ulrich/. The polar faculae dataset 1906–2014 is based on the consolidated data from MWO,
Wilcox Solar Observatory (WSO), and Solar and Heliospheric Observatory (SOHO) Michelson Doppler
Imager (MDI) [9]. This dataset is available from Solar Polar Fields Dataverse at https://dataverse.
harvard.edu/dataverse/solardynamo. The polar field dataset 1967–2015 is derived from MWO and
WSO photospheric field maps with the line of sight profile saturation corrections [10,11] (acquired
from Yi-Ming Wang). The record of the aa index (1868–2010) is provided by the National Oceanic and
Atmospheric Administration National Centers for Environmental Information (NOAA NCEI) website:

ftp://ftop.agu.org/apend/ja/2010ja015735
ftp://ftop.agu.org/apend/ja/2010ja015735
http://omniweb.gsfc.nasa.gov/
http://www.sidc.be/silso/datafiles
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http://www.astro.ucla.edu/~{}ulrich/
https://dataverse.harvard.edu/dataverse/solardynamo
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ftp://ftp.ngdc.noaa.gov/STP/GEOMAGNETIC_DATA/ and 1869–2015 from International Service of
Geomangetic Indices (ISGI) at http://sgi.unistra.fr/indices_aa.php. aa index is a geomagnetic activity
index [12]. All the data analysis is performed at monthly resolution.

3. Mutual Information, Conditional Mutual Information, and Transfer Entropy

Information theory has been applied to problems in magnetospheric, ionospheric, and solar
physics [13–26]. For example, mutual information and transfer entropy have been successfully
used to examine the causal relationships among solar wind, storms, and substorms in the Earth’s
magnetosphere [27,28]. Mutual information, conditional mutual information, and transfer entropy are
briefly described below, but they are reviewed in [17].

Mutual information (MI) [1,2,29] between two variables, x and y, compares the uncertainty
of measuring variables jointly with the uncertainty of measuring the two variables independently.
The uncertainty is measured by Shannon entropy. In order to construct the entropies, it is necessary to
obtain the probability distribution functions, which in this study are obtained from histograms of the
data based on discretization of the variables (i.e., bins). Suppose that two variables, x and y, are binned
so that they take on discrete values, x̂ and ŷ, where

x ∈ {x̂1, x̂2, · · · , x̂n} ≡ ℵ1; y ∈ {ŷ1, ŷ2, · · · , ŷn} ≡ ℵ2 (1)

The variables may be thought of as letters in alphabets ℵ1 and ℵ2, which have n and m letters,
respectively. The extracted data can be considered as sequences of letters. The entropy associated with
each of the variables is defined as

H(x) = − ∑
ℵ1

p(x̂) log p(x̂) ; H(y) = − ∑
ℵ2

p(ŷ) log p(ŷ) (2)

where p(x̂) is the probability of finding the letter x̂ in the set of x-data and p(ŷ) is the probability of
finding letter ŷ in the set of y-data. To examine the relationship between the variables, we extract the
word combinations (x̂, ŷ) from the dataset. The joint entropy is defined by

H(x, y) = − ∑
ℵ1ℵ2

p(x̂, ŷ) log p(x̂, ŷ) (3)

where p(x̂, ŷ) is the probability of finding the word combination (x̂, ŷ) in the set of (x, y) data.
The mutual information [1,2,29] is then defined as

MI (x, y) = H (x) + H (y) − H (x, y) (4)

While MI is useful to identify nonlinear dependence between two variables, it is often useful to
consider conditional dependency with respect to a conditioner variable z that takes on discrete values,
ẑ ∈ { z1, z2, . . . zn} ≡ ℵ3. The conditional mutual information [3]

CMI(x, y|z) = ∑
ℵ1ℵ2ℵ3

p(x̂, ŷ, ẑ)log
p( x̂, ŷ | ẑ )

p( x̂ | ẑ ) p( ŷ | ẑ ) = H(x, z) + H(y, z)− H(x, y, z)− H(z) (5)

determines the mutual information between x and y given that z is known. In the case where z is
unrelated, CMI(x,y|z) = MI(x,y), but in the case that x or y is known based on z, then CMI(x,y|z) = 0.
CMI therefore provides a way to determine how much additional information is known given another
variable. CMI can be seen as a special case of the more general conditional redundancy that allows the
variable z to be a vector [30].

ftp://ftp.ngdc.noaa.gov/STP/GEOMAGNETIC_DATA/
http://sgi.unistra.fr/indices_aa.php
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A common method to establish causal relationships between two time series, e.g., [xt] and [yt],
is to use a time-shifted correlation function

r(τ) =
〈xt yt+τ〉 − 〈x〉 〈y〉√
〈x2〉 − 〈x2〉

√
〈y2〉 − 〈y2〉

(6)

where r = correlation coefficient and τ = lag time. The results of this type of analysis may not be
particularly clear when the correlation function has multiple peaks or there is not an obvious asymmetry.
Additionally, correlational analysis only detects linear correlations. If the feedback involves nonlinear
processes, its usefulness may be seriously limited.

Alternatively, time shifted mutual information, MI(x(t), y(t + τ)), can be used to detect causality in
nonlinear systems, but this too suffers from the same problems as time-shifted correlation when it has
multiple peaks and long range correlations.

A better choice for studying causality is the one-sided transfer entropy [4]

TEx→y(τ) = − ∑
ℵ1ℵ2

p(yt+τ , ypt, xt) log
(

p(yt+τ | ypt, xt)

p(yt+τ | ypt)

)
(7)

where ypt = [yt, yt−∆, · · · , yt−k∆], k + 1 = dimensionality of the system, and ∆= first minimum
in MI[y(t), y(t − τ)]. Transfer entropy (TE) can be considered as a specialized case of conditional
mutual information:

TEx→y(τ) = CMI(y(t + τ), x(t)
∣∣yp(t)) (8)

where yp(t) = [y(t), y(t− ∆), · · · , y(t− k∆)]. The transfer entropy can be considered as a conditional
mutual information that detects how much average information is contained in an input, x, about the
next state of the system, y, that is not contained in the past history, yp, of the system [31]. In the absence
of information flow from x to y, TE(x→ y) vanishes. Also, unlike correlational analysis and mutual
information, transfer entropy is directional, TE(x→ y) 6= TE(y→ x). The transfer entropy accounts for
static internal correlations, which can be used to determine whether x and y are driven by a common
driver or whether x drives y or y drives x.

4. The Solar Wind–Radiation Belt System

The Earth’s radiation belts refer to a region in space that is populated by trapped energetic particles,
electrons and ions. Typically, there are two radiation belts: inner belt and outer belt, but sometimes
a third belt appears between the two belts [32]. The inner belt is located at equatorial distance
approximately between 1.2 and 3 RE (RE = radius of the Earth ~6371 km) from the center of the
Earth and is populated by electrons having energies of hundreds of keVs and ions having hundreds
of MeVs. The outer belt is located at equatorial distance approximately between 4 and 8 RE and is
mostly populated by electrons having energies ranging from a few hundred keVs to tens of MeVs. The
present paper deals only with the outer radiation belt electron population.

These radiation belt electrons are often referred to as “killer electrons” because they can cause
serious damage to satellites. For example, the radiation belt electrons with energies of a few MeVs
or higher can penetrate deep into spacecraft components, while those with energies lower than one
MeV can lodge on the surface of the spacecraft bodies, leading to devastating electrical discharges.
Radiation belts are quite relevant to the studies of space weather.

The existence of radiation belt MeV electrons is usually explained by some acceleration
mechanisms that can accelerate electrons from a few keVs to tens of MeVs. There have been
several acceleration mechanisms proposed, but most studies generally suggest either local or global
acceleration. In the local acceleration, the storm and substorm injects plasma sheet plasma into the
inner-magnetosphere and accelerates low energy (e.g., a few keV) electrons to a few hundred keVs.
Once in the inner-magnetosphere, electrons interact with locally grown ultra low frequency (ULF)
waves [33–38], very low frequency (VLF) waves [39–43], or magnetosonic waves [44,45], which can
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energize electrons to MeV energy range. Solar wind velocity (Vsw) may be tied to the local acceleration
mechanism through substorm particle injections [46–50].

The global acceleration mechanism also invokes ULF waves for electron acceleration, but here
the ULF waves are generated globally by Kelvin-Helmholtz instability (KHI) along the magnetopause
flanks due to large velocity shear between solar wind and the magnetospheric plasma [51–53]. Indeed,
studies have shown that Vsw is a dominant, if not the most dominant, driver of relativistic electron
fluxes at geosynchronous orbit (6.6 RE) [7,49,54–58].

Figure 1 plots the geosynchronous radiation belt MeV electron flux (Je) vs. Vsw where Je is the
relativisic electron flux. The figure shows log Je(t + τ) vs. Vsw(t) for τ = 0, 1, 2, and 7 days. A few things
are worth noting. First, the solar wind–radiation belt system is nonlinear and hence the standard linear
correlational analysis would be inadequate. Second, the scatter plots in panel a–c look like a triangle,
which is discussed in Section 4.2 using information theory. Third, the radiation belt Je is correlated
with Vsw. The best correlation can be found with Je with a two-day lag, but it is hard to see this in the
scatter plot in Figure 1.
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Figure 1. Scatter plots of log Je(t + τ) vs. Vsw(t) for τ = 0, 1, 2, and 7 days in panels (a), (b), (c),
and (d), respectively. The data points are overlain with density contours showing the nonlinear trends.
The panels show that Je has dependence on Vsw for τ = 0, 1, and 2 days and the dependence is strongest
for τ = 2 days. (d) At large τ, e.g., τ = 7 day, Je dependence on Vsw is very weak. This figure is essentially
the same as Figure 9 in [7], except that no density contours are drawn and Figure 1d plots τ = 7 days
instead of τ = 3 days. (from [23]).

In order to see the best response lag time of the radiation belt Je to Vsw, Figure 2a shows the
plot of the corr(Je(t + τ), Vsw(t)). Note that herein, unless otherwise stated, all linear and nonlinear
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analyses performed with Je uses log Je values. The figure shows that the correlation coefficient peaks at
τ = 2 day with r = 0.63. There is a smaller peak at τ = 29 days (r = 0.42), which can be attributed to
the 27-day synodic solar rotation. Because the large number of data points (n > 5772), the two peak
correlation coefficients are highly significant with p < 0.01 (the probability of two random variables
giving a correlation coefficient as large as r is <0.01). However, the linear correlational analysis may
be inadequate because the solar wind–radiation belt system is nonlinear (Figure 1). Hence, mutual
information and transfer entropy need to be calculated. Figure 2b shows MI(Je(t + τ), Vsw(t)) and
TE(Vsw → Je). The figure shows that information transfer from Vsw to Je peaks at τ = 2 days. Although
in this case, the linear correlation, MI, and TE peak at the same τ, in general this is not always the case
(as shown in the solar cycle analysis in Section 5).Entropy 2019, 21, 140 6 of 22 
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Figure 2b. TE(Vsw → Je) peaks at τmax = 2 days where the peak information transfer (itmax) = 0.30, signal 
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and significance = itmax/σ(noise). From the snr, itmax, and significance, we conclude that there is a 

Figure 2. (a) Correlation coefficient of [Je(t + τ), Vsw(t)]. (b) MI[Je(t + τ), Vsw(t)] (blue) and TE[Je(t +
τ), Vsw(t)] (yellow). The transfer of information from Vsw to Je [TE (Vsw → Je)] peaks at τmax = 2 days.
(c) Correlation coefficient of [Je(t + τ), nsw(t)]. (d) MI[Je(t + τ), nsw(t)] (blue) and TE[Je(t + τ), nsw(t)]
(yellow). The transfer of information from nsw to Je [TE (nsw→ Je)] peaks at τmax = 1 day. (e) Correlation
coefficient of [nsw(t + τ), Vsw(t)]. (f) MI[nsw(t + τ), Vsw(t)] (blue) and TE[nsw(t + τ), Vsw(t)] (yellow).
The solid and dashed green curves are the mean and 3σ from the mean of the noise. The transfer of
information from Vsw to nsw [TE (Vsw → nsw)] peaks at τmax = 1 day. (adapted from [23]).
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In order to get a measure of the significance of TE(Vsw→ Je), we calculate noise = TE[sur(Vsw)→ Je]
where sur(Vsw) is the surrogate data of Vsw, which is obtained by randomly permuting the order of the
time series array Vsw. The mean and standard deviation of the noise are calculated from an ensemble
of 100 random permutations of TE[sur(Vsw) → Je]. The mean noise and 3σ (standard deviation)
from the mean noise are plotted with solid and dashed green curves, respectively, in Figure 2b.
TE(Vsw → Je) peaks at τmax = 2 days where the peak information transfer (itmax) = 0.30, signal to
noise ratio (snr) = 5.7 and significance = 94σ where itmax = peak–mean noise, snr = peak/mean noise
and significance = itmax/σ(noise). From the snr, itmax, and significance, we conclude that there is
a significant transfer of information from Vsw to Je with a 2-day delay. Note that the linear correlation,
MI, and TE analyses are consistent with the previous studies [55–61].

In contrast to Vsw, which correlates with Je, solar wind density (nsw) anticorrelates with Je for
reasons that are not entirely clear [49,61]. An increase in nsw would increase solar wind dynamic
pressure (Pdyn), which, in turn, would push the magnetopause inward, leading to electron losses at the
high L shell [56]. Furthermore, the magnetopause compression would drive ULF waves [62–64] leading
to fast radial diffusion, which redistributes the losses to lower L shells, including at geosynchronous
orbit [49,65,66]. Ukhorskiy et al. [67] used a test particle simulation to demonstrate this scenario, which
is known as magnetopause shadowing.

Figure 2c shows that the anticorrelation between nsw and Je minimizes at τ = 1 day (r = −0.49).
Figure 2d shows that MI(Je, nsw) and TE(nsw → Je) peak also at τ = 1 day (itmax = 0.13, snr = 4.4 and
significance = 42σ). This result is consistent with [60], which finds that Je has the strongest dependence
on nsw with a lag of 1 day.

However, Vsw and nsw anti-correlate with each other [68]. Figure 2e shows that the anticorrelation
between Vsw and nsw minimizes at τ = 1 day (r =−0.56). Figure 2f shows that MI(nsw(t + τ), Vsw(t)) and
TE(Vsw → nsw) peak also at τ = 1 day (itmax = 0.20, snr = 7.4 and significance = 95σ). There is a smaller
peak at τ = 28 days, which can be attributed to the 27 day synodic solar rotation.

The anticorrelation of Vsw and nsw with a lag of 1 day complicates the interpretation of the driving
of the Je. If Vsw is causally correlated with Je with a lag of 2 days, the anticorrelation between Je and
nsw with a lag of 1 day could simply just be coincidence. Conversely, if nsw is causally anticorrelated
with Je with a lag of 1 day, the correlation between Vsw and Je could simply just be coincidence. On the
other hand, from Figure 2, we cannot rule out the possibility that both Vsw and nsw can exert influence
on the Je. If that is the case, how can we untangle the effects of Vsw from nsw and which of these two
parameters exert more influence on Je?

4.1. Untangling the Drivers of the Radiation Belt Je

In an attempt to address the above questions, we use conditional mutual information, CMI,
to untangle the effects of Vsw from nsw and vice versa. To calculate how much information flows
from nsw to Je, given Vsw, we calculate CMI[Je(t + τ), nsw(t)|Vsw(t)], which is plotted as blue curve
in Figure 3a. Using a similar approach as for TE, we determine the noise level of the surrogates:
CMI[Je(t + τ), sur[nsw(t)] | Vsw(t)]. The mean and σ of the noise are calculated in the same manner as TE
and used to determine the significance of the results. The mean noise and 3σ are plotted as solid and
dashed green curves respectively. Figure 3a shows that CMI[Je(t + τ), nsw(t) | Vsw(t)] peaks at τmax = 0
day with itmax = 0.091 and snr = 3.2. The τmax = 0 day suggests that Je response lag time to nsw is less
than 24 h. However, Figure 3a shows that the peak is rather broad, suggesting that the Je response is still
significant at τ = 1 day.

Earlier, we establish that Je(t + 2 days) correlates with Vsw(t), Je(t + 1 day) anticorrelates with nsw(t),
but nsw(t + 1 day) anticorrelates with Vsw(t) (Figure 2). In Figure 2d, some of the information in the
MI(Je(t + τ), nsw(t)) at τ = 1–2 days actually come from Vsw. MI(Je(t + τ), Vsw(t)) peaks at τ = 2–3 days.
Because Vsw anticorrelates with nsw at τ = 1 day, the information in MI(Je(t + τ), Vsw(t)) at τ = 2–3 days
would appear in MI(Je(t + τ), nsw(t)) at τ = 1–2 days. Subtracting this information from MI(Je(t + τ),
nsw(t)) at τ = 1–2 days would allow the MI(Je(t + τ), nsw(t)) at τ = 0 to become the tallest peak, as shown
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in Figure 3a. MI(Je(t + τ), nsw(t)) has itmax = 0.21, but removing the effects of Vsw, the itmax drops ~57%
to 0.091 (itmax of (CMI[Je(t + 0 day), nsw(t)| Vsw(t)] is 0.091).Entropy 2019, 21, 140 8 of 22 
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Figure 3. Blue curve showing (a) CMI[Je(t + τ), nsw(t) | Vsw(t)], and (b) CMI[Je(t + τ), Vsw(t) | nsw(t)].
The solid and dashed green curves are the mean and 3σ from the mean of the noise. (a) Unlike
MI(Je, nsw), which peaks at τmax = 1 day, CMI[Je(t + τ), nsw(t) | Vsw(t)] peaks at τmax = 0 day
(itmax = 0.091). The smaller τmax occurs because CMI removes the effect of Vsw on Je (see text). (b) The
peak in CMI[Je(t + τ), Vsw(t) | nsw(t)] (itmax = 0.25) is broader than that of MI(Je, Vsw) in Figure 2b
because CMI removes the effect of nsw, which anticorrelates with Je. Vsw transfers about 2.7 times more
information to Je than nsw. (from [23]).

Conversely, some of the effects attributed to Vsw can be attributed to nsw, but the effect of nsw is
smaller. To see this, we calculate CMI[Je(t + τ), Vsw(t)|nsw(t)], which is plotted in Figure 3b as solid
blue curve. The blue curve peaks at τ = 2 days with itmax = 0.25 which is about 2.7 times larger than
the itmax of 0.091 for CMI[Je(t + τ), nsw(t)| Vsw(t)]. Thus, Vsw transfers more information to Je than nsw

does. MI(Je(t + τ), Vsw(t)) has itmax = 0.32, but removing the effects of nsw, the itmax drops only ~22% to
0.25 (itmax of CMI[Je(t + 2 days), Vsw(t)| nsw(t)] = 0.25).

The reason for the broader peak in Figure 3b is that there is a significant information transfer
from nsw to Je at τ = 0–1 day, but it falls off rapidly at larger τ. Because the anticorrelation between
Vsw and nsw has a one day lag, removing the effects of nsw would lower MI(Je(t + τ), Vsw(t)) at τ = 1–2
days. So, it for MI(Je(t + τ), Vsw(t)) at τ = 1, 2, and 3 are 0.25, 0.32, and 0.23, respectively, whereas the
corresponding values for CMI[Je(t + τ), Vsw(t)| nsw(t)] are 0.14, 0.25, and 0.24, respectively. Note that,
at τ = 1 and 2 there are reductions in information while at τ = 3, the information is more or less the
same (the difference is within one σ [~0.01]), leading to a broader peak in the CMI[Je(t + τ), Vsw(t)|
nsw(t)] curve in Figure 3b than that in the MI(Je, Vsw) curve in Figure 2d.

The above analysis suggests that Vsw is the major driver of Je and shows the Je response time lag to
Vsw and nsw. The process to accelerate the electrons to MeV energy range takes 2–3 days, as previously
suggested [7,49]. Moreover, based on information transfer from nsw to Je, any mechanism for nsw

anticorrelation with Je has to operate or start operating within 24 hr.
Next, we investigate whether other solar wind parameters also contribute to Je. We calculate the

information transfer from southward Interplanetary Magnetic Field (IMF) Bz, northward IMF Bz,
IMF By, IMF Bx, |IMF B|, Pdyn, σ(IMF B), and solar wind electric field (Esw) to Je, given Vsw.
The northward (southward) IMF Bz is calculated from the daily average of the hourly IMF Bz when
IMF Bz > 0 (IMF Bz < 0). The results are tabulated in Table 1, which ranks various solar wind parameters
based on the itmax. Thus, the ranking gives the importance of each solar wind parameter based on the
information transfer to Je. Table 1 also lists τmax which signifies the lag time when information transfer
to Je maximizes.
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Table 1. Ranking of the solar wind parameters based on information transfer to geosynchronous Mev
electron flux (Je) at τmax, where τmax is the lag time when the information transfer peaks. Parameters
2–9 are calculated from CMI[Je(t + τ), x(t) | Vsw(t)] whereas parameter 1 is calculated from CMI[Je(t + τ),
Vsw(t) | nsw(t)], where x = parameter 2–9. The peak information transfer (itmax) = peak – mean noise,
the signal to noise ratio = peak/noise, and significance = itmax/σ(noise). Noise is calculated from
surrogate data (see Section 4). The prediction horizon gives the lag time when there is no information
transfer from the solar wind parameter to Je. Note that nsw and Pdyn are both ranked at number 3
because they have similar itmax (the effect of Vsw has been removed). * excluding the effect of solar
rotation. (from [23].)

Rank Solar Wind
Parameters

Peak Information
Transfer (itmax)

Signal to
Noise Ratio

at τmax

Significance
at τmax (σ) τmax (Days)

Prediction
Horizon
(Days)

1 Vsw 0.25 6.6 94 2 10 *

2 IMF |B| 0.12 3.9 48 0 2
3 Pdyn 0.092 3.4 35 0 2
3 nsw 0.091 3.2 34 0 2
4 σ(IMF B) 0.075 3.9 48 0 2
5 IMF Bz < 0 0.064 2.7 26 0 2
6 Esw 0.056 2.9 22 1 5
7 IMF By 0.052 2.3 20 0 2
8 IMF Bz > 0 0.048 3.1 22 0 2
9 IMF Bx 0.044 2.2 19 0 2

Note that the ranking in Table 1 is obtained with daily resolution data. It is possible that the
ranking of some parameters may change if the data are analyzed at higher time resolution. For example,
some studies showed that southward IMF Bz can influence Je [69–71] but southward IMF Bz is only
ranked number 5 in Table 1. IMF fluctuates with periods of northward and southward IMF at minutes
or tens of minutes timescale. Thus, the low ranking of the southward IMF Bz most likely result from
the fluctuations of IMF Bz within one day period [7,56,60]. Consistent with our result, Li et al. [56]
found IMF Bz is poorly correlated with Je at daily resolution.

In Figure 3b, the CMI[Je(t + τ), Vsw(t)| nsw(t)] curve shows that Vsw has little influence on
the geosynchronous MeV electrons after a delay of 7–10 days. Thus, using Vsw, the prediction or
information horizon for Je is about 7–10 days. Figure 3a shows that using nsw, the prediction horizon
for Je is about 2 days.

In applying our information theoretical tools, the number of bins (nb) need to be chosen
appropriately. Sturges [72] proposes that for a normal distribution, optimal nb = log2(n) + 1 and bin
width (w) = range/nb, where n = number of points in the dataset, range = maximum value–minimum
value of the points. In practice, there is usually a range of nb that would work. Using Sturges [72]
formula, with roughly 6400 points, nb ~13.6. For the present study, we find that nb = 10 to 15 would
work well. Having too few bins would lump too many points into the same bin, leading to loss of
information. Conversely, having too many bins would leave many bins with 0 or a low number of
points, which also leads to loss of information. For the present study, we choose nb = 10.

4.2. The Triangle Distribution

Reeves et al. [7] was the first to note the right triangle distribution exhibited in Figure 1 panels
a–c (the contours in Figure 1d qualitatively look more like parallelograms than right triangles).
The left-hand side of the triangle forms because Vsw rarely goes below 300 km s−1. The hypotenuse
of the triangle suggests that the lower limit of Je more or less increases with Vsw. The top side of
the triangle suggests that Je saturates, which can be attributed to local instabilities [73]. As noted by
Reeves et al. [7], the most interesting and perhaps mystifying aspect of the triangle distribution is that
high Je is observed for all Vsw conditions and the variability of Je at lower Vsw is much larger than that
at higher Vsw.
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We investigate the effect of nsw on the triangle distribution. We obtain nsw(t) for each point in the
log Je(t + 2 days) vs. Vsw(t) scatter plot in Figure 1c. The nsw in the figure are then binned in 0.3 counts
(cm2 s se keV)−1 × 30 km s−1 bins. Figure 4a shows the mean nsw of each bin. Bins with fewer than 15
points are not displayed. The most prominent trend in Figure 4a is a strong density gradient in the x
direction because nsw anticorrelates with Vsw.
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Figure 4. Points in Je(t + 2 days) vs. Vsw(t) distribution in Figure 1c are binned in 0.3 counts
(cm2 s sr keV)−1 × 30 km s−1 bins. Each point is assigned its nsw(t) and nsw(t + 2 days) values.
The latter has no time shift with respect to Je such that information transfer from nsw to Je maximizes.
(a) shows the mean nsw(t) while (b) shows the mean nsw(t + 2 days) of each bin. In (a), the density
gradient is mainly in the x direction due to the anticorrelation between nsw and Vsw. However, in (b),
there are density gradients in x and y direction. The latter can be attributed to Pdyn and magnetopause
shadowing. (from [23].)

However, our analysis and Figure 3a suggest that the maximum transfer of information from
nsw(t) to Je(t + τ) occurs at τ = 0 day (<24 hr). Hence, instead of assigning nsw(t) to each point in the
Je(t + 2 days) vs. Vsw(t) plot, we assign nsw(t + 2 days) so that Je is not time shifted with respect to nsw.
We repeat the same procedure done for Figure 4a and the result is shown in Figure 4b. Now, there are
density gradients in both x and y directions. As in Figure 4a, the density gradient in the x direction is
due to the anticorrelation of nsw with Vsw. Figure 4b clearly shows that for Vsw < 500 km s−1, larger
nsw hence larger Pdyn can be associated with lower Je and vice versa. This density gradient in the y
direction may be attributed to the magnetopause shadowing effect, which rapidly depletes radiation
belt fluxes when solar wind pressure is increases. Thus, the triangle distribution can be explained by
the correlation of Vsw(t) and Je(t + 2 days) and the anticorrelation of nsw(t) and Je(t + 0 day).

5. The Solar Cycle

The surface of the Sun has dark regions or spots, commonly called sunspots. The number of
sunspots vary cyclically with a period of 11 years, known as solar cycle. Although the cyclical nature of
sunspots has been known for over 150 years [74], it is not clear what causes the solar cycle. Predicting
SSN remains a challenge [75].

Most solar cycle models today are based on the Babcock–Leighton model [76–78]. This is depicted
in a diagram in Figure 5 for one hemisphere (see review in [79]). Near the solar minimum, the magnetic
field, which has a poloidal configuration, is advected downward to the base of the convection zone,
possibly as far down as the tachocline, by the meridional flow from P1 to P2 in Figure 5. From P2,
the poloidal field carried by the meridional flow to low latitude (T1). As it does, the latitudinal
differential rotation shears the magnetic field, which twists and wraps the field line around the sun
azimuthally, leading to the growth of the toroidal field at low latitude at T1. The twisting and turning
motions create regions of strong magnetic field, which choke off the plasma and energy flow into the
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regions and which become buoyant. The buoyancy force pushes these strong magnetic field regions to
the surface (photosphere), where they appear at T2. The Coriolis force acting on the rising toroidal
field causes the emerging fluxes to appear as pairs of sunspots with a slight tilt such that the following
spot of the pair tends to be further from the equator than the preceding spot (Joy’s law), leading to the
growth of the poloidal field. As the sunspots decay, the equatorward spot moves equatorward and
the poleward spot moves poleward. The equatorward field cancels the one with the opposite polarity
from the opposite hemisphere. The meridional flow carries the poleward poloidal field, which has the
opposite polarity than that at P1, and which destroys some of the old poloidal fields at P1. This process
continues until a new poloidal field with the opposite polarity is established, which commences a new
solar cycle. An example of a mathematical formulation of Babcock–Leighton type model can be seen
in a flux transport dynamo model [80].
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Figure 5. Babcock–Leighton type solar cycle dynamo model. The diagram shows a meridional slice of
the sun. The meridional flow is plotted in green with arrows indicating the flow direction. Poloidal
field at P1 is advected down to P2 in the convective zone by the meridional flow. The meridional flow
advects the field from P2 to T1, while the differential rotation shears the field, converting it to toroidal
field. The buoyancy force lifts the toroidal field from T1 to the photosphere at T2, producing sunspots.
The sunspots decay into poloidal field, which is carried by the meridional flow to the T1 and the cycle
starts over again. (from [25]).

From the description above, it is clear that the meridional flow, which acts as a conveyor belt that
circulates the magnetic fluxes, plays an important role in the solar cycle [81–83]. Another important
parameter is the polar field. Some flux transport dynamo models input the strength of the polar field
at solar minimum, which in turn, determines the amplitude of the next solar cycle [82,84,85]. The flux
emergence, which can be proxied by SSN, is yet another important parameter as it can affect and be
affected by the polar field and meridional flow [82].

The information transfer from the polar field, aa index, polar faculae, and meridional flow to SSN
and vice versa are investigated. These parameters are plotted in Figure 6. Because the meridional flow
circulates the magnetic fluxes continuously, these parameters, which are magnetic in nature, can affect
each other bidirectionally, which poses a challenge. That is, a parameter x can affect y, but y can also
affect x some time later. This situation is similar to the well-known predator–prey dynamics [86], where
each population affects the other in a causal manner. However, in a situation with multiple species the
causal relationship between any two species may have a directionality if one species has a stronger
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effect on the other species. These bidirectionalities need to be untangled or taken into account with
transfer entropy [4].Entropy 2019, 21, 140 12 of 22 
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are plotted in red curves whereas the SSN is plotted in the blue curves. The SSN has been scaled by a 
different factor in each figure as indicated by the right y-axis label in order to enhance viewing. 
(adapted from [25]). 
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photosphere, and finally back to the polar region (Figure 5). Therefore, there is no beginning or end 
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5.1. aa Index and SSN 

In the study of the Earth’s magnetosphere, it has been known for decades that the amount of 
active regions at the Sun, proxied by SSN, can cause variations in geomagnetic activity, e.g., the aa 
index. For example, Coronal Mass Ejections (CMEs) and solar wind high speed streams that occur 
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Figure 6. Solar cycle variations of (a) aa index; (b) the solar polar faculae calibrated to SOHO MDI
polar magnetic flux [9]; (c) the solar polar field strength; (d) the meridional flow. These parameters
are plotted in red curves whereas the SSN is plotted in the blue curves. The SSN has been scaled
by a different factor in each figure as indicated by the right y-axis label in order to enhance viewing.
(adapted from [25]).

Our methodology does not a priori assume the relationships between any of the parameters.
For example, rather than performing superposed epoch analysis with solar minimum as t = 0, which
assumes implicitly or explicitly that solar minimum is the start of the cycle, as done in some studies,
we treat the data simply as long time series. In our approach, the solar cycle is a sequence of events
(which has occurred for centuries or at least since the data became available) where the meridional
flow acting like a perpetual conveyor belt that circulates the magnetic fluxes continuously from the
polar region in the photosphere, to low latitude in the convection zone, to the low latitude photosphere,
and finally back to the polar region (Figure 5). Therefore, there is no beginning or end to the solar
cycle and our results can be viewed as pertaining to the average dynamics of the Sun during the entire
period for which the data are analyzed. We are cognizant that the behavior of an individual cycle may
vary from one cycle to the next. Hence, care needs to be exercised when using our results to interpret
the dynamics of a particular solar cycle. Our approach naturally lends itself to the investigations
of the long-term effects (more than a few or several cycles) of one parameter on another, as done in
Section 5.4.
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5.1. aa Index and SSN

In the study of the Earth’s magnetosphere, it has been known for decades that the amount of active
regions at the Sun, proxied by SSN, can cause variations in geomagnetic activity, e.g., the aa index. For
example, Coronal Mass Ejections (CMEs) and solar wind high speed streams that occur more frequently
during solar maximum and in the declining phase of solar maximum, respectively, can increase the
aa index. However, it was suggested that the low level geomagnetic activity is correlated with the
strength of interplanetary magnetic field (IMF), which is related to the solar polar field [87–89]. In turn,
the polar field can affect the sunspot productions sometime later. Ohl [90] and Hathaway et al. [91]
showed that the aa index at solar minima is a good predictor of the maximum SSN of the next cycle.
Wang and Sheeley [92] reported that when averaged over timescales longer than a month, the aa index
is highly correlated with the radial IMF (Br), which is proportional to the Sun’s total open flux, which
in turn, is correlated with the Sun’s dipole field strength. For these reasons, the aa index may contain
(albeit indirect) some information about the polar field, which facilitates information flow from the aa
index to SSN. This scenario is investigated with information theory.

The time shifted correlation between the aa index and SSN is calculated. corr[aa(t), SSN(t + τ]
(blue curve) and corr[SSN(t), aa(t + τ)] (red curve) are plotted in Figure 7a. The red curve shows that
aa(t + τ) is correlated with SSN(t) with a peak correlation at τ ~30–40 months [correlation coefficient
(r) = 0.43] and is anticorrelated with SSN(t) a half solar cycle later. The peak |r| in both the blue
and red curves are significant (p < 0.01). Because both the SSN and aa curves are cyclical and attain
approximately the same maximum |r| in Figure 7a, it is virtually impossible to discern from the figure
whether the aa index is causally related to the SSN or the other way around.
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peak |corr[SSN(t), aa index(t + τ)]|. (b) TE(aa index→ SSN) is plotted in blue and TE(SSN→ aa index)
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transferred from the SSN to aa index than the other way around. Such information cannot be discerned
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noise (see text). The data are for the period 1967–2014. (from [25]).

However, the transfer entropy conveys a totally different picture. The transfer entropy from aa
to SSN [TE(aa→ SSN)] (blue curve) and from SSN to aa [TE(SSN→ aa)] (red curve) is presented in
Figure 7b. The figure shows that indeed there is a bidirectional flow of information from the aa index
to SSN and vice versa. As would be expected, Figure 7b shows that there is more information transfer
from the SSN to aa index than the other way around, which the standard correlational analysis cannot
establish (Figure 7a). Although the transfer of information from the SSN to aa index has a peak at τ ~
30–40 months, it has larger peaks at τ > 70 months.
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The aa index carries information about the Earth’s magnetospheric dynamics, e.g., [12,21,22].
However, the aa index also carries some information about its drivers such as the IMF, which is related
to the polar field. However, as the blue curve in Figure 7b suggests, only a small amount of information
about the polar field is embedded within the aa index. The aa index would not be a good proxy for the
polar field.

TE(aa → SSN) has peak information transfer (itmax) = 0.20, signal to noise ratio (snr) = 4.3,
and significance = 14σ. The bidirectional flow of information between two solar cycle parameters is
typical in solar parameters discussed herein. The aa index–SSN example presented here illustrates the
power of our methodology.

5.2. Polar Field and SSN

The same analysis done in Section 5.1 is repeated with the polar field and SSN data 1967–2014.
corr[polar field(t), SSN(t + τ) (blue curve) and corr[SSN(t), polar field(t + τ)] (red curve) are presented
in Figure 8a. The correlation coefficients for both curves peak at τ ~60–70 months (half solar cycle
period). This result may be consistent with the Babcock–Leighton model in which the polar field at
solar minimum determines the SSN at the next maximum. However, Figure 8b shows that TE(polar
field → SSN) peaks at τ ~30–40 months (blue curve). Note that TE(polar field → SSN) calculates
the information transfer from the polar field to SSN, given that the present and past values of the
SSN are known, which differs from the linear correlation (Figure 8a). The lag time of ~30–40 months
is interesting because some models have assumed a lag time of half solar cycle period (66 months).
The secondary peak at τ ~0–2 months results from the anticorrelation of the polar field with the SSN
with little or no lag.
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minimum. This may be consistent with our result (red curve), but our result shows the maximum 
response lag times for this process. 

Figure 8. (a) Time shifted correlation corr[polar field(t), SSN(t + τ)] is plotted in blue and corr[SSN(t),
polar field(t + τ)] is plotted in red. They both reach minima at τ ~0 month and maxima at τ ~60–70
months (half solar cycle period) because the polar field and SSN tend to be 180◦ out of phase with each
other. (b) TE(polar field→ SSN) is plotted in blue and TE(SSN→ polar field) is plotted in red. The
format is the same as in Figure 7. The transfer of information from the polar field to SSN peaks at τ
~30–40 months. There is significant information transfer from the SSN to polar field as well. The solid
and dashed green curves show the mean and 3σ of the noise. The data are for the period 1967–2014.
(from [25]).

The lag times of 30–40 months seen in the blue curve in Figure 8b may be related to the time
that it takes for the polar field to advect downward and equatorward in the convection zone and to
reemerge at the low latitude photosphere. In some models, this time is assumed to be a half the solar
cycle period, but our result shows that it can be shorter. This result suggests that perhaps some of the
fluxes may emerge at a higher latitude in the equatorial region or some fluxes may submerge at a lower
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latitude in the polar region. The shorter lag may be consistent with the observations that sunspots of
the new cycle appear years before the solar maximum [93,94] and flux emergence at high latitudes [95].
Further investigation is needed.

Figure 8b shows that there is also a significant information transfer from the SSN to the polar
field. In fact, there is more information transfer from the SSN to polar field than the other way around.
The information transfer from the SSN to polar field has a broad peak at τ ~30–60 months and two
narrower peaks at τ ~80–90 months and at τ ~120–130 months. The latter (peak at τ ~120–130 months)
may be due to the correlation at the ~11-year solar cycle. Upton and Hathaway [82] suggested that the
amount of flux emergence (proxied by the SSN) determines the polar field strength at the next solar
minimum. This may be consistent with our result (red curve), but our result shows the maximum
response lag times for this process.

The multiple peaks in the red curve in Figure 8b could result from the episodic nature of flux
transport to the poles. It is well known that flux is transported to the poles in ‘surge’ with their number
and intensity determined by the meridional flow speed [81]. The flux surges take about 2–3 years to
reach the poles and seem to last for about 5 years in the period examined, 1967–2014.

All the peaks in the blue and red curves are well above the 3σ from the mean noise (the dashed green
line). TE(polar field→ SSN) has peak information transfer (itmax) = 0.28, signal to noise ratio (snr) = 5.0,
and significance = 19σ.

5.3. The Parameters That Control the Polar Field

It is not clear which parameters play the most dominant role in controlling the polar field. In some
surface flux transport models [81,92,96–98] a larger meridional flow would lead to weaker polar field
and a long cycle whereas in some flux transport dynamo models, it would lead to stronger polar field
and a short cycle [84,99]. However, recent studies suggested that the polar field in cycle 23/24 may
have been determined to a large extent by the flux emergence, e.g., SSN [82].

Figure 9 presents TE(meridional flow → polar field) (blue curve) and TE(SSN → polar field)
(red curve). The plot of TE(SSN→ polar field) for 1967–2014 has already been shown in Figure 8b.
However, in order to compare it with the meridional flow speed, it is necessary to analyze the data for
the same interval when there are the meridional flow data, namely 1986–2012.
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It turns out that there is information flow from both the meridional flow and SSN to the polar 
field, but their relative contribution to the polar field differs at different lag times, as shown in Figure 
9. The information transfer from the meridional flow to the polar field is dominant at τ ~28–30 and τ 
~90–110 months (almost one solar cycle period) during 1986–2012. The peak at τ ~28–30 months may 
be consistent with the flux transport dynamo models referenced above and the Schrijver et al. surface 
flux transport model [100]. However, the transfer of information from the SSN (proxy for the flux 
emergence) to the polar field is dominant at τ ~60–80 months (about a half solar cycle period) (smaller 
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Figure 9. TE(meridional flow→ polar field) and TE(SSN→ polar field) are plotted in blue and red
curves, respectively, for the period 1986–2012. The curves are noisy because of the limited availability
of the meridional flow data. Both the meridional flow speed and SSN (proxy for flux emergence)
transfer information to the polar field, but the meridional flow speed transfers more information to the
polar field than SSN at τ ~28–30 months and τ ~90–110 months. On the other hand, the SSN transfers
more information to the polar field than the meridional flow at τ ~60–80 months. The solid and dashed
green curves show the mean and 3σ of the noise. (from [25]).

It turns out that there is information flow from both the meridional flow and SSN to the polar
field, but their relative contribution to the polar field differs at different lag times, as shown in Figure 9.
The information transfer from the meridional flow to the polar field is dominant at τ ~28–30 and τ

~90–110 months (almost one solar cycle period) during 1986–2012. The peak at τ ~28–30 months may
be consistent with the flux transport dynamo models referenced above and the Schrijver et al. surface
flux transport model [100]. However, the transfer of information from the SSN (proxy for the flux
emergence) to the polar field is dominant at τ ~60–80 months (about a half solar cycle period) (smaller
τ is obtained for the period 1967–2014), which may be consistent with a newly developed surface flux
transport model [82]. Our results provide observational constraints for when the information flow
from the meridional flow speed and SSN to the polar field should maximize.

All the peaks in the blue and red curves in Figure 9 are well above the 3σ deviation from the mean
noise (the dashed green line). For example, peak of TE(meridional flow→ polar field) has itmax = 0.71,
snr = 3.6, and significance = 17σ. The peak of TE(SSN→ polar field) is lower, but is still significant.

5.4. The Importance of the Polar Fields in Last Few Cycles for Predicting SSN

In Dikpati et al. solar flux transport dynamo model [101], the polar field is advected down to the
base of the convection zone where it remains for 17–21 years instead of just half the solar cycle period
as it travels to low latitude. This polar field becomes the seed for toroidal field that emerges in the
photosphere as sunspots. Hence, Dikpati et al. [101] argued that the polar fields not just from the last
cycle, but also from the last 3 cycles should affect the production of sunspots. The importance of the
polar fields in the past few cycles is also found in the Charbonneau and Dikpati simulation [102], which
shows that the toroidal field (proxy for the SSN) at cycle n has the best correlation with the polar field
at cycle n–2. This possibility is investigated with information theory. Because the polar field data
are available presently for only 4.5 solar cycles, the long-term effect of the polar field is investigated
with the polar faculae instead. Studies suggested that polar faculae are as a good proxy for the polar
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fields [103–106]. The polar faculae data are available for almost 10 cycles, 1906–2014, which makes it
more suitable for the investigation of long-term effects.

Figure 10 presents TE(polar faculae→ SSN) (blue curve) and TE(SSN→ polar faculae) (red curve).
The figure shows that the transfer of information from the polar faculae to SSN peaks at about τ ~30–40
months, consistent with our analysis using the polar field data with shorter timespans in Section 5.2.
Thereafter, the information transfer drops to a lower level, but it persists for at least 400 months, which
lends support to the idea that the information about the production of the SSN can be found not just
from the polar field from the last cycle, but the polar fields from at least the last 3 cycles. However,
this may just simply be a reflection of the fact that the solar magnetic field is recycled from one cycle
to the next and magnetic flux conservation. Interestingly, TE(polar faculae→ SSN) has minima at τ

~120–140 (roughly one solar cycle period) and at τ ~240–260 (roughly two solar cycle periods).
Figure 10 shows that there is actually more information transfer from the SSN to polar faculae

than from the polar faculae to SSN, as found earlier with the polar field data with shorter timespans.
The figure shows that the information flow from the SSN to polar faculae does peak at around half
solar cycle (~50–70 months), but the curve has also other peaks at longer lag times. However, this
longer information horizon could perhaps be expected if there is a long-term effect of the polar fields
on SSN because the meridional flow circulates the fluxes with a period of a solar cycle.

The analysis has been extended to τ > 400 months. The result indicates that there is still low
level information transfer from the polar faculae to the SSN at τ > 400 months (>3 solar cycle period),
but the TE gets noisier as τ gets larger because the polar faculae data only span for about 10 cycles.

All the peaks in the blue and red curves are well above the 3σ from the mean noise (the dashed
green line). TE(polar faculae→ SSN) has itmax = 0.43, snr = 3.3, and significance = 28σ.
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respectively, for the period 1906–2014. The transfer of information from the polar faculae (proxy for 
the polar fields) to SSN peaks at τ ~30–40 months, but thereafter it persists for at least 400 months (~3 
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the noise. There is also a long-term effect of the SSN on polar faculae. (from [25]). 

Figure 10. The long-term effect of the polar fields (as proxied by the polar faculae) on sunspot
production. TE(polar faculae→ SSN) and TE(SSN→ polar faculae) are plotted in blue and red curves,
respectively, for the period 1906–2014. The transfer of information from the polar faculae (proxy for the
polar fields) to SSN peaks at τ ~30–40 months, but thereafter it persists for at least 400 months (~3 solar
cycle period) albeit at lower level. The solid and dashed green curves show the mean and 3σ of the
noise. There is also a long-term effect of the SSN on polar faculae. (from [25]).

6. Concluding Remarks

In the present paper, we show how information theory can be useful in the studies of solar and
space physics. Our methodology can generally be applied to a large number of problems because it
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does not assume a priori the underlying physics of the system. Our findings of information transfer
from one parameter to another and the response lag time can provide insights into the physical
relationships between the two parameters and provide constraints to models.

We present examples from two applications, one in solar cycle dynamics and one in radiation belt
dynamics, each with its own unique challenge. These two examples are intended to show the breadth
of the applications of the methodology.

In the radiation belt study, the challenge is that several solar wind drivers can affect the radiation
belt flux, Je, simultaneously. We show how information theory can be useful to untangle the drivers of
the solar wind–radiation belt system, identify causal parameters, and the system response lag times to
the drivers. One of the conclusions is that the radiation belt electron response lag times to Vsw and nsw

are 2 and 0 day, respectively. We show that the nonlinearity and the high variability of Je in the triangle
distribution can be better understood if we take these response time lags into account.

The solar cycle study presents a particular challenge not found in the radiation belt study, which
is that each parameter can affect one another bidirectionally because the solar magnetic field is largely
recycled from one cycle to the next. In order to understand the dynamics, these bidirectionalities need to
be considered. The simple correlational analysis would not be able to untangle these bidirectionalities,
but transfer entropy proves more useful and provides more insights. For example, although the time
shifted correlations between aa index and SSN peak at roughly the same value in both directions,
the transfer entropy analysis presents a different picture. More information is transferred from SSN
to aa index than the other way around, as would be expected because aa index is a poor proxy of the
Sun’s polar field.

Moreover, we show that transfer of information from the polar field to SSN peaks at 30–40 months.
Both, the meridional flow and SSN transfer information to the polar field, but each parameter
dominates at different time lags. The meridional flow transfers more information to the polar field at τ
~28–30 months and τ ~ 90–110 months, whereas SSN transfers more information at τ ~ 60–80 months.
Finally, there seems to be support for the idea that the polar field from the last 3 cycles can affect
the production of the sunspots because the meridional flow at the bottom of the convective zone
is slower than at the top. Our entropy-based approach can be useful to solar cycle modelers and
theorists because (1) it can establish which parameters are causally related to the SSN, (2) it can rank
the parameters based on the information transfer to the SSN, and (3) it can provide the SSN’s response
lag times to these parameters. All of these can provide observational constraints to solar cycle models.
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