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Abstract: A fundamental problem regarding the storm–jet stream interaction in the extratropical
atmosphere is how energy and information are exchanged between scales. While energy transfer
has been extensively investigated, the latter has been mostly overlooked, mainly due to a lack
of appropriate theory and methodology. Using a recently established rigorous formalism of
information flow, this study attempts to examine the problem in the setting of a three-dimensional
quasi-geostrophic zonal jet, with storms excited by a set of optimal perturbation modes. We choose for
this study a period when the self-sustained oscillation is in quasi-equilibrium, and when the energetics
mimick the mid-latitude atmospheric circulation where available potential energy is cascaded
downward to smaller scales, and kinetic energy is inversely transferred upward toward larger
scales. By inverting a three-dimensional elliptic differential operator, the model is first converted
into a low-dimensional dynamical system, where the components correspond to different time scales.
The information exchange between the scales is then computed through ensemble prediction. For this
particular problem, the resulting cross-scale information flow is mostly from smaller scales to larger
scales. That is to say, during this period, this model extratropical atmosphere is dominated by a
bottom-up causation, as collective patterns emerge out of independent entities and macroscopic
thermodynamic properties evolve from random molecular motions. This study makes a first step
toward an important field in understanding the eddy–mean flow interaction in weather and climate
phenomena such as atmospheric blocking, storm track, North Atlantic Oscillation, to name a few.

Keywords: causality; information flow; multiscale interaction; self-organization; storm;
atmospheric jet stream; weather and climate patterns

1. Introduction

The atmospheric motion is rich in scale. In many cases, the formation of weather and climate
patterns can be attributed to the interaction between a few scale ranges such as that between synoptic
eddies and the jet stream, or that among the synoptic eddies, the low-frequency variability, and the
mean flow, just as the storm track in the Northern Hemisphere (e.g., [1–3]), the blocking high
(e.g., [4,5]), the sudden stratospheric warming, e.g., [6,7], and references therein), the North Atlantic
Oscillation (e.g., [8–13]), to name but a few. This makes multiscale interaction a central issue in
dynamic meteorology.

An important problem in multiscale interaction is how energy is transferred across scales;
this transfer is closely related to the fundamental processes in atmospheric flows, namely, barotropic
instability and baroclinic instability. The extratropical atmosphere is special in that, while on the
whole the available potential energy is cascaded toward smaller scales, the kinetic energy is inversely
transferred upward to larger scales (e.g., [14,15]). More specifically, there exists a symbiotic relationship
between the synoptic-scale and planetary-scale disturbances. In a 3-scale setting, Cai and Mak [1]
found that the former are produced and maintained through extracting energy from the zonal flow
via Reynolds stress; they then supply energy to the latter through upscale energy transfer, while the
latter form regions of enhanced baroclinicity where the former preferentially grow. This kind of
energetic cycle has been employed to interpret many weather/climate phenomena. In the case of
atmospheric blockings, for example, Holopainen and Fortelius [16] identified an enhanced transfer of
eddy kinetic energy (KE) to the mean flow over the storm tracks. Hansen and Chen [17] found that the
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nonlinear interaction between the cyclone-scale and planetary-scale waves is essential to the Atlantic
blocking, while baroclinic amplification plays the most important role in the formation of the Pacific
one. After the maintenance stage, the eddy kinetic energy is converted back to the eddy available
potential energy (APE), leading to the decay of the event [18].

Another example is the inverse relationship between the boreal wintertime Pacific jet strength and
storm-track intensity. It has long been observed that, in winters when the jet stream over the North
Pacific is extremely strong, the storm track is however unexpectedly weak. This observation, which is
at odds with the prediction of the classical linear baroclinic instability theory, has caught enormous
attention from the atmospheric community. For example, based on energy budget diagnostics,
Chang [19] and Nakamura and Sampe [20] found that, in that case, the synoptic waves tend to
be trapped in the upper troposphere and hence are less efficient to tap APE from the background
baroclinicity. In some other studies, it has been argued (e.g., [21,22]) that the inverse KE transfer
may suppress the APE release, and hence contribute to the inverse relationship. Considering
that atmospheric processes, cyclogenesis in particular, tend to be localized in space and time,
Liang and Robinson [23] established, on the basis of the multiscale window transform of Liang and
Anderson [24], a methodology for local multiscale atmospheric energetics analysis. The resulting
interscale energy transfers turn out to bear a Lie bracket form, reminiscent of the Poisson bracket in
Hamiltonian dynamics, and, furthermore, it naturally has the property that the energy redistributed
among scales remains conserved (see [25]). To distinguish them, these energy transfers have been
called “canonical transfers” ever since. With them, it is shown that, at each spatial location, there exists
a local Lorenz cycle which allows one to trace the origin of the observed, if any, energy burst processes.
Recently, by analyzing the local Lorenz cycles, it is found that, in boreal winters, the storms over the
North Pacific actually are generated at latitudes far northward of the jet core [26]. This greatly lowers
the relevance of the jet strength to the storm-track intensity, and hence the inverse relationship is
actually not much a surprise. That is to say, the linear baroclinic instability theory may still hold [27],
and the inverse relationship should be attributed to internal dynamics.

Energy and entropy are two parallel basic notions in physics. Naturally, the transfer of entropy,
i.e., information transfer or information flow, across scales must make another fundamental problem
in multiscale interaction. This problem, however, has been mostly overlooked in the past, mainly due
to a lack of appropriate theory and research methodology. (So far, only a few studies have touched
this issue, e.g., [28,29]). In physics, entropy may make an objective functional to be optimized to
determine or regulate the distribution of energy. Without knowledge of the information flow across
scales, the understanding of multiscale interaction is then incomplete. For example, in a classical
energetics analysis, the emergence of a structure on another scale is driven by Reynolds stress or
Reynolds stress-like quantities, which are essentially correlations between perturbation fields (e.g., [30]).
While causation implies correlation, correlation does not necessarily imply causation ([31]; see below
in Section 2. Thus, it is likely that an interaction which has a two-way energy flow may in fact have
a one-way causation (as the example in the following; see below). We hence want to give this an
investigation, in the hope of shedding some light on the dark side of the multiscale interaction problem.
We emphasize that this is just the first step to exploring a rather profound field; it is by no means our
intention to solve all the problems. In the following we first give a brief introduction of a recently
developed theory of information flow, then introduce the atmospheric model (Section 3) and its solution.
The model is reduced approximately to a low-dimensional dynamical system (Section 4), and with it
the information flows across the scales are computed through ensemble prediction (Section 5). As we
will see, remarkably, the system nearly has a bottom-up causation, consistent with how a reductionist
in evolutionary biology would view the emergence of a higher-level organization out of independent,
lower-level entities. This study is summarized in Section 6.

2. A Brief Review of the Theory of Causation and Information Flow That Pertains to This Study

Causal inference is a problem lying at the heart of science. In many disciplines, it makes a
direct research objective. It is also an important topic in philosophy, as it forms a “guide to higher
understanding” [32]. However, it is very challenging; in fact, it has been identified as “one of the
biggest challenges” in the science of big data [33]. During the past thirty years, it has come to a
consensus that the widely applicable notion in physics, namely, information flow or information
transfer as it may appear in the literature, is logically associated with causality: The latter is the key
to the former, while the former provides not only the magnitude but also the direction for the latter.
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Realizing that information flow is a real physical notion, Liang and Kleeman [34] put the problem on a
rigorous footing, and obtained in a closed form the information flow between the components of a
2D dynamical system. This formalism was soon generalized by Majda and Harlim [35] to a setting
with two subspaces. Recently, it was successfully extended by Liang [36] to systems of arbitrary
dimensionality. The following is a brief review of the work that pertains to this study.

We begin by stating a principle or an observational fact about causality:

If the evolution of an event, say, X1, is independent of another one, X2, then the causality from X2 to X1
is zero.

Since it is the only quantitatively stated fact about causality, all previous empirical/half-empirical
causality formalisms have attempted to verify it in applications. Considering its importance, it has
been referred to as the principle of nil causality [36]. Recently, Smirnov [37] systematically examined
the traditional formalisms, i.e., transfer entropy analysis and/or Granger causality testing, and found
that they cannot verify the principle in a wide range of situations; similar conclusions have been drawn
by Lizier and Prokopenko [38]. We will see soon below that, within our framework, this principle
turns out to be a proven theorem.

Now, consider an n-dimensional continuous-time stochastic system for state variables
x = (x1, . . . , xn)

dx
dt

= F(x, t) + B(x, t)ẇ, (1)

where F = (F1, . . . , Fn) may be arbitrary nonlinear functions of x and t, ẇ is a vector of white noise,
and B = (bij) is the matrix of perturbation amplitudes which may also be any functions of x and t.
Here, we adopt the convention in physics and do not distinguish deterministic and random variables;
in probability theory, they are usually distinguished with capital and lower-case symbols. Assume
that F and B are both differentiable with respect to x and t. We then have the following theorem [36]:

Theorem 1. For the system (1), the rate of information flowing from xj to xi (in nats per unit time) is

Tj→i = −E

[
1
ρi

∫
Rn−2

∂(Fiρ\j)

∂xi
dx\i\j

]
+

1
2

E

[
1
ρi

∫
Rn−2

∂2(giiρ\j)

∂x2
i

dx\i\j

]

= −
∫
Rn

ρj|i(xj|xi)
∂(Fiρ\j)

∂xi
dx +

1
2

∫
Rn

ρj|i(xj|xi)
∂2(giiρ\j)

∂x2
i

dx, (2)

where dx\i\j signifies dx1 . . . dxi−1dxi+1 . . . dxj−1dxj+1 . . . dxn, E stands for mathematical expectation, gii =

∑n
k=1 bikbik, ρi = ρi(xi) is the marginal probability density function (pdf) of xi, ρj|i is the pdf of xj conditioned

on xi, and ρ\j =
∫
R ρ(x)dxj.

If Tj→i = 0, then xj is not causal to xi; otherwise, it is causal, and the absolute value measures
the magnitude of the causality from xj to xi. For discrete-time mappings, the information flow is in a
much more complicated form; see [36].

Corollary 1. [39] When n = 2,

T2→1 = −E
[

1
ρ1

∂(F1ρ1)

∂x1

]
+

1
2

E

[
1
ρ1

∂2(g11ρ1

∂x2
1

)

]
. (3)

In the absence of noise, this is precisely the result of [34] based on a heuristic argument.
There is a nice property for the above information flow:

Theorem 2. (Principle of nil causality) If in Equation (1) neither F1 nor g11 depends on X2, then T2→1 = 0.

Note that this is precisely the principle of nil causality. Remarkably, here it appears as a proven
theorem, while the classical ansatz-like formalisms fail to verify it in many problems (e.g., [37]).
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In the case with only two time series (no dynamical system is given), we have the following
result [31]:

Theorem 3. Given two time series X1 and X2, under the assumption of a linear model with additive noise,
the maximum likelihood estimator (mle) of the rate of information flowing from X2 to X1 is

T̂2→1 =
C11C12C2,d1 − C2

12C1,d1

C2
11C22 − C11C2

12
, (4)

where Cij is the sample covariance between Xi and Xj, and Ci,dj the sample covariance between Xi and a series
derived from Xj using the Euler forward differencing scheme: Ẋj,n = (Xj,n+k − Xj,n)/(k∆t), with k ≥ 1
some integer.

Equation (4) is rather concise in form; it only involves the common statistics, i.e., sample
covariances. In other words, a combination of some sample covariances will give a quantitative
measure of the causality between the time series. This makes causality analysis, which otherwise
would be complicated with the classical empirical/half-empirical methods, very easy. Nonetheless,
note that Equation (4) cannot replace (3); it is just the mle of the latter. A statistical significance test must
be performed before a causal inference is made based on the computed T2→1. For details, refer to [31].

Considering the long-standing debate ever since George Berkeley in 1710 over correlation versus
causation, we may rewrite (4) in terms of linear correlation coefficients, which immediately implies [31]:

Causation implies correlation, but correlation does not imply causation.

In fact, suppose there is no correlation between X1 and X2, C12 = 0; then, by Equation (4), T̂2→1 = 0.
However, from T̂2→1 = 0, one cannot come up with C12 = 0.

Causality can be normalized in order to reveal the relative importance of a causal relation.
However, the normalization is by no means as trivial as that for covariance, considering that
information flow is asymmetric in direction (T2→1 6= T1→2 in general), and, in addition, there is no
such property like a Cauchy–Schartz inequality that makes it possible for covariance to be normalized.
In [40], a way of normalization is given, but a complete solution is yet to be sought.

The above formalism has been validated with many benchmark systems (e.g., [36]) such as Baker
transformation, Hénon map, Kaplan–Yorke map, and Rössler system, to name a few. Particularly,
Equation (4) has been validated with touchstone problems where the traditional Granger causality
test and transfer entropy analysis fail. An example is the highly chaotic anticipatory system problem
described in [41], which with Equation (4) turns out not to be a problem at all.

The formalism has been successfully applied to the studies of many real world problems,
among them are the causal relation between El Niño-Indian Ocean Dipole [31], tropical cyclone genesis
prediction [42], near-wall turbulence [28], global climate change ([43,44]), and financial time series
analysis [40], to name but a few. Here, we particularly want to mention the study by Stips et al. [43]
who, through examining with Equation (4) the causality between the CO2 index and the surface
air temperature, identified a reversing causal relation with time scale. They found, during the past
century, that CO2 emission indeed drives the recent global warming; the causal relation is one-way, i.e.,
from CO2 to global mean atmosphere temperature. Moreover, they were able to find how the causality
is distributed over the globe, thanks to the quantitative nature of our formalism. However, on a time
scale of 1000 years or over, the causality is completely reversed; that is to say, on a paleoclimate scale,
it is global warming that causes CO2 concentration to rise!

3. A Quasi-Geostrophic Atmospheric Model

3.1. The Governing Equation

Consider a three-dimensional (3D) quasi-geostrophic (QG) model on a β-plane within a channel
between latitudes y = ±1 (cf. [45,46]):

∂ζ

∂t
+ J(ψ, ζ) + β

∂ψ

∂x
= −rζ + AH∇H

2ζ, (5)
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where ψ is streamfunction,

ζ = ∇H
2ψ +

∂

∂z

(
F2

r
N2

∂ψ

∂z

)
(6)

potential vorticity, J the Jacobian operator such that J(ψ, ζ) = ∂ψ
∂x

∂ζ
∂y −

∂ζ
∂x

∂ψ
∂y , N the buoyancy frequency,

and Fr the rotational internal Froude number. On the right-hand side, the first term stands for the
Rayleigh-type friction and the second is the horizontal dissipation of the potential vorticity. In this
study, these two terms are set to be zero (r = AH = 0). This equation together with the following
boundary conditions:

ψ = const y = ±1, (7)
ψ is periodic in x, (8)

∂

∂t

(
F2

r
N2

∂ψ

∂z

)
+ J(ψ,

(
F2

r
N2

∂ψ

∂z

)
=

{
0, z = 1,
−J(ψ, b), z = 0, (9)

where b is the bottom relief, forms the problem that we are about to solve. In Equation (9), at z = 1,
the atmosphere is taken as a rigid lid (vertical velocity w(z = 1) = 0); at z = 0, a flat bottom is
considered and hence b = 0.

We choose to solve the equation for the perturbation around the mean state ψ̄. The mean state is a
zonally homogeneous jet

Ū = Ū(y, z). (10)

It is easy to verify that it satisfies the QG equation for an ideal fluid. Here, Ū horizontally is assumed
to be a cosine jet within [−L, L], L ≤ 1, as that in [47],

Ū = Z (z) · cos2 πy
2L

=
1 + cos π

L y
2

·Z (z), y ∈ [−L, L]; (11)

outside [−L, L], the fluid is motionless. In this study, L is chosen to be 1, Z (z) is prescribed such that
∂Ū
∂z = 0 near z = 0 and z = 1, and is maximized in the upper troposphere. From Ū, the mean states

ψ̄(y, z) = −
∫ y

−1
Ū(y, z)dy, (12)

ζ̄(y, z) = ψ̄yy +
∂

∂z

(
F2

r
N2

∂ψ̄

∂z

)
(13)

can be easily obtained, and

∂ζ̄

∂y
= −∂S

∂z
∂Ū
∂z
− S

∂2Ū
∂z2 −

∂2Ū
∂y2 = −SzŪz − SŪzz − Ūyy, (14)

where we have shortened F2
r /N2 as S(z).

Let ψ = ψ̄ + ψ′, u = Ū + u′, ζ = ζ̄ + ζ ′. The perturbation equation is

∂ζ ′

∂t
+ (Ū + u′)

∂ζ ′

∂x
+ v′

∂ζ ′

∂y
+ [β− (SzŪz + SŪzz − Ūyy)]

∂ψ′

∂x
= 0. (15)

Correspondingly, the boundary conditions are changed to: ψ′ vanishes at y = ±1, and

∂Sψ′z
∂t

+ (Ū + u′)
∂(

∂z
Sψ′z) + v′SŪz + v′

∂Sψ′z
∂y

= 0 (16)

at z = 0, 1. Note in this study Ūz = 0 at z = 0, 1, hence the third term vanishes. Thus, this is simply the
horizontal advection of Sψ′z. If initially ψ′z = 0, and there is no energy flux toward the upper and lower
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boundaries, it will remain unperturbed. To simplify the problem, we then set the vertical boundary
condition as

∂ψ′

∂z
= 0, at z = 0, 1. (17)

As we will see later, though with such a rather strong condition, the result does reproduce the expected
energetics typical of the large-scale mid-latitude atmospheric motion.

3.2. Model Setup

In this study, we choose a mesh with spacings of ∆x = 0.2, ∆y = 0.04, and ∆z = 0.2, which results
in a grid with 50× 51× 5 points. Choose a vertical profile for the basic flow Z (zk) = (0.2, 0.2, 0.6, 1, 1)
such that ∂Ū/∂z = 0 at z = 0 (k = 1) and z = 1 (k = 5). To determine S(z) = F2

r /N2, first notice that
Fr = f0L0/N0H0 is the rotational Froude number; usually, it is taken as 1. We hence only need to pay
attention to the buoyancy frequency N. Scale it by N0. In dimensional form, it is defined as

N0N =

(
− g

ρ̄

∂ρ̄

∂z

)1/2
, (18)

where ρ is the density of the fluid. While for oceans this can be directly computed, for the atmosphere,
it is usually converted into another form

N0N =

(
g
θ̄

∂θ̄

∂z

)1/2

=

(
g

∂ log θ̄

∂z

)1/2

. (19)

Here, θ̄ is potential temperature; it is the temperature of an air parcel moving adiabatically to some
reference pressure (usually 1000 hPa), i.e., a temperature with the effect of pressure change excluded:

θ̄ = T̄
(

P0

P̄

)R/cp

≡ T̄
(

1000
P̄

)κd

, (20)

where κd ≈ 0.286, R = 8.314 J/mol · K = 287 J/kg · K is the ideal gas constant, and cp = 1004 J/kg · K
the specific heat capacity at constant pressure. This yields

N2
0 N2 =

g
T̄

(
∂T̄
∂z

+
g
cp

)
, (21)

where − ∂T̄
∂z is the lapse rate.

For the troposphere, usually the lapse rate can be roughly taken as a constant ∂T̄
∂z ≈

−0.65 ◦C/100 m = 6.5× 10−3 ◦C/m. That is to say,

T̄ = T̄0 − 6.5× 10−3z. (22)

Thus,

N2(z) =
g
T̄

(
∂T̄
∂z

+
g
cp

)
≈ 0.032

T̄0 − 6.5× 10−3z
. (23)

In Figure 1, the vertical profile of N2
0 N2 for the atmosphere between latitudes 20◦ N–60◦ N is computed.

Furthermore, its reciprocal N−2
0 N−2 is shown.
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Figure 1. Vertical profile of N2
0 N2 for the atmosphere between 20◦ N–60◦ N.

By Figure 1, N2
0 N2 varies from 5 × 10−4 s−2 near the bottom to 7 × 10−4 s−2 at tropopause.

If normalized by N2
0 , this means it varies from 1 to 1.4. Considering that the lapse rate − ∂T̄

∂z is nearly a
constant 0.65 ◦C/100 m, N2

0 /N2 = S(z) (F2
r = 1) and hence almost decreases linearly with z, with a

rate of (1− 1
1.4 )/5 = 0.057 per level. In a brief summary, Table 1 gives a list of the parameters for

the model.

Table 1. Model parameters.

Mesh 50× 51× 5
∆x 0.2
∆y 0.04
∆z 0.2
∆t 0.02
β 1
Z (zk) 0.2, 0.2, 0.6, 1, 1
S(zk) 0.943, 0.886, 0.828, 0.771, 0.714

3.3. Solution Strategy

The problems (15)–(17) is solved with a leap-frog scheme. To suppress the computational mode
that may arise due to the time splitting, the result at each integration step is filtered in time as follows:

ψn = (1− α)ψn +
α

2
(ψn+1 + ψn−1) (24)

with a weak filter coefficient α = 0.01. This is equivalent to a weak dissipation of the flow. At each
step, it is required to solve the 3D elliptic equation

∇H
2ψ +

∂

∂z

(
S(z)

∂ψ

∂z

)
= ζ (25)

for ψ subject to {
ψz(z = 1) = 0,
ψz(z = 0) = 0, (26)

in the vertical, a no-flux condition in y, and a periodic condition in x. We may separate z from
(x, y) to convert the 3D equation to a set of 2D equations. Separation of variables results in an
eigenvalue problem

d
dz

(
S(z)

dθk(z)
dz

)
= λkθk(z) (27)
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together with a boundary condition

dθk
dz

= 0, at z = 0, 1. (28)

This is a Sturm–Liouville problem (cf. [48]), and it can be proven that the resulting eigenvectors
{θk} form an orthogonal set. The set is complete and can be normalized. Thus, it can be made as an
orthonormal basis. Expand ψ′ and ζ ′ (time-dependence suppressed for notational simplicity) with
the basis:

ψ′(x, y, z) =
n

∑
k=1

Φ̃k(x, y) · θk(z), (29)

ζ ′(x, y, z) =
n

∑
k=1

Z̃k(x, y) · θk(z), (30)

where n is the number of levels (of the discretized model) in the vertical direction, and substitute them
into the original Equation (25) to get

n

∑
k=1
∇H

2Φ̃k · θk(z) +
n

∑
k=1

Φ̃k
∂

∂z

[
S(z)

∂θk(z)
∂z

]
=

n

∑
k=1

Z̃k(x, y)θk(z). (31)

By the orthonormality of {θk}, the original 3D equation is transformed into n decoupled 2D equations:

∇H
2Φ̃k + λkΦ̃k = Z̃k, (32)

which can be solved individually.
The eigenvalue problems (27)–(28) are solved with the parameters as listed in Table 1. The resulting

eigenvalues λk, k = 1, . . . , 5, are all negative; see Figure 2. The corresponding eigenvectors θk are
displayed in Figure 3; it is easy to verify that they are orthonormal (cf. [48]).

When N2 is constant, the problem can be solved analytically (e.g., [49]). In that case, the most
rudimentary mode is barotropic and the remaining ones baroclinic. In this case, θ1 is the very barotropic
mode, and θ3, θ4, θ5 are approximately sinusoidal and hence are just like the baroclinic modes. Here,
as N2 varies with height, mode 2 somehow has a different form. Note that ck = 1/

√
−λk corresponds

to the phase speed of mode k.

1 2 3 4 5
−80

−60

−40

−20

0

Mode number k

E
ig

e
n
v
a
lu

e
 λ

k

Figure 2. The computed eigenvalues λk.
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Figure 3. The eigenvectors θk(z) corresponding to the eigenvalues λk in Figure 2.

3.4. Initialization

Different initial disturbances will in general yield different solutions, many of which may be
eventually damped out. In order to obtain a quasi-equilibrium oscillatory state, there exists some
“optimal perturbation.” To find this, linearize Equation (15) to get

∂ζ ′

∂t
= −Ū

∂

∂x

[
∇H

2ψ′ +
∂

∂z

(
S

∂ψ′

∂z

)]
−
(

∂ζ̄

∂y
+ β

)
∂ψ′

∂x
. (33)

This together with the boundary condition
ψ′ = 0 at y = ±1,
ψ′ is periodic in x,
∂ψ′

∂z = 0 at z = 0, 1,
(34)

forms a linear system. Write (33) and (34) as

∂ζ ′

∂t
≡ Lζ ψ′, (35)

and write ζ ′ together with (34) as

ζ ′ = ∇H
2ψ′ +

∂

∂z

(
S

∂ψ′

∂z

)
≡ L ψ′. (36)

Then, the linearized perturbation equation becomes

∂

∂t
L ψ′ = Lζ ψ′. (37)

As L is linear and independent from t, it commutes with ∂/∂t. We hence obtain the following linear
dynamical system for the perturbation field ψ′:

∂ψ′

∂t
=
(
L −1 ◦Lζ

)
ψ′. (38)

The discretized version of (38) is denoted as:

du
dt

= Au, (39)
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where u is a vector of the values of ψ′. Initialized with a vector u0, its solution is

u = eAtu0. (40)

The optimal perturbation corresponds to the largest singular value of the matrix eAt. To see this,
it suffices to consider one particular time, say, t = 1. Perform a singular value decomposition of eA·1.
Perturbations of the modal forms corresponding to singular values greater than 1 will grow. Here,
the singular values become smaller than 1 after the modal number m > 4333, as shown in Figure 4.
In order to have the disturbance grow, we need to choose the modes with numbers lower than 4333.
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Figure 4. Singular value versus modal number.

Displayed in Figures 5 and 6 are modes 2, 100, 500, and 1000 (mode 1 is trivial). Clearly, they have
different structures in both horizontal and vertical directions. Theoretically, the lower the modes,
the more efficient the perturbation. However, since this is just a linear solution, the evolution after
the initial perturbation may not grow as expected after nonlinearity takes effect. Here, we find that
modes 100, 500, and 1000, among others, are satisfactory. In the following, we choose mode 1000 as the
perturbation to initialize the system.
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Figure 5. Perturbation modes.
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Figure 6. Perturbation modes (cont’d).

4. Reduced Model

4.1. Results of the Quasi-Geostrophic Model

After initialization, the model reaches a quasi-equilibrium after some 400,000 steps. Figure 7
shows the evolution of total perturbation kinetic energy. Consider for our purpose the time interval
between steps 500,000 and 650,000. We choose such an interval because (1) it is not too large; otherwise,
too many processes may be involved and hence the model cannot be reduced much, (2) the processes
during the interval appear to be stationary. Another reason is that the energetic cycle mimicks well
that in the mid-latitude atmosphere. To see this, apply a multiscale window transform (MWT) to
separate the process. MWT is a functional analysis tool developed by Liang and Anderson [24] which
can decompose a function space into a direct sum of orthogonal subspaces, each with an exclusive
range of scales, while preserving the local properties of the functions. Such a subspace is called a “scale
window”. Originally, MWT is developed for a physically consistent expression of multiscale quadratic
quantities, and hence to make multiscale energetics analysis possible. Traditionally, filters have been
widely used for multiscale studies in atmospheric research, but, in a rigorous sense, the traditional
filters are generally incapable of representing multiscale energy, which is a concept in phase space
(it is connected to energy in the physical sense thanks to the Parseval identity), while the outputs
of traditional filters are fields in physical space. Liang and Anderson [24] found that, for a class
of specially designed orthogonal filters, there exists a transform-reconstruction pair, i.e., a pair of
MWT and multiscale window reconstruction (MWR), just as Fourier transform and inverse Fourer
transform. An MWR is just like a filtered quantity, while the corresponding MWT coefficient squared
gives the energy on the scale window of concern. With MWT and MWR, it has been established that,
for an atmospheric/oceanic flow, at each location, there exists a local Lorenz cycle consisting of three
conservative processes. The resulting energy transfers have been referred to as canonical transfers;
they all bear a Lie bracket form, in contrast to the classical emprically-obatained energy transfers.
A comprehensive introduction of the theory is beyond the scope of this study; for details, see [25].

Now, perform a two-scale window decomposition, and choose the longest scale to be the whole
interval. (This can be done by setting the lowest scale window index to be zero; see [24]). With this
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setting, compute the canonical transfers using the localized multiscale energetics of Liang (2016a) [25].
The horizontally integrated canonical transfers are shown in Figure 8, where positive values indicate a
transfer of energy from the mean to the perturbation. Clearly, here the transfer of available potential
energy overwhelmingly dominates that of kinetic energy (two orders larger), and, on the whole,
the former is cascaded downward (left panel), while the latter is transferred inversely upward (right
panel). This seems to agree with what has been observed in the mid-latitude atmosphere (e.g., [14,15]).
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Figure 7. Evolution of total perturbation kinetic energy.
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Figure 8. Barotropic and baroclinic canonical transfers from the mean state to the perturbation field.

4.2. Principal Component Analysis

With the modeled 4D field ψ(x, y, z; t) on the chosen time interval, we perform a principal
component (PC) analysis, or empirical orthogonal function (EOF) analysis as it is called.
The eigenvalues λ are shown in Figure 9a. Obviously, the first three modes possess most of the
variance. Displayed in Figure 9b are some of the corresponding PCs. It appears that the first and
second PCs approximately are in quadrature phase; they should form a harmonic subsystem. The third
and the fourth have similar frequencies, though that of the latter is a little higher.
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Figure 9. (a) eigenvalue λ vs. EOF mode number; (b) first four principal components: mode 1
(thick solid), mode 2 (thick dashed), mode 3 (thin solid), and mode 4 (thin dashed).

4.3. Model Reduction

The EOF modes form an orthonormal basis for ψ. In this subsection, we use the basis to reduce
the original governing Equation (15) into a low-dimensional dynamical system.

With the operator L as defined in (36), Equation (15) becomes

∂ψ

∂t

′
= −L −1[J(ψ′, L ψ′)]−L −1

[
U

∂L ψ′

∂x

]
−L −1

[
(β + ζ̄y)

∂ψ

∂x

′]
. (41)

In the equation, L −1 is the inverse of L . Expand ψ with {em}m=1,2,... and truncate at m = 4 to get:

ψ =
4

∑
m=1

pm(t)em(x, y, z). (42)

Substitution of this expansion into (41) yields

∑
m

dpm

dt
em =

−L −1[J(∑
i

piei, L ∑
j

pjej)]−L −1U
∂L ∑i piei

∂x
−L −1[β + ζ̄y]

∂ ∑i piei
∂x

= −∑
i

∑
j

pi pjL
−1[J(ei, L ej)]−∑

i
piL

−1
(

U
∂L ei

∂x

)
−∑

i
piL

−1[(β + ζ̄y)
∂ei
∂x

]. (43)

Since {em} is orthonormal, taking an inner product on both sides with em results in

dpm

dt
= −∑

i
∑

j
pi pj

〈
em, L −1[J(ei, L ej)]

〉
−∑

i
pi

〈
em, L −1

(
U

∂L ej

∂x

)〉
−∑

i
pi

〈
em, L −1

[
(β + ζ̄y)

∂ei
∂x

]〉
= ∑

i
∑

j
αN

m,i,j pi pj + ∑
i

αL
m,i pi, m, i, j = 1, . . . , 4, (44)

where

αN
m,i,j = −

〈
em, L −1[J(ei, L ej]

〉
(45)
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are the quadratic term (nonlinear) coefficients, and

αL
m,i = −

〈
em, L −1

[
U

∂L ei
∂x

+ (β + ζ̄y)
∂ei
∂x

]〉
(46)

are the linear term coefficients.
By computation, the linear coefficients αL

m,i are

αL
1,i −3.4755100× 10−2 1.423829 −1.3951972× 10−2 0.1284307

αL
2,i −1.417942 −1.3652847× 10−2 −0.1443377 −3.5396349× 10−3

αL
3,i −1.3292501× 10−2 0.1588890 2.1233991× 10−2 0.4809141

αL
4,i −0.1304244 −6.8064928× 10−3 −0.4592572 7.3776743× 10−3

Likewise, from Equation (45), the coefficients for the quadratic terms are computed as follows:

αN
1,i,j (m = 1)

−7.5820560× 10−4 −3.2869954× 10−2 3.5282248× 10−3 4.9599465× 10−3

4.1258920× 10−2 1.6017430× 10−3 4.2935433× 10−3 4.6059955× 10−5

−2.4720350× 10−2 1.6584761× 10−2 −9.0469969× 10−3 7.8747235× 10−3

−2.3384064× 10−2 −9.9051173× 10−4 −1.1057421× 10−2 −5.0229015× 10−4

αN
2,i,j (m = 2)

−2.2212272× 10−3 −1.6904000× 10−2 −2.1221174× 10−3 −1.2588169× 10−4

2.0407232× 10−2 −1.0814944× 10−3 3.0389655× 10−3 1.2576354× 10−3

−3.3598884× 10−3 −2.4367530× 10−2 2.1593377× 10−3 4.7868756× 10−3

−1.0774944× 10−2 −4.2805336× 10−3 −4.0617036× 10−3 −2.7537413× 10−4

αN
3,i,j (m = 3)

−9.9601485× 10−3 −7.9435982× 10−2 −1.4256314× 10−2 −6.8288655× 10−3

8.4469259× 10−2 −1.6651559× 10−3 6.7729242× 10−2 −2.0513053× 10−3

1.2046070× 10−2 −6.1348621× 10−2 −7.0710764× 10−3 9.7337542× 10−3

−1.4477096× 10−3 1.6220149× 10−2 −4.4799279× 10−3 3.3035765× 10−3

αN
4,i,j (m = 4)

−3.0739678× 10−3 −0.1182990 1.2369854× 10−2 1.4575672× 10−2

0.1257915 −2.2905001× 10−3 −2.0050334× 10−2 9.9308938× 10−3

−4.3914612× 10−2 5.8852371× 10−2 9.3064429× 10−3 −3.0944983× 10−2

−4.8473705× 10−2 −4.0869847× 10−2 7.3413953× 10−2 −2.7747510× 10−3

Note that in reconstructing ψ there is actually a mean part ψ̄ ≡ p0 to be added. That is to say,

ψ = p0 + ∑
i

piei.

Theoretically, this part should vanish in the system, but, in reality, it may not. If it is added to
Equation (43), then

∑
m

dpm

dt
em =

−L −1[J(∑
i

piei, L ∑
j

pjej)]−L −1U
∂L ∑i piei

∂x
−L −1[β + ζ̄y]

∂ ∑i piei
∂x

−L −1 J(p0, L ∑
j

pjej)−L −1 J(∑
i

piei, L p0)−L −1U
∂L p0

∂x
−L −1

[
(β + ζ̄y)

∂p0

∂x

]
. (47)

The second line is the new term in comparison to the original one. Thus, the following

−
〈

em, L −1[J(p0, L ei) + J(ei, L p0)]
〉
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should be added to the above coefficients αL. In addition, there exists an nonautonomous term

bm = −
〈

em, L −1
[

U
∂L p0

∂x
+ (β + ζ̄y)

∂p0

∂x

]〉
.

However, here it is shown that all these are negligible. Thus, it is adequate to use the above autonomous
system in the following studies.

5. Information Flow between the Scales of the Model Atmosphere

As we showed above, the interactions among the first four EOF modes can be utilized to study
the multiscale interactions typical in the problem of concern, as the modes occur on different time
scales. In order to examine the information flow between the modes, we make random draws for
(p1, p2, p3, p4) from a pool of values, and then, starting from these initial conditions, run forward the
system to generate an ensemble of solutions. Assume that the initial values obey a normal distribution
with a mean vector (0.1, 0.1, 0.1, 0.1) and a 4× 4 identity covariance matrix. Here, the variance is set
rather small in order for the trajectories to stay under effective control. The sample space is assumed to
be [−6, 6]× [−6, 6]× [−6, 6]× [−6, 6], which makes sense if we do not make too long an integration,
as made evident in Figure 10, where the trajectory of a sample path is plotted. The space is discretized
using a spacing ∆ = 0.2 (the same for the four dimensions), and the probability density functions are
then estimated at each time step by counting the bins in the coarse-grained space.
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Figure 10. The trajectory of a sample path.

To compute the information flows among the four components, recall the deterministic version
of Equation (2)

Tj→i = −
∫
Rn

ρj|i(pj|pi)
∂Fiρ\j
∂pi

dp. (48)
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When the system is initialized with values in a rather limited domain, the integration can be easily
evaluated. In this study, R4 is replaced by [−6, 6] × [−6, 6] × [−6, 6] × [−6, 6]. The computed
information flow evolutions vs. time are plotted in Figure 11.
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Figure 11. The computed information flows among the components of the reduced system. Note the
range scale for the first two subplots (T1→2 and T2→1) is twice that for the others.

For a system with four components, by expectation, there are in general 4× 3 = 12 information
flows. As we have shown before, the four components make two pairs, i.e., (p1, p2) and (p3, p4),
which essentially represent two scales. Thus, the cross-scale information flows are those between
modes (1,2) and modes (3,4). In Figure 11, T1→2 and T2→1 are overwhelmingly large (note the different
scale range in the first two subplots); second to them are T3→4, T4→3. By the property of causality
(ideally nonzero information flow implies causality), that is to say, p1 and p2 are mutually causal,
and so are p3 and p4. These are the information flows within their respective scales. These causal
patterns are similar to that between the displacement and linear momentum of a harmonic oscillator,
as is shown in Liang [36]. From the table of αL

m,i indeed to the first order, the system is like

d
dt

(
p1
p2

)
=

(
0 1.4
−1.4 0

)(
p1
p2

)
(49)

just as the computed T1→2 and T2→1 would imply.
The other information flows are interscale. Strictly speaking, there exist flows in both directions

(small-scale−→large-scale and large-scale−→small-scale). However, by observation, |T4→1| and |T3→2|
are much larger than others. This asymmetric flow structure indicates that the causation between the
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scales are dominantly one-way, i.e., from higher frequency modes (modes 3 and 4) to lower frequency
modes, modes 1 and 2.

It should be mentioned that what has been solved is actually the QG equation for the perturbation
field; the mean flow is not included in the four components (p1, p2, p3, p4) of the reduced system.
However, the influence has been embedded in the system. Here, we give it an evaluation.

For notational convenience, let p0 denote the “mean component.” Since here the mean flow is
prescribed, it does not vary in time, so there is no way to examine the influence of other components
on it. That is to say, there is no base to study Ti→0, but nonetheless we can evaluate T0→i, i = 1, 2, 3, 4.
We know, from the Bayes’ rule, that

ρ0|i(p0|pi) =
ρ(pi|p0)ρ0(p0)

ρi(pi)
. (50)

Since the mean flow is prescribed, it is certain; ρ(pi|p0) is hence in fact ρi(pi). Thus, the whole term is
equal to 1. This substituted into (48) yields

T0→i = −
∫
Rn

ρ0|i
∂Fiρ\0
∂pi

dp

= −
∫
Rn

∂Fiρ

∂pi
dp

= 0 (51)

by the compactness of ρ. That is to say, the information flow between the mean flow and the higher
frequency components, if it exists, cannot be toward higher modes. In other words, if existing, it must
be one way, i.e., in the direction upward toward the mean.

It should be emphasized that, generally, the mean flow should also have a distribution, and hence
the information flow may not be this easy to evaluate. However, in this case, as we have shown in
the preceding section, the variation around the mean is so small that it can be neglected in forming
the low-dimensional system. Anyhow, for this particular case, by computation the information flow,
and hence causation, is essentially one-way, i.e., from high frequency modes to low frequency modes.

We want to mention that here EOF analysis has been used to reduce the model order.
The advantages of using it include its orthonormality, the maximization of variance toward lowest
modes, etc. The limitations of this approach are also well known. The most serious one is that the EOF
modes may not be real modes in the physical sense. Here, what we are investigating is the information
exchange between processes on different temporal scales, and, fortunately, the principal components
of the lowest modes do reflect such temporal variabilities (Figure 9). However, in a more general
situation, this may not be true. We hope some advanced methods, such as the recently developed
method by Majda and Qi [50] to efficiently reduce models, can help here.

An alternative approach is to use Equation (4) to estimate from data, rather than directly compute,
the information flow, and hence avoid solving a large-dimensional Liouville equation (the curse
of dimensionality). However, here comes another issue: Theorem 3 relies on the assumption of
Gaussianity. Though (4) has also been successfully applied to some highly nonlinear systems, e.g.,
the chaotic anticipatory system in [41] (see [31]), caution should be used, as non-Gaussianity may
appear significant in realistic atmospheres. However, anyhow, these are topics for future studies;
here as the first step, we only consider what we have generated with the QG model.

6. Discussion and Conclusions

How processes on different scales interact to form weather and climate patterns is one of the
central issues in dynamic meteorology. Traditionally, it is studied by diagnosing the exchange of energy
(such as the Lorenz cycle), or, equivalently, momentum/angular momentum, between the scales.
However, it has long been realized that just multiscale energetics based on the governing equation
may not be enough. In a nonlinear dynamical system, as time moves on, two highly correlated events
may soon lose correlation, while, on the other hand, two completely irrelevant events could turn out
to be correlated in the end. As remarked by Corning [51], the underlying causal efficacy may actually
be missing in the equations or “rules”. In addition, in the classical multiscale formalism, cyclogenesis
is driven by Reynolds stress, which is essentially the linear correlation between the perturbation fields.
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As we proved earlier on, while causation implies correlation, correlation does not necessarily imply
causation. That said, the traditional perspective on the problem may be limited.

In physics, entropy is another concept as important as energy. The transference of entropy results
in a flow of information, but how information flows or transfers across scales has been overlooked in
dynamic meteorology, in contrast to the extensively studied energy transfer. Recently, information
flow has been rigorously formulated in the framework of dynamical systems; it proves to satisfy the
“principle of nil causality” (see [36]), an observational fact which people endeavor to verify in real
applications. In this study, this formalism is applied to study the information flow among the scales
within a three-dimensional quasigeostrophic (QG) circulation. The basic flow is a zonal jet mimicking
the atmospheric jet stream. We chose a period when the system is in equilibrium with an energetic
scenario typical of a mid-latitude atmosphere: the mean state is releasing available potential energy
to eddies, while the latter feeds kinetic energy back to the mean state. We first solved the 3D QG
equation; then, for the period of concern, performed a principal component analysis and obtained
the EOF modes to construct a basis. It has been shown that these modes characterize the desired
temporal scales. The state variable, i.e., streamfunction, is then expanded with the aid of the basis,
and the expansion is truncated at the fourth term. By inverting a 3D elliptic differential operator,
the QG equation is converted into a four-dimensional dynamical system. The study of the information
flows among the scales is then converted into the investigation of the information flows among the
components of the low-dimensional system.

Initialized with an ensemble of streamfunctions drawn randomly according to a normal
distribution, the system is integrated forward and, at each step, a probability density function
is estimated, which, by Formula (2), allows us to obtain the desired information flow pairs.
By computation mode 1 and mode 2, which represent the long temporal scale, are mutually causal,
functioning like the components of a 2D harmonic oscillator; this is also the case for mode 3 and
mode 4 that represent the motion on a short scale. These are the information flows within their
respective scales. The interscale flows are significant only for that from mode 4 to mode 1 and that
from mode 3 to mode 2, i.e., from modal pair (3,4) to modal pair (1,2). In addition, the possibility
that the mean state has information flow to these four modes are excluded. That is to say, for this
particular problem, the information flow is mostly one-way—from higher frequency modes to lower
frequency modes. Hence, for this particular problem, underlying the multiscale interaction is mostly a
bottom-up causation.

The bottom-up causation, or the information flow from the low levels to higher levels, is actually
seen in many natural and social phenomena. In investigating the transition in biological complexity,
for example, a reductionist will view the emergence of new, higher level, aggregate entities as a result of
lower level entities (e.g., [52–54]). Similarly, it is found that some simple computer networks may transit
from a low traffic state to a high congestion state, entailing a flow of information from a combination
of independent objects to a collective pattern representing a higher level of organization. Most of all,
in statistical physics [55,56], bottom-up causation lays for it the theoretical foundation, based on which
the macroscopic thermodynamic properties can be tracked back to random molecular motions.

However, we did not exclude the existence of information flow the other way around; it is just
weak by comparison in this example. Top-down causation has been found in many fields. For example,
in community ecology, it has been argued that host community-level structures may determine the
disease dynamics and hence control the constituent populations (e.g., [57]). Nonetheless, here we
showed that a prescribed mean flow seems to be unlikely to have information flow to the anomalies.

Of course, the result here is just for a particular case with a reduced-order model; in reality,
the problem could be very complicated, depending on the stage where the evolving state is. In addition,
for simplicity, we have adopted a rigid-lid assumption on the top, and an idealized boundary condition
( ∂ψ

∂z = 0, i.e., no density perturbation) at the bottom, although the simplified model does reproduce
the desired downward transfer of available potential energy and upward kinetic energy. Nonetheless,
the resulting interaction scenario is encouraging, in agreement with those in complex systems, although
it is quite different from the corresponding energetic cycle. This result, though preliminary at this stage,
may help better understand the mean flow–eddy interaction, gain deeper insight into the phenomena
such as cyclogenesis, atmospheric blocking, sudden stratospheric warming, to name a few. On the
other hand, the asymmetric causation (mostly bottom-up) provides an observational basis for the
parameterization of the subgrid processes in numerical models, such as the stochastic closure scheme of
Majda et al. [58]. All of these are interesting and deserve further investigation. We want to emphasize
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that information flow is a large field in atmospheric research, and this present study makes only a first
attempt; much is yet to be explored in the future.
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