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Abstract: The Hammerstein adaptive filter using maximum correntropy criterion (MCC) has been
shown to be more robust to outliers than the ones using the traditional mean square error (MSE)
criterion. As there is no report on the robust Hammerstein adaptive filters in the complex domain,
in this paper, we develop the robust Hammerstein adaptive filter under MCC to the complex
domain, and propose the Hammerstein maximum complex correntropy criterion (HMCCC) algorithm.
Thus, the new Hammerstein adaptive filter can be used to directly handle the complex-valued
data. Additionally, we analyze the stability and steady-state mean square performance of HMCCC.
Simulations illustrate that the proposed HMCCC algorithm is convergent in the impulsive noise
environment, and achieves a higher accuracy and faster convergence speed than the Hammerstein
complex least mean square (HCLMS) algorithm.

Keywords: complex; Hammerstein; adaptive filters; impulsive noise; stability

1. Introduction

Since traditional mean square error (MSE) criterion derived algorithms are sensitive to outliers,
they cannot be used to deal with impulsive noise effectively [1,2]. However, impulsive noise commonly
exists in practice. To solve this problem, a higher-order statistic, named correntropy, was proposed [3,4].
It has been proven that the maximum correntropy criterion (MCC) algorithm is robust to impulsive
noises, and outperforms the traditional MSE algorithms obviously when the noises are non-Gaussian
distributed. Thus, the MCC algorithm [5,6] and its variants [7–10], such as generalized maximum
correntropy criterion (GMCC) [7], are widely used in practice.

Different from the well-known Wiener adaptive filter [11], the Hammerstein adaptive filter
consists of two parts, namely: a nonlinear memoryless polynomial function and a linear finite
impulse response (FIR) filter [12–14]. The Hammerstein system has been widely applied to signal
processing [15–18] as well as other applications [19,20]. Considering that the performance of the
Hammerstein adaptive filter using MSE criterion decreases dramatically when an impulsive noise
exists, Wu et al. applied the MCC criterion to the Hammerstein adaptive filter, and developed a robust
Hammerstein adaptive filtering algorithm [21]. This novel adaptive filter is insensitive to outliers
and behaves better than the traditional Hammerstein adaptive filters, especially in the case of the
impulsive noise.

However, the Hammerstein adaptive filters under the traditional MSE criterion and MCC criterion
are defined in the field of real numbers. They cannot be directly employed to handle the complex-valued
data. In fact, many signals are defined in the complex domain in practical applications [22–25]. Thus,
in this work, we put forward a Hammerstein maximum complex correntropy criterion (HMCCC)
algorithm, which extends the Hammerstein adaptive filter, using MCC criterion, to the complex domain.

Entropy 2019, 21, 162; doi:10.3390/e21020162 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0003-0470-0154
http://dx.doi.org/10.3390/e21020162
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/21/2/162?type=check_update&version=2


Entropy 2019, 21, 162 2 of 12

HMCCC can be used to handle complex-valued data directly, while being robust to impulsive noise.
We analyzed the stability and provided the steady-state mean square performance of the HMCCC
algorithm. Simulations show that the HMCCC is robust to outliers, and achieves a higher accuracy
and faster convergence speed than the Hammerstein complex least mean square (HCLMS) algorithm.

The rest of the paper is organized as follows. A complex Hammerstein adaptive filter under
MCCC is developed in Section 2. In Section 3, we analyze the stability and provide the steady-state
mean square performance of the HMCCC algorithm. In Section 4, several simulations are presented
so as to verify the superior performance of the HMCCC algorithm. Finally, a conclusion is drawn in
Section 5.

2. Hammerstein Adaptive Filter under the Maximum Complex Correntropy Criterion

2.1. Complex Correntropy

Considering two complex variables that are C1 = X1 + jY1 and C2 = X2 + jY2, respectively, the
complex correntropy is defined by the following [22]:

Vc(C1, C2) = E[κc
σ(C1 − C2)] (1)

where κc
σ(C1 − C2) represents the kernel function, and X1, Y1, X2, and Y2 denote the real variables.

A Gaussian kernel is adopted in this paper, which is expressed as follows:

κc
σ(C1 − C2) =

1
2πσ2 exp

(
− (C1 − C2)(C1 − C2)

∗

2σ2

)
(2)

with σ being the kernel width.

2.2. Adaptive Filter for Complex Hammerstein System

2.2.1. Cost Function

Consider a complex Hammerstein system, the output of polynomial nonlinear part is as follows:

s(k) = pHxp(k) (3)

where p =
[

p1 p2 · · · pM

]T
denotes the vector of the complex polynomial coefficient, M is the

polynomial order, and xp(k) =
[

x(k) x2(k) · · · xM(k)
]T

is the complex polynomial regressor

vector, (·)T and (·)H denote the transpose and conjugate transpose, respectively.
The cost function of the complex Hammerstein filtering algorithm under MCCC is as follows:

JHMCCC = E[κc
σ(e(k))] (4)

where e(k) = d(k)−wHs(k) is the error at the k-th iteration, w =
[

w1 w2 · · · wN

]T
denotes

the estimated weight vector, s(k) = [s(k) s(k− 1) · · · s(k− N + 1)
]T

is the input vector of the

complex finite impulse response (FIR) filter, d(k) = wH
0 s0(k) + v(k) is the desired signal at the k-th

iteration, s0(k) = [s0(k) s0(k− 1) · · · s0(k− N + 1)
]T

, s0(k) = pH
0 xp(k), N denotes the length of

the linear FIR filter, w0 and p0 are the unknown system parameters to be estimated, which are the
optimum solutions for w and p, and v(k) is the observation noise.
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2.2.2. Adaptive Algorithm

Based on the Wirtinger Calculus [26–28], we derive the stochastic gradient of JHMCCC with respect
to p∗ as follows:

∂JHMCCC
∂p∗

=
1

2πσ2 exp

[
−|e(k)|

2

2σ2

]
1

2σ2 e∗(k)X(k)w∗(k) (5)

and with respect to w∗ as follows:

∂JHMCCC
∂w∗

=
1

2πσ2 exp

[
−|e(k)|

2

2σ2

]
1

2σ2 e∗(k)XT(k)p∗(k) (6)

where X(k) =
[

xp(k) xp(k− 1) · · · xp(k− N + 1)
]
.

Then, the updates for p and w are as follows:

p(k + 1) = p(k) + ηp f (e(k))X(k)w∗(k) (7)

w(k + 1) = w(k) + ηw f (e(k))XT(k)p∗(k) (8)

where f (e(k)) = exp
[
− |e(k)|

2

2σ2

]
e∗(k) and the constant 1

2πσ2 is merged into the step-size parameters ηp

and ηw.
Finally, Table 1 summarizes the HMCCC algorithm.

Table 1. The Hammerstein maximum complex correntropy criterion (HMCCC) algorithm.

Input: σ, ηp, ηw, M, N, d(k), x(k)

1. Initializations: p(0), w(0).
2. While

{
d(k) x(k)

}
available, do

3. xp(k) =
[

x(k) x2(k) · · · xM(k)
]T

4. X(k) =
[

xp(k) xp(k− 1) · · · xp(k− N + 1)
]

5. s(k) = XT(k)p∗(k)
6. e(k) = d(k)−wH(k)s(k)

7. f (e(k)) = exp
[
− |e(k)|

2

2σ2

]
e∗(k)

8. p(k + 1) = p(k) + ηp f (e(k))X(k)w∗(k)
9. w(k + 1) = w(k) + ηw f (e(k))XT(k)p∗(k)
10. End while
11. ŵ0 = w(k + 1)
Output: Estimated polynomial coefficient p̂0 and filter weight ŵ0.

3. Convergence Analysis

To begin the derivation of the convergence analysis, some widely used assumptions are adopted,
as follows:

(A1) v(k) is independently identically distributed (iid), zero-mean, circular, and independent of ep(k),
ew(k) and x(k);

(A2) Both ‖XT(k)p∗(k)‖2
and ‖X(k)w∗(k)‖2 are uncorrelated with | f (e(k))|2 when k→ ∞ .

Remark 1: (1) A1 is reasonable in a practical case and is widely used in the theoretical analysis of an adaptive
filter [21,29,30];

(2) When k→ ∞ , p(k)→ p0(k) and w(k)→ w0(k) . Additionally, X(k) is independent of e(k), based

on A1. Thus, both ‖XT(k)p∗(k)‖2
and ‖X(k)w∗(k)‖2 are uncorrelated with | f (e(k))|2. Thus, A2 is also a

reasonable assumption.
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3.1. Stability Analysis

As |e(k)|2 is a real-valued function for
[

pT(k) wT(k)
]T

, the following expression can be

derived by taking the Taylor series expansion of |e(k + 1)|2 at
[

pT(k) wT(k)
]T

,

|e(k + 1)|2 = |e(k)|2 + 2Re

 ∂|e(k)|2

∂p∗(k)

∣∣∣∣∣
w(k)=cons

· (∆p(k))∗

+ 2Re

 ∂|e(k)|2

∂w∗(k)

∣∣∣∣∣
p(k)=cons

· (∆w(k))∗

+ h.o.t. (9)

where
∂|e(k)|2

∂p∗(k)
= −X(k)w∗(k)e∗(k) (10)

∂|e(k)|2

∂w∗(k)
= −XT(k)p∗(k)e∗(k) (11)

∆p(k) = ηp f (e(k))X(k)w∗(k) (12)

∆w(k) = ηw f (e(k))XT(k)p∗(k) (13)

and h.o.t represents the terms of higher order infinitesimal.
Then,

E
{
|e(k + 1)|2

}
= E

{[
1− 2ηp exp

[
− |e(k)|

2

2σ2

]
‖X(k)w∗(k)‖2 − 2ηw exp

[
− |e(k)|

2

2σ2

]
‖XT(k)p∗(k)‖2

]
|e(k)|2

}
≈ E

{[
1− 2ηp exp

[
− |e(k)|

2

2σ2

]
‖X(k)w∗(k)‖2 − 2ηw exp

[
− |e(k)|

2

2σ2

]
‖XT(k)p∗(k)‖2

]}
E
{
|e(k)|2

} (14)

Thus, the sequence |e(k)| will decrease in the mean sense if

E

{∣∣∣∣∣1− 2ηp exp

[
−|e(k)|

2

2σ2

]
‖X(k)w∗(k)‖2 − 2ηw exp

[
−|e(k)|

2

2σ2

]
‖XT(k)p∗(k)‖2

∣∣∣∣∣
}
≤ 1 (15)

that is,

0 ≤ E
{∣∣∣ηp‖X(k)w∗(k)‖2 + ηw‖XT(k)p∗(k)‖2

∣∣∣} ≤ 1

E
{

exp
[
− |e(k)|

2

2σ2

]} (16)

Considering the fact that exp
[
− |e(k)|

2

2σ2

]
≤ 1, we can obtain that the sequence |e(k)| will decrease

in the mean sense, if
0 ≤ E

[∣∣∣ηp‖X(k)w∗(k)‖2 + ηw‖XT(k)p∗(k)‖2
∣∣∣] ≤ 1 (17)

In this case, the HMCCC algorithm will converge in the mean sense.

3.2. Steady Excess Mean Square Error

We define Hp = lim
k→∞

E
[∣∣ep(k)

∣∣2] as the steady excess mean square error (EMSE) for the nonlinear

part, Hw = lim
k→∞

E
[
|ew(k)|2

]
as the steady EMSE for the linear filter, and Hpw = lim

k→∞
E
[∣∣epw(k)

∣∣2] as

the steady EMSE for the whole Hammerstein system, where ep(k) = wH
0 XT(k)p∗0 −wH

0 (k)XT(k)p∗(k),
ew(k) = wH

0 XT(k)p∗0(k)−wH(k)XT(k)p∗0(k), epw(k) = wH
0 XT(k)p∗0 −wH(k)XT(k)p∗(k).
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When the algorithm reaches the steady, the error for the whole Hammerstein system can be
approximately divided into two parts, as follows:

epw(k) = wH
0 XT(k)p∗0 −wH(k)XT(k)p∗(k)

= wH
0 XT(k)p∗0 −wH

0 XT(k)p∗(k) + wH
0 XT(k)p∗(k)−wH(k)XT(k)p∗(k)

≈ wH
0 (k)XT(k)p̃∗(k) + w̃H(k)XT(k)p∗0(k)

= ep(k) + ew(k)

(18)

When only the nonlinear part is taken into consideration, we have

ep(k) = wH
0 XT(k)p∗0 −wH

0 (k)XT(k)p∗(k)
≈ wH

0 (k)XT(k)p̃∗(k)
(19)

and
p̃(k + 1) = p̃(k)− ηp f (e(k))X(k)w∗0(k) (20)

Multiplying each side of Equation (20) by its conjugate transpose and taking the expectation, we
obtain the following:

E
{
‖p̃(k + 1)‖2

}
= E

{
‖p̃(k)‖2

}
− 2ηpE

{
Re
[
ep(k) f (e(k))

]}
+η2

pE
{
‖X(k)w∗0(k)‖

2| f (e(k))|2
} (21)

Since lim
k→∞

E
{
‖p̃(k + 1)‖2

}
= lim

k→∞
E
{
‖p̃(k)‖2

}
, we further obtain the following:

2 lim
k→∞

E
{

Re
[
ep(k) f (e(k))

]}
= lim

k→∞
ηpE

{
‖X(k)w∗0(k)‖

2| f (e(k))|2
}

(22)

Based on the results of Equations (38) and (46) in the literature [23], we similarly obtain the
following expressions by replacing α and λ with 1 and 1/2σ2, respectively, as follows:

E
{

Re
[
ep(k) f (e(k))

]}
= HpE

{
exp

[
−|v(k)|2/2σ2

][
1−

(
|v(k)|2/2σ2

)]}
(23)

E
{
| f (e(k))|2

}
= E

{
exp

[
−|v(k)|2/σ2

]
|v(k)|2

}
+ Hp × R1 (24)

where
R1 = E

{
exp

[
−|v(k)|2/σ2

] [
|v(k)|4/σ4 − 3|v(k)|2/σ2 − 1

]}
(25)

Furthermore, based on the result of Equation (47) in the literature [23], we obtain the EMSE for
the nonlinear part by replacing Tr(RxxH ) (i.e., E

{
‖x(i)‖2

}
) with E

{
‖X(k)w∗0‖

2
}

,

Hp =
ηpE

{
‖X(k)w∗0‖

2
}

E
{

exp
[
−|v(k)|2/σ2

]
|v(k)|2

}
2E
{

exp
[
−|v(k)|2/2σ2

][
1−

(
|v(k)|2/2σ2

)]}
− ηpE

{
‖X(k)w∗0‖

2
}

R1

(26)
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When only the FIR filter is taken into consideration, we similarly derive

Hw =
ηwE

{
‖XT(k)p∗0‖

2
}

E
{

exp
[
−|v(k)|2/σ2

]
|v(k)|2

}
2E
{

exp
[
−|v(k)|2/2σ2

][
1−

(
|v(k)|2/2σ2

)]}
− ηwE

{
‖XT(k)p∗0‖

2
}

R1

(27)

Furthermore, when both the nonlinear part and FIR filter are considered, we have

Hpw = lim
k→∞

E
[∣∣epw(k)

∣∣2] ≈ lim
k→∞

E
[∣∣ep(k) + ew(k)

∣∣2]
= lim

k→∞
E
[∣∣ep(k)

∣∣2]+ lim
k→∞

E
[
|ew(k)|2

]
+ lim

k→∞
E
[
2Re

(
ep
∗(k)ew(k)

)]
= Hp + Hw + Hcross

(28)

Remark 2: Hcross = lim
k→∞

E
[
2Re

(
ep
∗(k)ew(k)

)]
is the cross EMSE of the Hammerstein system, and equals

zero when both ep(k)and ew(k) are zero mean and independent.

4. Simulation

In this part, we provide some simulations to illustrate the superior performance of HMCCC. We

chose the weight vector as w0 =
[

1 + 0.6j 0.6+j 0.1+0.2j 0.2+0.1j 0.06+0.04j 0.04+0.06j
]T

and the complex polynomial coefficient vector as p0 =
[

1+0.6j 0.6+j
]T

. An additive complex
noise v = vR + jvI was considered in the simulations, with vR and vI being the real and imaginary
parts, respectively. We compared the performance of HMCCC with HCLMS (HCLMS is the extension
of HLMS [17] to complex domain, which is summarized in the Appendix A), and chose the parameters
of both algorithms by trial, in order to ensure a desirable solution. Simulation results were obtained by
averaging 100 Monte Carlo trials. The input signal x(k) was generated by a first-order autoregressive
process, as follows:

x(k) = ax(k− 1) +
√

1− a2ξ(k) (29)

where x(k) = xR(k) + jxI(k), xR(k), and xI(k) are the real and imaginary parts of x(k), a = 0.95,
ξ(k) = ξR(k) + jξ I(k), ξR(k), and ξ I(k) are the real and imaginary parts of ξ(k), ξR(k), ξ I(k) ∼ N(0, 1),
and N

(
µ, σ2) denotes the Gaussian distribution with mean µ and variance σ2, respectively.

First, the superiority of HMCCC was verified in the complex alpha stable noise environment.
The noise parameters were vR, vI ∈ σv · valpha(α, β, γ, δ), where σ2

v = 0.1, α = 1.2 is the characteristic
factor, β = 0 is the symmetry parameter, γ = 0.6 is the dispersion parameter, and δ = 0 is the location
parameter, respectively. Figure 1 shows the time sequence and histogram for the real and imaginary
parts of the complex alpha stable noise. It is noted that HCLMS may diverge in the complex alpha
stable noise environment. Thus, we omitted the trials for HCLMS if ‖w‖2 ≥ 100. The simulation
shows that HCLMS diverged twice in the 100 trials, while HMCCC did not diverge. The performances
of the different algorithms in terms of the normalized testing mean square error (MSE) are shown
in Figure 2, where the testing MSE was obtained from a test set of 100 samples, and the trials of the
divergence were omitted for HCLMS. It is clear that compared with HCLMS, HMCCC has a better
filtering performance in the presence of complex alpha stable noise.
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Figure 2. Learning curves of different algorithms. HCLMS—Hammerstein complex least mean square;
HMCCC—Hammerstein maximum complex correntropy criterion.

Then, we compared the steady testing MSE of HMCCC under different noise parameters. We ran
15,000 iterations to make sure the HMCCC reaches steady, and calculated the steady testing MSE with
the average of next 1000 iterations. Figure 3 shows the steady normalized testing MSEs under different
characteristic factors and dispersion parameters, respectively. It illustrates that HMCCC can perform
well under different parameters of alpha stable noise.

Next, the superiority of HMCCC is verified in the contaminated Gaussian (CG) noise environment,
where v(k) = (1− c(k))v1(k) + c(k)v2(k), v1(k) = v1R(k) + jv1I(k), v2(k) = v2R(k)+ jv2I(k),
v1R, v1I ∈ N(0, 0.1), and v2R, v2I ∈ N(0, 20) represent outliers. Additionally,P(c(k) = 1) = 0.06,
P(c(k)= 0)= 1− 0.06. Figure 4 shows the time sequence and histogram for the real and imaginary
parts of the CG noise. The performances of the different algorithms on the basis of normalized testing
MSE are shown in Figure 5, where the testing MSE was also obtained from a test set of 100 samples.
One can clearly see that, compared with HCLMS, HMCCC has a better filtering performance in the
presence of CG noise.
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Furthermore, we tested the robustness of the HMCCC algorithm to the outlier. The CG noise
was also used in this simulation, where v1R, v1I ∈ N(0, 0.1), P(c(k) = 1) = p, v2R, v2I ∈ N

(
0, σ2

B
)
, and

P(c(k)= 0)= 1− p. Figure 6 depicts the steady normalized testing MSE of the HMCCC algorithm
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in the case of different probabilities of outlier, p (σ2
B = 20), and variances of outlier, σ2

B, where
15,000 iterations were run to make sure HMCCC reached steady, and the steady normalized testing
MSEs were calculated with the average of the next 1000 iterations. One can observe that the proposed
HMCCC algorithm is robust to the outlier, and behaves well under different p and σ2

B. Moreover,
HMCCC has a slightly smaller steady testing MSE with a bigger σ2

B, which is a little surprising, but is
consistent with Chen’s work [9]. This is due to the fact that the convergence rates are slightly different
under different σ2

B, even with the same learning rate.
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Afterward, we investigated the influences of the kernel width σ on the performance of HMCCC.
The CG noise was also employed in this simulation, where v1R, v1I ∈ N(0, 0.1), P(c(k) = 1) = 0.06,
v2R, v2I ∈ N(0, 20), and P(c(k)= 0)= 1 − 0.06. Figure 7 presents the normalized testing MSE of
HMCCC in the case of three different kernel widths σ. It can be seen that kernel width σ has a vital
role on the learning rate and steady value of HMCCC. With a small kernel width, HMCCC converges
slowly, but achieves a small steady value. On the contrary, with a large kernel width, HMCCC
converges quickly, but achieves a high steady value.
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Finally, we compared the simulated steady testing MSEs with the theoretical ones. The Gaussian
noise is used in this simulation, where v(k) = vR(k) + jvI(k) and vR, vI ∈ N

(
0, σ2

v
)
. It is noted

that the testing MSEs were not normalized in this simulation, and were obtained from a test set of
1000 samples. In addition, the theoretical values for the nonlinear part and FIR part were calculated
by Equations (26) and (27), respectively. Figure 8 shows the simulated steady testing MSEs and
the theoretical ones under different σ2

v , where 40,000 iterations were run to make sure the algorithm
reached steady, and the steady testing MSEs were calculated with the average of the next 1000 iterations.
One can see that the simulated values almost matched with the theoretical ones for the nonlinear part
and FIR part. Moreover, there is a little gap between the simulated whole system and the sum of
theoretical nonlinear and FIR parts, which is the value of cross EMSE.
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5. Conclusions

Since the Hammerstein adaptive filter can only be used to deal with real-valued data, in this paper,
we extended the Hammerstein filter under maximum correntropy criterion (MCC) to the complex
domain and developed a new algorithm, named the Hammerstein maximum complex correntropy
criterion (HMCCC). Simultaneously, we analyzed the stability and derived some theoretical results for
the HMCCC algorithm. The simulation illustrated that HMCCC is always convergent and performs
better than the traditional Hammerstein complex LMS (HCLMS) algorithm in the presence of impulsive
noises. Additionally, the kernel width has an important impact on the performance of HMCCC, and
the novel algorithm behaves well with different probabilities and variances of outliers.
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supervision, G.Q., D.L., and S.W.; project administration, G.Q.; funding acquisition, G.Q.
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Appendix A

The summary of the HCLMS algorithm:

Input: ηp, ηw, M, N, d(k), x(k)

1. Initializations: p(0), w(0).

2. While
{

d(k) x(k)
}

available, do

3. xp(k) =
[

x(k) x2(k) · · · xM(k)
]T

4. X(k) =
[

xp(k) xp(k− 1) · · · xp(k− N + 1)
]

5. s(k) = XT(k)p∗(k)
6. e(k) = d(k)−wH(k)s(k)
7. p(k + 1) = p(k) + ηpe∗(k)X(k)w∗(k)
8. w(k + 1) = w(k) + ηwe∗(k)XT(k)p∗(k)
9 End while
10. ŵ0 = w(k + 1)
Output: Estimated polynomial coefficient p̂0 and filter weight ŵ0.
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