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Abstract: Dempster-Shafer evidence theory (DST) has shown its great advantages to tackle
uncertainty in a wide variety of applications. However, how to quantify the information-based
uncertainty of basic probability assignment (BPA) with belief entropy in DST framework is still
an open issue. The main work of this study is to define a new belief entropy for measuring
uncertainty of BPA. The proposed belief entropy has two components. The first component is
based on the summation of the probability mass function (PMF) of single events contained in each
BPA, which are obtained using plausibility transformation. The second component is the same as the
weighted Hartley entropy. The two components could effectively measure the discord uncertainty
and non-specificity uncertainty found in DST framework, respectively. The proposed belief entropy is
proved to satisfy the majority of the desired properties for an uncertainty measure in DST framework.
In addition, when BPA is probability distribution, the proposed method could degrade to Shannon
entropy. The feasibility and superiority of the new belief entropy is verified according to the results
of numerical experiments.

Keywords: Dempster-Shafer evidence theory; uncertainty of basic probability assignment; belief
entropy; plausibility transformation; weighted Hartley entropy; Shannon entropy

1. Introduction

Dempster-Shafer evidence theory (DST) [1,2], which was initially introduced by Dempster in the
context of statistical inference and then extended by Shafer into a general framework, has drawn great
and continued attention in recent years [3–6]. The DST could be regarded as an extension of probability
theory (PT). In DST, the probabilities are assigned to basic probability assignments (BPAs), which is
presented to generalize the BPA in probability distribution in PT. The DST has shown its effectiveness
and advantages in wide applications with uncertainty in terms of decision making, such as knowledge
reasoning [7–9], sensor fusion [10–13], reliability analysis [14,15], fault diagnosis [16–18], assessment
and evaluation [19–21], image recognition [22,23], and others [24–26].

Decision making in the framework of DST is based on the combination results of BPAs.
Nonetheless, how to measure the uncertainty of BPA is still an open issue, which has not been
completely solved [27]. The uncertainty of BPA mainly contains discord uncertainty and non-specificity
uncertainty. Working out the uncertainty of BPA is the groundwork and precondition of applying
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DST to applications [28]. Entropy was initially proposed to measure the uncertainty in statistical
thermodynamics [29]. Then Claude Shannon extended this concept to solve the problem of information
theory, namely Shannon entropy [30]. Although the Shannon entropy is admitted as an efficient way
for measuring uncertainty in PT framework, it is unavailable to be used directly in the DST as the BPA
described by sets of probabilities rather than single events [31]. For the sake of better standardizing
the uncertainty measure in the framework of DST, Klir and Wierman defined a list of five basic
required properties that an uncertainty measure should verify in DST [32]. Many attempts have
been made to extend the Shannon entropy for measuring the uncertainty of BPA in the framework
of DST, including Dubois and Prade’s weighted Hartley entropy [33], Höhle’s confusion uncertainty
measure [34], Yager’s dissonance uncertainty measure [35], Klir and Ramer’s discord uncertainty
measure [36], Klir and Parviz’s strife uncertainty measure [37], Jousselme’s ambiguity uncertainty
measure [38], and Deng entropy [39]. Generally speaking, these approaches could degenerate to
Shannon entropy if the probability values are assigned to single events. A belief entropy following
Deng entropy is proposed by Pan and Deng to measure uncertainty in DST [40]. The method borrows
from the idea of Deng entropy and is based on the probability interval, which is composed of the
belief function and plausibility function. Although this Deng entropy-based method contains more
information and could effectively measure the uncertainty in numerical cases, it does not satisfy most
of the desired properties. Moreover, the expression of discord uncertainty measure in the method
just considers the central values of the lower and upper bounds of the interval, which lacks explicit
practical significance. Recently, Jiroušek and Shenoy added four new properties to the set of basic
requirements. Thereafter, they define a belief entropy, which could verify six desired properties [41].
Their approach uses the probability mass function (PMF) transformed by plausibility transformation
and weighted Hartley entropy to measure the discord and non-specificity uncertainty, respectively.
However, the PMF used in the discord uncertainty measure may cause information loss when it is
converted from BPA [42]. Hence, the discord uncertainty measure used in Jiroušek and Shenoy’s belief
entropy needs to be improved.

In this study, inspired by Pan and Deng’s uncertainty measure [32] and Jiroušek and Shenoy’s
uncertainty measure [41], a novel belief entropy is proposed to measure the uncertainty in DST
framework. The novel belief entropy has two components, the discord uncertainty measure and
non-specificity uncertainty measure. The non-specificity uncertainty measure is the same as Dubois
and Prade’s weighted Hartley entropy, which could efficiently reflect the scale of each BPA. The discord
uncertainty measure is based on the sum of PMFs transformed by plausibility transformation of single
events, which are contained in each BPA. The sum of PMFs could be seen as the representative of
probability interval with a practical significance. The discord uncertainty measure in the proposed
method could capture sufficient information. In addition, the proposed method could satisfy six basic
required properties.

The rest of this study is organized as follows. In Section 2, the preliminaries of DST, probability
transformation of BPA, and Shannon entropy are briefly introduced. In Section 3, we discuss the
desired properties of uncertainty measure in DST framework. Section 4 presents the exiting belief
entropies and the proposed belief entropy. The property analysis of the proposed belief entropy is
also conducted in this section. In Section 5, some significant numerical experiments are carried out
to illustrate the feasibility and effectiveness of the proposed belief entropy. Finally, in Section 6, the
conclusion and future work are summarized.

2. Preliminaries

Some basic concepts are briefly introduced in this section, including Dempster-Shafer evidence
theory [1,2], probability transformation of transforming a BPA to a PMF [43,44], and Shannon
entropy [30].
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2.1. Dempster-Shafer Evidence Theory

Let Θ= {x1, x2, . . . , xn} be a nonempty finite set of mutually exclusive and collectively exhaustive
alternatives. The Θ is called the frame of discernment (FOD). The power set of Θ is denoted by
2Θ, namely

2Θ = {∅, {x1} , {x2} , . . . , {xn} , {x1, x2} , . . . , {x1, x2, . . . , xi} , . . . , Θ} , (1)

A BPA is a mapping m from power set 2Θ to [0, 1], which satisfies the condition:

m (∅) = 0 and ∑
A∈2Θ

m(A) = 1. (2)

A is called a focal element such that m(A) > 0. The BPA is also known as mass function.
There are two functions associated with each BPA called belief function Bel(A) and plausibility

function Pl(A), respectively. The two functions are defined as follows:

Bel(A) = ∑
B⊆A

m(A),

Pl(A) = ∑
A∩B 6=∅

m(A).
(3)

The plausibility function Pl(A) denotes the degree of BPA that potentially supports A, while the
belief function Bel(A) denotes the degree of BPA that definitely supports A. Thus, Bel(A) and Pl(A)

could be seen as the lower and upper probability of A.
Suppose m1 and m2 are two independent BPAs in the same FOD Θ, and they can be combined by

using the Dempster-Shafer combination rule as follows:

m(A) = m1 ⊕m2 =

{
∑B∩C=A m1(B)m2(C)

1−k , A 6= ∅
0, A = ∅

, (4)

with
k = ∑B∩C=∅ m1 (B)m2 (C), (5)

where the k is the conflict coefficient to measure the degree of conflict among BPAs. The operator ⊕
denotes the Dempster-Shafer combination rule. Please note that the Dempster-Shafer combination rule
is unavailable for combining BPAs such that k > 0.

2.2. Probability Transformation

There are many ways to transform a BPA m to a PMF. Here, the pignistic transformation and the
plausibility transformation are introduced.

Let m be a BPA on FOD Θ. Its associated probabilistic expression of PMF on Θ is defined
as follows:

BetP(x) = ∑
A∈2Θ ,x∈A

m(A)

|A| , (6)

where the |A| is the cardinality of A. The transformation between m and BetP(x) is called the
pignistic transformation.

Pt(x) is a probabilistic expression of PMF that is obtained from m by using plausibility
transformation as follows:

Pt(x) =
Pl(x)

∑
x∈Θ

Pl(x)
, (7)

where the Pl(x) is the plausibility function of specific element x in Θ. The transformation between m
and Pt(x) is called the plausibility transformation.
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2.3. Shannon Entropy

Let Ω be a FOD with possible values {w1, w2, . . . , wn}. The Shannon entropy is explicitly
defined as:

Hs = ∑
wi∈Ω

p (wi) log2

[
1

p (wi)

]
, (8)

where the p (wi) is the probability of alternative wi, which satisfies ∑n
i=1 p (wi) = 1. If some p (wi) = 0,

we follow the convention that p (wi) log2

[
1

p(wi)

]
= 0 as limx→0+xlog2(x) = 0. Please note that we will

simply use log for log2 in the rest of this paper.

3. Desired Properties of Uncertainty Measures in The DS Theory

In the research of Klir and Wierman [32], Klir and Lewis [45], and Klir [46], five basic required
properties are defined for uncertainty measure in DST framework, namely probabilistic consistency,
set consistency, range, sub-additivity, and additivity. These requirements are detailed as follows.

• Probability consistency. Let m be a BPA on FOD X. If m is a Bayesian BPA, then H(m) =

∑x∈X m(x) log
[

1
m(x)

]
.

• Additivity. Let mX and mY be distinct BPAs for FOD X and FOD Y, respectively. The combined
BPA mX ⊕mY using Dempster-Shafer combination rules must satisfy the following equality:

H (mX ⊕mY) = H (mX) + H (mY) , (9)

where the mX ⊕mY is a BPA for {X, Y}. For all A × B ∈ 2{X,Y}, where A ∈ 2X and B ∈ 2Y,
we have:

(mX ⊕mY) (A× B) = mX(A)mY (B) (10)

• Sub-additivity. Let m be a BPA on the space X×Y, with marginal BPAs m↓X and m↓Y on FOD X
and FOD Y, respectively. The uncertainty measure must satisfy the following inequality:

H(m) ≤ H
(

m↓X
)
+ H

(
m↓Y

)
(11)

• Set consistency. Let m be a BPA on FOD X. If there exists a focal element A ∈ X and m(A) = 1,
then an uncertainty measure must degrade to Hartley measure:

H(m) = log |A| . (12)

• Range. Let m be a BPA on FOD X. The range of an uncertainty measure H(m) must be [0, log |X|].

These properties illuminated in DST framework start from the verification by Shannon entropy
in PT. In DST, there exist more situations of uncertainty than in PT framework [47]. Therewith, by
analyzing shortcomings of these properties, Jiroušek and Shenoy add four other desired properties for
measuring uncertainty in DST framework, including consistency with DST semantics, non-negativity,
maximum entropy, monotonicity [41].

The uncertainty measure for BPA in DST must agree on the DST semantics [48]. Many uncertainty
measures are based on the PMFs which are transformed from BPA [49–51]. However, only the
plausibility transformation is compatible with the Dempster-Shafer combination rule [41,44]. Therefore,
the property of consistency with DST semantics is presented to require the uncertainty measure to
satisfy the tenets in DST framework.
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• Consistency with DST semantics. Let m1 and m2 be two BPAs in the same FOD. If an uncertainty
measure is based on a probability transformation of BPA, which transforms a BPA m to a PMF Pm,
then the PMFs of m1 and m2 must satisfy the following condition:

Pm1⊕m2 = Pm1 ⊗ Pm2 , (13)

where ⊗ denotes the Bayesian combination rule [41], i.e., pointwise multiplication followed by
normalization. Notice that this property is not presupposing the use of probability transformation
in the uncertainty measure.

The property of additivity is easy to satisfy by most definitions of uncertainty measure [41].
The property of consistency with DST semantics is regarded as reinforcement of the additivity property,
which makes sure that any uncertainty measure in DST framework follows the Dempster-Shafer
combination rule.

Since the number of uncertainty type in DST framework is larger than that in PT framework.
One can find that uncertainty measures in DST framework prefer a wider range than that in PT
framework, namely [0, log |X|]. Thus, in Jiroušek and Shenoy’s opinion, the properties of non-negativity,
maximum entropy, and monotonicity are pivotal to uncertainty measure in DST framework.

• Non-negativity. Let m be a BPA on FOD X. The uncertainty measure H(m) must satisfy the
following inequality:

H(m) ≥ 0, (14)

where the equality holds up if and only if m is Bayesian and m {(x)} = 1 with x ∈ X.
• Maximum entropy. Let m be a BPA on FOD X. The vacuous BPA mv should have the most

uncertainty, then the uncertainty measure must satisfy the following inequality:

H(mv) ≥ H(m), (15)

where the equality holds up if and only if m = mv.
• Monotonicity. Let vX and vY be the vacuous BPAs of FOD X and FOD Y, respectively. If |X| < |Y|,

then H(vX) < H(vY).

The property of set consistency entails that the uncertainty of a vacuous BPA mv for FOD X
is log |X|. The probability consistency entails that the uncertainty of a Bayesian BPA me, which
has the equally likely probabilities for X, is log |X| too. However, these two requirements are
contradictory as the property of maximum entropy consider H(mv) > H(me). About this contradiction,
there is a debatable open issue. Some researchers suggest the uncertainty of these two kinds of
BPA should be equal and be the maximum possible uncertainty as we cannot get information
to help us make a determinate decision [52,53]. Some other researchers deem the uncertainty of
a vacuous BPA to be greater than a Bayesian uniform BPA, which is demonstrated by Ellsberg
paradox phenomenon [54–56]. To provide a comprehensive understanding for our definition of
uncertainty measure, all the above-mentioned properties are taken into account.

4. The Belief Entropy for Uncertainty Measure in DST Framework

4.1. The Existing Definitions of Belief Entropy of BPAs

The majority of the uncertainty measures have the Shannon entropy as the start point, which plays
an important role to address the uncertainty in PT framework. Nevertheless, the Shannon entropy has
inherent limitations to handle the uncertainty in DST as there are more types of uncertainty [27,57].
This is reasonable because the BPA includes more information than probabilistic distribution [4]. In the
earlier literatures, the definitions of belief entropy only focus on one aspect of discord uncertainty or
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non-specificity uncertainty in the BPAs. Then, Yager makes a contribution to distinction between the
discord uncertainty and non-specificity uncertainty [35]. Thereafter, the discord and non-specificity
are taken into consideration in most of the definitions of belief entropy. Some representative belief
entropies and their definitions are listed as follows:

Höhel. One of the earliest uncertainty measures in DST is presented by Höhel as shown [34]:

Ho(m) = ∑
A∈2X

m(A) log
[

1
Bel(A)

]
, (16)

where the Bel(A) is the belief function of proposition A. Ho(m) only considers the discord
uncertainty measure.

Nguyen defines the belief entropy of BPA m using the original BPAs [58]:

Hn(m) = ∑
A∈2X

m(A) log
[

1
m(A)

]
. (17)

As the definition of Ho(m), Hn(m) only captures the discord part of uncertainty.
Dubois and Prade define the belief entropy using the cardinality of BPAs [33]:

Hd(m) = ∑
A∈2X

m(A) log |A| . (18)

Hd(m) considers only the non-specificity portion of the uncertainty. Dubois and Prade’s definition
could be regarded as the weighted Hartley entropy Hh(m), where Hh(m) = log |A|.

Pal et al. define a belief entropy as [59]:

Hp(m) = ∑
A∈2X

m(A) log
[

1
m(A)

]
+ ∑

A∈2X

m(A) log (|A|) . (19)

In Hp(m), the first component is the measure of discord uncertainty, and the second component
is the measure of non-specificity uncertainty.

Jousselme et al. define a belief entropy based on the pignistic transformation [38]:

Hj(m) = ∑
x∈X

BetP(x) log
[

1
BetP(x)

]
, (20)

where the BetP(x) is the PMF of pignistic transformation. The Hj(m) using the Shannon entropy
of BetP(x)

Deng defines a belief entropy, namely Deng entropy, as follows [39]:

Hdeng(m) = ∑
A∈2X

m(A) log
[

1
m(A)

]
+ ∑

A∈2X

m(A) log
[
2|A| − 1

]
. (21)

The Hdeng(m) is very similar to the definition of Hp(m), while Hdeng(m) employs the 2|A| − 1
instead of |A| to measure the non-specificity uncertainty of the BPA.

Pan and Deng develop Deng entropy Hdeng(m) with the definition [40]:

Hpd(m) = ∑
A∈2X

1
2
[Bel(A) + Pl(A)] log

{
1

1
2 [Bel(A) + Pl(A)]

}
+ ∑

A∈2X

m(A) log
[
2|A| − 1

]
, (22)

where the Bel(A) and Pl(A) are the belief function and plausibility function, respectively. Hpd(m) uses
the central value of the probability interval [Bel(A), Pl(A)] to measure the discord uncertainty of BPA.
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It is obvious that all these uncertainty measures are the extension of the Shannon entropy in
DST. Apart from the aforementioned methods of belief entropy, there are, of course, some other
entropy-based uncertainty measures for BPAs in DST framework. One can find an expatiatory and
detailed introduction to these methods in the literature [41,47].

Jiroušek and Shenoy define a concept for measuring uncertainty, as follows [41]:

HJS(m) = ∑
x∈X

Pt(x) log
[

1
Pt(x)

]
+ ∑

A∈2X

m(A) log (|A|) . (23)

The HJS(m) consists of two components. The first part is Shannon entropy of a PMF based on
the plausibility transformation, which is associated with discord uncertainty. The second part is the
entropy of Dubois and Prade for measuring non-specificity in BPAs. The HJS(m) satisfies the six
desired properties, including consistency with DST semantics, non-negativity, maximum entropy,
monotonicity, probability consistency, and additivity. Moreover, the properties of range and set
consistency are expanded.

4.2. The Proposed Belief Entropy

Although the HJS(m) can better meet the requirement of the basic properties for uncertainty
measure, it has an intrinsic defect. The first part in HJS(m) using Shannon entropy captures only the
probability of plausibility transformation, which may lead to information loss. As argued in Hpd(m),
the probability interval [Bel(A), Pl(A)] can provide more information according to the BPAs in each
proposition. However, the Hpd(m) considers only the numerical average of the probability interval,
which lacks the piratical physical significance. In this study, by combining the merit of HJS(m) and
Hpd(m), a new definition of belief entropy-based uncertainty measure in DST framework is proposed
as follows:

HPQ(m) = ∑
A∈2X

m(A)log
[

1
Pm(A)

]
+ ∑

A∈2X

m(A)log (|A|) , (24)

where the Pm(A) = ∑x∈A Pt(x) is the summation of plausibility transformation-based PMFs of x
contained in A.

Similar to most of the belief entropies, the first component ∑A∈2X m(A)log
[
Pm−1(A)

]
in HPQ(m)

is designed to measure the discord uncertainty of BPA. The information contained in not only BPAs
but also the plausibility function based on Pt(x) is taken into consideration. Since the Pt(x) reflects the
support degree of different propositions to element x, it could provide more information than m(A).
Furthermore, the Pm(A) = ∑x∈A Pt(x) satisfies the Bel(A) ≤ Pm(A) ≤ Pl(A), which could be seen as
a representative of the probability interval. At length, the second component ∑A∈2X m(A)log (|m(A)|)
in HPQ is the same as the Hd(m) to measure the non-specificity uncertainty of BPA. Therefore, we
believe that the new proposed belief entropy can be more effective to measure the uncertainty of BPAs
in DST framework. The property analysis of HPQ(m) is explored as follows.

(1) Consistency with DST semantics. The first part in HPQ(m) uses Pt(x) based on the plausibility
transformation, which is compatible with the definition of the property. The second part is not a
Shannon entropy based on probability transformation. Thus, HPQ(m) satisfies the consistency with
DST semantics property.

(2) Non-negativity. As Pm(A) ∈ [0, 1], m(A) ∈ [0, 1] and 0 < |m(A)|, thus, HPQ(m) ≥ 0.
If and only if the m is a Bayesian BPA and m(x) = 1, HPQ(m) = 0. Thus, HPQ(m) satisfies the
non-negativity property.

(3) Maximum entropy. Let me and mv be a uniform Bayesian BPA and a vacuous BPA in the same
FOD X, respectively. We could obtain HPQ(me) = HPQ(mv) = log (|X|), therefore HPQ(m) dissatisfies
the maximum entropy property.

(4) Monotonicity. Since HPQ(mv) = log (|X|), HPQ(mv) is monotonic in |X|. Therefore HPQ(m)

satisfies the monotonicity property.
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(5) Probability consistency. If m is a Bayesian BPA, then Pm(x) = Pt(x) = m(x) and Hd(m) =

0. Hence, HPQ(m) = ∑x∈X m(x) log
[

1
m(x)

]
. Therewith, we know that the HPQ(m) satisfies the

probability consistency property.
(6) Set consistency. If a focal element has the whole support degree such that m(A) = 1, HPQ(m) =

log(|X|). Hence, the HPQ(m) satisfies the set consistency property.
(7) Range. As Pm(A) includes the support from the other propositions, thus, m(A) ≤ Pm(A).

Therefore, ∑A∈2X m(A)log
[
Pm−1(A)

]
≤ ∑A∈2X m(A)log

[
m−1(A)

]
= Hn(m). The range of Hn(m)

and Hd(m) both are [0, log(|X|)]. Thus, the range of HPQ(m) is [0, 2log(|X|)], which means the HPQ(m)

dissatisfies the range property.
(8) Additivity. Let mX and mY be two BPAs of FOD X and FOD Y, respectively, A ⊆ 2X, and

B ⊆ 2Y. Let C = A × B be the corresponding joint focal element on X × Y, x ∈ X, and y ∈ Y.
Let m be a joint BPA defined on X × Y which is obtained by using Equation (10). Thus, m(C) =

(mX ⊕mY)(A× B) = mX(A)mY(B). Then the new belief entropy for m is:

HPQ(m) = HPQ (mX ⊕mY) = ∑
C∈2{X×Y}

m(C) log
[
|C|

Pm(C)

]
,

where

m(C) = mX(A)mY(B),

Pm(C) = Pm(A× B) = ∑
(x,y)∈{A×B}

Pt(x, y) = ∑
(x,y)∈{A×B}

Pl(x, y)
∑(x,y)∈{X×Y} Pl(x, y)

.

As proved in [33], we have Pl (A× B) =Pl(A)Pl (B). Thus, we know

∑
(x,y)∈{A×B}

Pl (x, y)
∑(x,y)∈{X×Y} Pl (x, y)

= ∑
x∈A

∑
y∈B

Pl(x)Pl (y)
∑

x∈X
∑

y∈Y
Pl(x)Pl (y)

= ∑
x∈A

Pl(x)
∑

x∈X
Pl(x) ∑

y∈B

Pl (y)
∑

y∈Y
Pl (y)

and

Pm (C) = ∑
x∈A

Pl(x)
∑

x∈X
Pl(x) ∑

y∈B

Pl (y)
∑

y∈Y
Pl (y)

=Pm(A)Pm (B) .

Consequently,

HPQ (mX ⊕mY) = ∑
C∈2{X×Y}

m (C) log
[

|A| |B|
Pm(A)Pm (B)

]
= ∑

A∈2{X}
∑

B∈2{Y}
mX(A)mY (B) log

[
|A|

Pm(A)

]
+ ∑

A∈2{X}
∑

B∈2{Y}
mX(A)mY (B) log

[
|B|

Pm (B)

]
= ∑

A∈2{X}
mX(A) ∑

B∈2{Y}
mY (B) log

[
|A|

Pm(A)

]
+ ∑

A∈2{X}
mX(A) ∑

B∈2{Y}
mY (B) log

[
|B|

Pm (B)

]
= ∑

A∈2{X}
mX(A) log

[
|A|

Pm(A)

]
+ ∑

B∈2{Y}
mY (B) log

[
|B|

Pm (B)

]
= HPQ (mX) + HPQ (mY) .

Hence, the HPQ(m) satisfies the additivity property.
(9) Sub-additivity. An example of binary-valued variables is given to check whether the HPQ(m)

satisfies the sub-additivity as follows with masses

m(z11) = m(z12)= 0.1, m(z21) = m(z22)= 0.3, m(X×Y) = 0.2,
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where zij = (xi, yj). The marginal BPAs of for X and Y are m↓X and m↓Y, respectively, shown as
following ones.

m↓X (x1) = 0.2, m↓X (x2) = 0.6, m↓X (X) = 0.2

m↓Y (y1) = 0.4, m↓Y (y2) = 0.4, m↓Y (Y) = 0.2

Thus,

Pl(x1) = 0.4, Pl(x2) = 0.8, Pl(y1) = 0.5, Pl(y2) = 0.5,

Pl(Z11) = 0.3, Pl(Z12) = 0.3, Pl(Z21) = 0.5, Pl(Z22) = 0.5

Pt(x1) = 0.333, Pt(x2) = 0.667, Pt(y1) = 0.5, Pt(y2) = 0.5,

Pt(Z11) = 0.188, Pt(Z12) = 0.188, Pt(Z21) = 0.312, Pt(Z22) = 0.312

HPQ(m) = 1.8899, HPQ(m↓X) + HPQ(m↓Y) = 0.8678 + 1 = 1.8687.

Obviously, HPQ(m) > HPQ
(
m↓X

)
+ HPQ

(
m↓Y

)
, thus the HPQ(m) dissatisfies the

sub-additivity property.
In summary, the new belief entropy HPQ(m) for uncertainty measure in DST framework

satisfies the properties of consistency with DST semantics, non-negativity, set consistency, probability
consistency, additivity, monotonicity, and does not satisfy the properties of sub-additivity, maximum
entropy, range. An overview of the properties of existing belief entropies for uncertainty measure are
listed in Table 1.

Table 1. An overview of the properties of existing belief entropies and the proposed method.

Definition Cons.w DST Non-neg Max. ent Monoton Prob. cons Add Subadd Range Set. cons

Höhle yes no no no yes yes no yes no
Smets yes no no no no yes no yes no
Yager yes no no no yes yes no yes no

Nguyen yes no no no yes yes no yes no
Dubois-Prade yes no yes yes no yes yes yes yes

Klir-Ramer yes yes no yes yes yes no no yes
Klir-Parviz yes yes no yes yes yes no no yes

Pal et al. yes yes no yes yes yes no no yes
George-Pal yes no no no no no no no yes

Maeda-Ichihashi no yes yes yes yes yes yes no yes
Harmanec-Klir no yes no yes yes yes yes no no
Abellán-Moral no yes yes yes yes yes yes no yes
Jousselme et al. no yes no yes yes yes no yes yes

Pouly et al. no yes no yes yes yes no no yes
Jiroušek-Shenoy yes yes yes yes yes yes no no no

Deng yes yes no yes yes no no no no
Pan-Deng yes yes no yes yes no no no no

Proposed method yes yes no yes yes yes no no yes

Additionally, based on combining the advantages of the definition of Jiroušek-Shenoy and
Pan-Deng, the new belief entropy involves more information, which can better meet the requirements.
The properties of maximum entropy and range that the new belief entropy dissatisfies need further
discussion. For maximum entropy properties, we think that the uncertainty of a vacuous BPA and an
equally likely Bayesian BPA should be equivalent. There is a classical example.

Assume a bet on a race conducted by four cars, A, B, C, and D. Two experts give their opinion.
Expert-1 suggests that the ability of the four drivers and the performance of the four cars are almost
the same. Expert-2 has no idea about the traits of each car and driver. The opinion of the Expert-1
could be regarded as a uniform probability distribution with m(A) = m(B) = m(C) = m(D) = 1

4 .
while the Expert-2 produces a vacuous BPA with m(A, B, C, D) = 1. Based on only one piece of these
two pieces of evidence, we have no information to support us to make a certain bet. Besides, it is
very convincing that the range property is not suitable for uncertain measure. The range [0, log (|X|)]
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can only reflect one aspect of uncertainty, which lacks consideration for multiple uncertainties of a
BPA in DST framework. As a consequence, the properties of maximum entropy and range should
be extended.

5. Numerical Experiment

In this section, several numerical experiments are verified to demonstrate the reasonability and
effectiveness of our proposed new belief entropy.

5.1. Example 1

Let Θ = {x} be the FOD. Given a BPA with m(x) = 1, we can obtain the Pt(x) and Pm(x) with:

Pt(x) = 1, Pm(x) = 1.

Then, the associated Shannon entropy Hs(m) and the proposed belief entropy HPQ(m) are
calculated as follows:

Hs(m) = 1× log (1) = 0, HPQ(m) = 1× log
(

1
1

)
= 0.

Obviously, the above example shows that the Shannon entropy and the proposed belief entropy
are equal when the FOD has only one single element, where exits no uncertainty.

5.2. Example 2

Let Θ= {x1, x2, x3, x4, x5} be the FOD. A uniform BPA of FOD is given as m(x1) = m(x2) =

m(x3) = m(x4) = m(x5) =
1
5 . Then,

Pt(x1) = Pt(x2) = Pt(x3) = Pt(x4) = Pt(x5) =
1
5

,

Pm(x1) = Pm(x2) = Pm(x3) = Pm(x4) = Pm(x5) =
1
5

,

Hs(m) =
1
5
× log 5 +

1
5
× log 5 +

1
5
× log 5 +

1
5
× log 5 +

1
5
× log 5 = 2.3219,

HPQ(m) =
1
5
× log 5 +

1
5
× log 5 +

1
5
× log 5 +

1
5
× log 5 +

1
5
× log 5 + . . .

. . . +
1
5
× log 1 +

1
5
× log 1 +

1
5
× log 1 +

1
5
× log 1 +

1
5
× log 1 = 2.3219.

As shown above, the proposed belief entropy is the same as the Shannon entropy when the BPA is
the probability distribution. Sections 5.1 and 5.2 verify that the proposed belief entropy will degenerate
into the Shannon entropy when the belief is assigned to singleton elements.

5.3. Example 3

Let Θ= {x1, x2, x3, x4, x5} be the FOD. A vacuous BPA of FOD is given as m(x1, x2, x3, x4, x5) =

1. Then,

Pt(x1) = Pt(x2) = Pt(x3) = Pt(x4) = Pt(x5) =
1
5

,

Pm(x1) = Pm(x2) = Pm(x3) = Pm(x4) = Pm(x5) =
1
5

,

HPQ(m) = 1× log 1 + 1× log 5 = 2.3219.

Compared to Section 5.2, we know that the uncertainty of this example is the same as the
Section 5.2. This is reasonable. As discussed in Section 4.2, neither the uniform BPA nor the vacuous
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BPA in the same FOD could provide more information for a determinate single element. Thus, their
uncertainty should be equal.

5.4. Example 4

Two experiments in [40] are recalled in this example. Let Θ= {x1, x2, x3, x4} be the FOD. Two BPAs
are given as m1 and m2. The detailed BPAs are:

m1(x1) =
1
4

, m1(x2) =
1
3

, m1(x3) =
1
6

, m1(x1, x2, x3) =
1
6

, m1(x4) =
1
12

,

m2(x1) =
1
4

, m2(x2) =
1
3

, m2(x3) =
1
6

, m2(x1, x2) =
1
6

, m2(x4) =
1

12
.

The corresponding HPQ(m1) and HPQ(m2) are calculated as follows:

Plm1(x1) =
5
12

, Plm1(x2) =
1
2

, Plm1(x3) =
1
3

, Plm1(x4) =
1
12

,

Plm2(x1) =
5
12

, Plm2(x2) =
1
2

, Plm2(x3) =
1
6

, Plm2(x4) =
1
12

,

Ptm1(x1) =
5
16

, Ptm1(x2) =
6

16
, Ptm1(x3) =

4
16

, Ptm1(x4) =
1
16

,

Ptm2(x1) =
5
14

, Ptm2(x2) =
6

14
, Ptm2(x3) =

2
14

, Ptm2(x4) =
1
14

,

HPQ(m1) =
1
4
× log(

1
5/16

) +
1
3
× log(

1
6/16

) +
1
6
× log(

1
4/16

) + . . .

. . . +
1
6
× log(

3
15/16

) +
1
12
× log(

1
1/16

) = 1.8375,

HPQ(m2) =
1
4
× log(

1
5/14

) +
1
3
× log(

1
6/14

) +
1
6
× log(

1
2/14

) + . . .

. . . +
1
6
× log(

2
13/14

) +
1
12
× log(

1
1/14

) = 1.7485.

It can be seen from the results of HPQ(m1) and HPQ(m2), the belief entropy of m1 is larger
than the m2. This is logical because the m1(x1, x2, x3) = 1

6 has one more single element than
m2(x1, x2) =

1
6 , which implies that the m1(x1, x2, x3) contains more information. Thus, the m1 should

be more uncertain.

5.5. Example 5

Consider a target recognition problem in [60]. Target detection results provided by two
independent sensors. Let A, B, C, and D be the potential target types. The results are represented by
BPAs shown as follows.

m1(A, B) = 0.4, m1(C, D) = 0.6,

m2(A, C) = 0.4, m2(B, C) = 0.6.

Then the corresponding uncertainty measure with Hdeng(m), Hpd(m) and HPQ(m) are
calculated as:
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Belm1(A, B) = 0.4, Plm1(A, B) = 0.4, Belm1(C, D) = 0.6, Plm1(C, D)= 0.6,

Belm2(A, C) = 0.4, Plm2(A, C) = 1.0, Belm2(B, C) = 0.6, Plm2(B, C) = 1.0,

Hd(m1) = 0.4 log
2|2| − 1

0.4
+ 0.6 log

2|2| − 1
0.6

= 2.5559,

Hd(m2) = 0.4 log
2|2| − 1

0.4
+ 0.6 log

2|2| − 1
0.6

= 2.5559,

Hpd(m1) =
0.4 + 0.4

2
log

2|2| − 1
(0.4 + 0.4)/2

+
0.6 + 0.6

2
log

2|2| − 1
(0.6 + 0.6)/2

= 2.5559,

Hpd(m2) =
0.4 + 1.0

2
log

2|2| − 1
(0.4 + 1.0)/2

+
0.6 + 1.0

2
log

2|2| − 1
(0.6 + 1.0)/2

= 2.9952,

Plm1(A) = 0.4, Plm1(B) = 0.4, Plm1(C) = 0.6, Plm1(D) = 0.6,

Plm2(A) = 0.4, Plm2(B) = 0.6, Plm2(C) = 1.0,

Ptm1(A) = 0.2, Ptm1(B) = 0.2, Ptm1(C) = 0.3, Ptm1(D) = 0.3,

Ptm2(A) = 0.2, Ptm2(B) = 0.3, Ptm2(C) = 0.5,

HPQ(m1) = 0.4× log
2

0.4
+ 0.6× log

2
0.6

= 1.9710,

HPQ(m2) = 0.4× log
2

0.7
+ 0.6× log

2
0.8

= 1.3390.

Though the two BPAs have the same value, the BPA m1 has four potential targets, namely A, B, C,
D, while the BPA m2 has just three potential targets, namely A, B, C. As verified in [60], it is intuitively
expected that m1 has a larger uncertainty than m2. According to the above calculation results, the
Hdeng(m) illustrates that the two BPAs have the same uncertainty, and the Hpd(m) suggests that the
m2 has a larger uncertainty. Therefore, both Hdeng(m) and Hpd(m) are unable to reflect the prospective
difference. The proposed belief entropy can effectively quantify this divergence by considering not
only the information contained in each focal element but also the mutual support degree among
different focal elements. Therefore, it is safe to say that the capability of the proposed belief entropy
HPQ(m) is unavailable in the Hdeng(m) and Hpd(m).

5.6. Example 6

Let Θ= {x1, x2, x3, x4, x5, x6} be the FOD. Two BPAs are given as follows.

m1(x1, x2) =
1
3

, m1(x3, x4) =
1
3

, m1(x5, x6) =
1
3

,

m2(x1, x2, x3) =
1
2

, m2(x4, x5, x6) =
1
2

.

According to the Jiroušek-Shenoy entropy HJS(m) in Equation (23) and the proposed belief
entropy HPQ(m) in Equation (24), both kinds of entropy consists of the discord uncertainty measure
and the non-specificity uncertainty measure. Then the HJS(m) and HPQ(m) are calculated as follows.
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Plm1(x1) =
1
3

, Plm1(x2) =
1
3

, Plm1(x3) =
1
3

, Plm1(x4) =
1
3

, Plm1(x5) =
1
3

, Plm1(x6) =
1
3

,

Plm2(x1) =
1
2

, Plm2(x2) =
1
2

, Plm2(x3) =
1
2

, Plm2(x4) =
1
2

, Plm2(x5) =
1
2

, Plm2(x6) =
1
2

,

Ptm1(x1) =
1
6

, Ptm1(x2) =
1
6

, Ptm1(x3) =
1
6

, Ptm1(x4) =
1
6

, Ptm1(x5) =
1
6

, Ptm1(x6) =
1
6

,

Ptm2(x1) =
1
6

, Plm2(x2) =
1
6

, Plm2(x3) =
1
6

, Plm2(x4) =
1
6

, Plm2(x5) =
1
6

, Plm2(x6) =
1
6

,

HJS(m1) = Hdis
JS (m1) + Hnos-spe

JS (m1) = 6× 1
6
× log(

1
1/6

) + 3× 1
3
× log(2) = 3.5850,

HJS(m2) = Hdis
JS (m2) + Hnos-spe

JS (m2) = 6× 1
6
× log(

1
1/6

) + 2× 1
2
× log(3) = 4.1699,

HPQ(m1) = Hdis
PQ(m1) + Hnos-spe

PQ (m1) = 3× 1
3
× log(

1
1/3

) + 3× 1
3
× log(2) = 2.5850,

HPQ(m2) = Hdis
PQ(m2) + Hnos-spe

PQ (m2) = 2× 1
2
× log(

1
1/2

) + 2× 1
2
× log(3) = 2.5850.

The results calculated by the Hdis
JS (m1) and Hdis

JS (m2) are the same, which are equal to log(6).
This outcome is counterintuitive. The BPAs in m1 are completely different from that in m2, thus the
Hdis

JS (m) and Hnon-spe
JS (m) of m1 are expected to be distinguished from those ones of m2. However,

only the Hnon-spe
JS (m1) and Hnon-spe

JS (m2) are different. The reason for this situation is that the discord
uncertainty measure Hdis

JS (m) in HJS(m) overly concerns the conflict involved in single elements and
ignores the information contained in the original BPAs. The discord uncertainty measure Hdis

PQ(m)

in HPQ(m) combines the original BPAs with the probability distribution of single elements included
in the BPA can better resolve the limitations. In short, this example indicates the effectiveness for
measuring the discord uncertainty of the proposed belief entropy.

5.7. Example 7

Let Θ = (1, 2, . . . , 14, 15) be a FOD with 15 elements. The mass functions of Θ is denoted as:

m(3, 4, 5) = 0.05, m(7) = 0.05, m(A) = 0.8, m(Θ) = 0.1

The proposition A is a variable subset of 2Θ with the number of single elements changing
from 1 to 14. To verify the merit and effectiveness of the proposed belief entropy, eight uncertainty
measures listed in Table 1 are selected for comparison, including Dubois and Prade’s weighted Hartley
entropy [33], Höhle’s confusion uncertainty measure [34], Yager’s dissonance uncertainty measure [35],
Klir and Ramer’s discord uncertainty measure [36], Klir and Parviz’s strife uncertainty measure [37],
George and Pal’s conflict uncertainty measure [61], Pan and Deng’s uncertainty measure [40], Jiroušek
and Shenoy’s uncertainty measure [41]. The experimental results are shown in Table 2. The Höhle’s
confusion uncertainty measure (M2), Yager’s dissonance uncertainty measure (M3), Klir and Ramer’s
discord uncertainty measure (M4), Klir and Parviz’s strife uncertainty measure (M5), and George and
Pal’s conflict uncertainty measure (M6) are plotted in Figure 1. The Dubois and Prade’s weighted
Hartley entropy (M1), Pan and Deng’s uncertainty measure (M7), Jiroušek and Shenoy’s uncertainty
measure (M8), and proposed belief entropy (M9) are plotted in Figure 2.
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Table 2. The value of different uncertainty measures.

Cases M1 M2 M3 M4 M5 M6 M7 M8 M9

A={1} 0.4699 0.6897 0.3953 6.4419 3.3804 0.3317 16.1443 3.8322 1.9757
A={1, 2} 1.2699 0.6897 0.3953 5.6419 3.2956 0.3210 17.4916 4.4789 2.3362

A={1, 2, 3} 1.7379 0.6897 0.1997 4.2823 2.9709 0.2943 19.8608 4.8870 2.5232
A={1, 2, 3, 4} 2.0699 0.6897 0.1997 3.6863 2.8132 0.2677 20.8229 5.2250 2.7085

A={1, 2, 3, 4, 5} 2.3275 0.6198 0.1997 3.2946 2.7121 0.2410 21.8314 5.5200 2.8749
A={1, 2, . . . , 6} 2.5379 0.6198 0.1997 3.2184 2.7322 0.2383 22.7521 5.8059 3.0516
A={1, 2, . . . , 7} 2.7158 0.5538 0.0074 2.4562 2.5198 0.2220 24.1131 6.0425 3.0647
A={1, 2, . . . , 8} 2.8699 0.5538 0.0074 2.4230 2.5336 0.2170 25.0685 6.2772 3.2042
A={1, 2, . . . , 9} 3.0059 0.5538 0.0074 2.3898 2.5431 0.2108 26.0212 6.4921 3.3300

A={1, 2, . . . , 10} 3.1275 0.5538 0.0074 2.3568 2.5494 0.2037 27.1947 6.6903 3.4445
A={1, 2, . . . , 11} 3.2375 0.5538 0.0074 2.3241 2.5536 0.1959 27.9232 6.8743 3.5497
A={1, 2, . . . , 12} 3.3379 0.5538 0.0074 2.2920 2.5562 0.1877 29.1370 7.0461 3.6469
A={1, 2, . . . , 13} 3.4303 0.5538 0.0074 2.2605 2.5577 0.1791 30.1231 7.2071 3.7374
A={1, 2, . . . , 14} 3.5158 0.5538 0.0074 2.2296 2.5582 0.1701 31.0732 7.3587 3.8219

M1 is the Dubois and Prade’s weighted Hartley entropy; M2 is the Höhle’s confusion uncertainty measure; M3 is
the Yager’s dissonance uncertainty measure; M4 is the Klir and Ramer’s discord uncertainty measure; M5 is the
Klir and Parviz’s strife uncertainty measure; M6 is the George and Pal’s conflict uncertainty measure; M7 is the
Pan and Deng’s uncertainty measure; M8 is the Jiroušek and Shenoy’s uncertainty measure; M9 is the proposed
belief entropy.
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Figure 1. Results comparison of M2, M3, M4, M5, and M6 in DST (Dempster-Shafer evidence theory).
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Figure 2. Results comparison of M1, M7, M8, and M9 in DST.

As shown in Figure 1, it is obvious that the uncertain degree measured by the George and Pal’s
conflict measure is almost unchanged when the element number increase in proposition A. Similarly,
the Höhle’s confusion uncertainty measure and Yager’s dissonance uncertainty measure have the same
situation to reflect the variation on uncertain degree in this case. Thus, these three uncertainty measures
cannot detect the change in proposition A. Although the uncertainty degrees obtained by the Klir and
Ramer’s discord uncertainty measure and Klir and Parviz’s strife uncertainty measure change with
the growth of element number in A, the variation trends of both methods are contrary to expectation
that the uncertainty degree increases with the augment of the element number in A. These methods
only measure the discord uncertainty of the BPAs, but ignore the non-specificity uncertainty of
the BPAs. Besides, from the Table 2, we can find that the Yager’s dissonance uncertainty measure
has the minimum uncertainty degree. This is because this method uses the plausibility function to
measure the discord uncertainty. The plausibility function contains all the support degree to the
single events from other propositions, which could lead to information redundant and uncertainty
reducing incorrectly. To sum up, the uncertainty degree obtained by George and Pal’s method, Höhle’s
method, Yager’s method, Klir and Ramer’s method, and Klir and Parviz’s method are unreasonable
and counterintuitive, which means these methods cannot measure the uncertainty in this case aright.

From Figure 2, it can be seen that the uncertainty degrees measured by Dubois and Prade’s
weighted Hartley entropy, Pan and Deng’s uncertainty measure, Jiroušek and Shenoy’s uncertainty
measure, and the proposed belief entropy are increasing visibly with the rising of the element number
in A. These methods consider not only the discord uncertainty but also the non-specificity uncertainty.
Furthermore, Pan and Deng’s uncertainty measure is the largest among all the methods in Table 2.
This is understandable. The non-specificity uncertainty measure in Pan and Deng’s method is
exponential, while the others are linear. As the number of elements in A increases, the uncertainty
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degree of Pan and Deng’s method increases faster than the other methods. Non-specificity uncertainty
measure using exponential form may cause the possible uncertainty degree from the discord part to be
significantly smaller than the ones from the non-specificity part. Additionally, Jiroušek and Shenoy’s
uncertainty measure is larger than the proposed belief entropy. Compared to the Jiroušek and Shenoy’s
uncertainty measure, which uses the probability distribution of single element obtained by plausibility
transformation to measure the discord uncertainty, the proposed belief entropy measure that one by
using the information of each mass function and the single element each BPA contains. The redundant
information is removed, and the possible values of discord uncertainty is decreased notably in the
proposed method. More importantly, except for the proposed method, the other three uncertainty
measures have shortcomings. The Dubois and Prade’s weighted Hartley entropy does not consider
the discord uncertainty of BPAs. The Pan and Deng’s uncertainty measure cannot measure accurately
two similar BPAs in Section 5.5. The discord uncertainty measure of Jiroušek and Shenoy’s uncertainty
measure is irrational in Section 5.6. Thus, the proposed belief entropy is the only effective approach for
uncertainty measure among these given methods in this case. Therefore, the proposed belief entropy,
which considers the information contained in BPAs and single elements, is reasonable and effective for
uncertainty measure in Dempster-Shafer framework.

6. Conclusions

How to measure the uncertainty of BPA in the framework of DST is an open issue. In this
study, the main contribution is that a new belief entropy is proposed to quantify the uncertainty
of BPA. The proposed belief entropy is comprised of the discord uncertainty measurement and the
non-specificity uncertainty measurement. In particular, in the discord uncertainty measure component,
the idea of probability interval and conversion BPA to probability using the plausibility transformation
are combined. The new method takes advantage of the information of not only the BPAs, but also
the total support degree of the single events contained in the BPAs. By addressing appropriate
information in a BPA, which means less information loss and less information redundancy, the
proposed belief entropy could measure the uncertainty of BPA efficiently. In addition, the proposed
belief entropy could satisfy six desired properties of consistency with DST semantics, non-negativity, set
consistency, probability consistency, additivity, and monotonicity. The results of numerical experiments
demonstrate that the proposed belief entropy can be more effective and accurate when compared to
the existing uncertainty measures in the framework of DST. Future work of this study will be focused
on extending the proposed method to open-world assumptions and applying it to solve problems in
real applications.
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