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Abstract: It has previously been shown that it is more common to describe the evolution of the
universe based on the emergence of space and the energy balance relation. Here we investigate the
thermodynamic properties of the universe described by such a model. We show that the first law
of thermodynamics and the generalized second law of thermodynamics (GSLT) are both satisfied
and the weak energy condition are also fulfilled for two typical examples. Finally, we examine the
physical consistency for the present model. The results show that there exists a good thermodynamic
description for such a universe.
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1. Introduction

Numerous astro-observations show that our universe is in accelerating expansion at present [1,2].
There are usually two ways to explain the phenomenon if we consider the evolution of the universe
from the point of view of the dynamics of gravity. One is the modification of geometric part of Einstein’s
field equation, such as f (R) theory, Lanczos-Lovelock gravity theory. The other is the modification of
the material part of Einstein’s field equation by introducing the extra matter with negative pressure or
the scalar field (called dark energy). A good model which can explain the current accelerated expansion
of the universe is ΛCDM (lambda cold dark energy) model which considers a cosmological constant,
i.e., the value of the equation of state parameter ω = −1 [3,4]. However, astronomical observations
allow also ω to vary with time. The variation with time is described usually by the slowly varying
scalar field such as the quintessence [5–9], kinetic energy driven k-essence [10–12] and tachyon [13–17].
These models describe the accelerated expansion of the universe well.

Studying gravity from a thermodynamic point of view is an interesting field in modern theoretical
physics. The deep connection between gravity and thermodynamics is accepted generally because
of the black hole thermodynamics [18–20] and AdS/CFT correspondence [21]. The equivalence
between the Clausius relation δQ = TdS (which connects the heat flow δQ, entropy S and Unruh
temperature T) and the Einstein equation was first given by Jocobson in 1995 [22]. Although the
topology of quasi-de Sitter apparent horizon is quite different from that of the local Rindler horizon,
the Friedmann equation with the slow-roll scalar field can be reproduced by using the first law of
thermodynamics −dE = TdS where dE is the amount of the energy flow through the quasi-de Sitter
apparent horizon [23]. Besides, the Friedmann equation can also be derived by calculating the heat flow
through the horizon in an expanding universe and by applying the Clausius relation to a cosmological
horizon [24]. Padmanabhan [25–28], in the reverse way, showed that gravitational field equations in a
wide variety of theories can reduce to the thermodynamic identity TdS = dE + PdV when evaluated
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on a horizon. These conclusions further reveal the relation between horizon thermodynamics and
spacetime dynamics. Furthermore, Padmanabhan [29,30] revealed the relation between the degrees
of freedom of space and the dynamic evolution of the universe. He derived the standard Friedmann
equation of the FRW universe through a simple equation ∆V = ∆t (Nsur − Nbulk), where V is the
Hubble volume in Planck units, t is the cosmic time in Planck units, Nsur is the number of the surface
degrees of freedom Nsur and Nbulk is the number of the bulk degrees of freedom. Namely, the difference
between the number of the surface degrees of freedom and the number of the bulk degrees of freedom
in a region of space drives the accelerated expansion of the universe.

From the point of view of thermodynamics, it tends to spontaneously thermodynamic equilibrium
for an isolated thermodynamical system. That is to say, the entropy of an isolated thermodynamical
system, S, cannot decrease and reaches its maximum finally. In black hole physics, there exists a similar
law which is called as the generalized second law of thermodynamics [19]. The law states that the sum
of the entropy of the black hole horizon, Sh, plus the entropy of the matter, Sm, cannot decrease with
time, i.e., Ṡ = Ṡm + Ṡh ≥ 0 where the dot denotes the derivative with respect to time. After that, the
generalized second law of thermodynamics (GSLT) was extended to the cosmological horizons [31,32].
In the cosmological context, the GSLT has been extensively studied (see, for example, [33–35]).

In Ref. [36], we considered the current accelerated expansion of the universe based on the
emergence of space and the energy balance relation ρVH = TS, where ρ is the energy density of the
cosmic matter, S = AH/(4L2

p) = πH−2/L2
p is the entropy associated with the area of the Hubble

sphere VH = 4π
3H3 and TS is the heat energy of the boundary surface. Then we found that the evolution

solutions of the universe include the solutions obtained from the standard general relativity theory,
and concluded that it is more common to describe the evolution of the universe in the thermodynamic
way. Therefore, it is interesting to investigate whether the first law of thermodynamics and the GSLT
hold in the model described by Ref. [36].

The goal of the present paper is to study the thermodynamical behavior of the universe considered
in Ref. [36] by means of its description of the emergence of space and the energy balance relation.
Our analysis shows that the first law of thermodynamics holds and is actually the Clausius relation.
The validity of the Clausius relation means that the evolution of the universe can be deemed as a series
of quasistatic processes. We also show that the GSLT holds in the total accelerated evolutionary history
of the universe and the total entropy of the universe tends to the maximal value when the universe
evolves to the de Sitter universe by considering two typical examples. The results show that there
exists a good thermodynamic description for such a universe.

The paper is organized as follows. In Section 2, we briefly review the model which describes the
evolution of the universe based on the emergence of space and the energy balance relation. In Section 3,
we show that the first law of thermodynamics holds in the universe descried by the present model.
In Section 4, the validity of the GSLT and thermodynamic equilibrium are shown; we also obtain
the constraints imposed on the energy density and the pressure of the matter. Our conclusions are
presented in Section 5. We use units c = h̄ = 1.

2. Dynamical Evolution Equations of the Universe Based on the Emergence of Space and the
Energy Balance Relation

Let us begin with the FRW metric which describes the homogeneous and isotropic universe

ds2 = −dt2 + a2(t)
(

dr2

1− kr2 + r2dΩ2
)
= habdxadxb + R2dΩ2, (1)



Entropy 2019, 21, 167 3 of 10

where R = a(t)r is the comoving radius, hab = diag
(
−1, a2

1−kr2

)
is the metric of 2-spacetime (x0 =

t, x1 = r) and k = 0, ±1 denotes the curvature parameter. Padmanabhan [29,30] thought that our
universe is asymptotically de Sitter and its evolution can be described by the following law

dV
dt

= L2
p (Nsur − Nbulk) , (2)

where Lp is the Planck length,

Nsur =
4π

H2L2
p

(3)

is the number of the surface degrees of freedom on the Hubble horizon in which H is the
Hubble constant,

Nbulk =
|E|

(1/2)kBT
= −2(ρ + 3p)V

kBT
(4)

is the number of the bulk degrees of freedom in which T is the temperature of the horizon, kB
is the Boltzmann constant, |E| = |(ρ + 3p)V| is the Komar energy and V = 4π

3H3 is the Hubble
volume. The law (2) indicates that the difference between Nsur and Nbulk drives the universe towards
“holographic equipartition” (i.e., Nsur = Nbulk).

According to the analysis of Ref. [36], the temperature of Hubble horizon of the flat FRW universe
is employed as

T =
H
2π

(
1 +

Ḣ
2H2

)
. (5)

Here, we assume 1 + Ḣ
2H2 > 0. The study of quantum field theory in a de Sitter space [37] showed

that a freely falling observer would measure a temperature T = H/2π on the de Sitter horizon when
the radius of the de Sitter horizon is taken as 1/H . Our universe is asymptotically de Sitter, so the
temperature of the Hubble horizon should tend to H/2π when t becomes large enough. In fact, the
approximation | Ḣ/2H2 |� 1 has been used in calculating the energy flow crossing the apparent
horizon [23,24,38,39]. Therefore, it seems to be reasonable to assume 1 + Ḣ

2H2 > 0 when we investigate
the thermodynamic properties and dynamical behavior of the accelerated universe. In Section 4,
we will show the validity of the assumption 1 + Ḣ

2H2 > 0 by two typical examples.
Thus, inserting Equations (3)–(5) into Equation (2), we obtain the Friedmann acceleration equation

ä
a
= H2 + Ḣ = −

4πL2
p

3
(ρ + 3p)− Ḣ

2
− Ḣ2

2H2 . (6)

On the other hand, according to the energy balance relation ρVH = TS [40], we obtain another
evolution equation of the universe

H2 =
8πL2

p

3
ρ− Ḣ

2
. (7)

Combining Equations (6) and (7), the following equation

ρ̇ + 3H(ρ + p) =
3

8πL2
p

(
Ḧ
2
− Ḣ2

H

)
(8)

can be obtained. In this way, we obtain the dynamical evolution equations of the universe based on
the emergence of space and the energy balance relation. It was shown [36] that it is more common
to describe the evolution of the universe in such a thermodynamic way because the solutions of the
dynamical evolution equations in such a model include the solutions obtained from the standard
general relativity theory.
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3. First Law of Thermodynamics for the Present Model

Now that the dynamical evolution of the universe based on the emergence of space and the energy
balance relation has been investigated in Ref. [36], it is natural to ask whether the thermodynamic
properties (the first law of thermodynamics and the GSLT) can hold in such a model. Furthermore, we
may ask what are the constraints on the evolution of the universe if the GSLT holds. In this and the next
sections, we will discuss the first law of thermodynamics and the GSLT in such a model respectively.

The study of quantum field theory in a de Sitter space [37] showed that a freely falling observer
would measure a temperature T = κ/2π on the de Sitter horizon where κ is the surface gravity. For
the Q space, Bousso [41] argued its thermodynamical description and showed that the first law of
thermodynamics −dE = TdS holds on the apparent horizon. Furthermore, Cai and Kim [38] derived
the Friedmann equation of the FRW universe with any spatial curvature based on the first law of
thermodynamics. Whether the first law of thermodynamics holds on the horizons in different gravity
theories have been studied generally (for example, see, [42–44]).

Now let us show that the first law of thermodynamics holds in the universe described by the
present model. The amount of energy crossing the Hubble horizon during the time interval dt [41,45] is

− dE = 4πR2
hTµνkµkνdt =

4π

H2 (ρ + p)dt, (9)

where Rh is the Hubble radius and kµ is the future directed ingoing null vector field.
Using Equations (6) and (7), we obtain

ρ + p = − Ḣ
4πL2

p

(
1 +

Ḣ
2H2

)
, (10)

so the amount of energy crossing the Hubble horizon during the infinitesimal time interval is
expressed as

− dE = − Ḣ
H2L2

p

(
1 +

Ḣ
2H2

)
dt. (11)

On the other hand, we can obtain

TdS = − Ḣ
H2L2

p

(
1 +

Ḣ
2H2

)
dt, (12)

where we use the definition of temperature Equation (5) and the area-entropy relation S = A
4L2

p
= π

H2L2
p
.

Comparing Equations (11) with (12), we obtain the following equality

− dE = TdS, (13)

which implies that the first law of thermodynamics holds in the present model.
It is important to note that the strong energy condition ρ + 3p ≥ 0 is broken from Equation (4).

However, we can see that the null energy condition ρ + p ≥ 0 can be satisfied when Ḣ is nonpositive
from Equation (10) because the term 1 + Ḣ

2H2 which is related with the temperature of the Hubble
horizon is positive. In fact, it satisfies the GSLT for the accelerated universe which satisfies the null
energy condition.

It is also worth mentioning that the amount of heat flux crossing the Hubble horizon during the
infinitesimal time interval, δQ , is the change of the energy inside the Hubble horizon −dE. The minus
appears due to the fact that the energy inside the Hubble horizon decreases when the heat flux flows out
of the Hubble horizon, so the law (13) is actually Clausius relation δQ = TdS. Therefore, the evolution
of the universe in the present model can be deemed as a series of quasistatic processes because Clausius
relation works only when the thermodynamic process is reversible. Thus, the temperature of the
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matter inside the Hubble horizon can be taken as the temperature of the Hubble horizon. This is an
important relation that we will use when we discuss the GSTL in the next section.

4. Validity of the GSLT and Thermodynamic Equilibrium

We have shown that the first law of thermodynamics holds on the horizon in the previous section;
it is natural to ask if the GSLT holds in such a model. In the cosmological context, the GSLT denotes
that the sum of the entropy of the cosmological horizon, Sh, plus the entropy of the matter inside the
horizon, Sm, is a nondecreasing function. That is to say, the GSLT can be formulated as [31,32,46]

Ṡ = Ṡm + Ṡh ≥ 0. (14)

Further, if the universe can reach an equilibrium state eventually, then the total entropy must
satisfy the inequality

S̈ = S̈m + S̈h ≤ 0 (15)

at least at the last stage of evolution. The physical meaning of this inequality can be explained by the
fact that the entropy of the universe increases less and less and reaches a maximum if the universe
reaches an equilibrium state eventually.

Here we would like to point out that inequality (15) is slightly different from the one in the
references [47,48] where the authors used the expression in which the second derivative of the total
entropy is less than 0, i.e., S̈ = S̈m + S̈h < 0. However, we allow the equal sign of the inequality (15) to
be valid because it is possible for the total entropy to take the maximum value even if the first and
second derivatives of the total entropy are both zero. In fact, the first and second derivatives of the
total entropy are both zero when the universe evolves into the de Sitter universe.

According to the Gibbs relation and the conclusion of the previous section that the evolution
of the universe can be deemed as a series of quasistatic processes, we know that the matter of the
universe satisfies [34,35,49]

TdSm = d(ρV) + pdV = (ρ + p)dV + Vdρ, (16)

where V = 4π
3H3 is the Hubble volume and T equals to the temperature of the Hubble horizon.

Substituting Equations (5), (7) and (10) into Equation (16), we obtain the change rate of the entropy of
the matter

Ṡm =
2π

H2L2
p
(
2H2 + Ḣ

) [ Ḧ
2
+ 2HḢ +

Ḣ3

H3 +
2Ḣ2

H

]
. (17)

For the Hubble horizon, the change rate of the entropy is

Ṡh = − 2πḢ
H3L2

p
. (18)

Therefore, we can get the first derivative of the total entropy

Ṡ = Ṡm + Ṡh =
2π

H3L2
p
(
2H2 + Ḣ

) [ ḦH
2

+
Ḣ3

H2 + Ḣ2
]

(19)

and the second derivative of the total entropy

S̈ = S̈m + S̈h = π
L2

p

[
−34H2Ḣ4 − 10Ḣ5 + 12H3Ḣ2Ḧ + 4HḢ3Ḧ + 2H6 ...

H − H4 (20Ḣ3 + Ḧ2 − Ḣ
...
H
)

H6
(
2H2 + Ḣ

) ]
. (20)
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Before we discuss the GSLT, let us obtain the constraints which are imposed on the energy density
and pressure of the matter by the present model. Equation (10) can be transformed into

Ḣ2 + 2H2Ḣ + 8πL2
p H2(ρ + p) = 0. (21)

Solving this equation, we obtain the solutions

Ḣ = −H2 ± H
√

H2 − 8πL2
p(ρ + p), (22)

which imply that the sum of the energy density and the pressure must satisfy the relation

ρ + p ≤ H2

8πL2
p

. (23)

This constraint gives the upper bound of the sum of the energy density and the pressure.
Now we investigate the GSLT in the present time and the last time of the evolution, respectively.

(i) The GSLT in the present time of the evolution. At the present time, we assume that the scale
factor behaves as

a(t) ∝ tα (24)

where α is a constant greater than unity because the universe is in accelerating expansion. This form
can be obtained when the relation 8πL2

p (ρ + p) ∝ H2 is satisfied. In Ref. [36], it has been proven that

the form of the scale factor is a(t) = t
2

3(1+ω) if the equation of state of the matter is assumed as p = ωρ

where ω is a constant that is not equal to −1. In fact, a large number of papers on the accelerated
expansion of the universe have assumed that the scale factor is the form (24). For example, the authors
have pointed out that the rate of growth a(t) ∝ t2 is consistent with supernova observations in Ref. [50].
After some calculations, we obtain

H =
α

t
, Ḣ = − α

t2 , Ḧ =
2α

t3 . (25)

Inserting Equation (25) into Equation (19), we obtain the change rate of the total entropy

Ṡ =
2πt
α3L2

p
(26)

which is greater than zero obviously, so the GSLT is satisfied in the present time of the evolution.
The term related with the temperature of the Hubble horizon, 1 + Ḣ

2H2 , could be derived from
Equation (25) as 1 − 1

2α , which shows that the temperature of the Hubble horizon is positive for
the current accelerated expansion of the universe (α > 1). Further, we find that the null energy
condition holds in the present time of the evolution because Equation (10) is positive.

(ii) The GSLT in the last time of the evolution. The Friedmann acceleration Equation (6) is derived
from the fact that our universe is asymptotically de Sitter, so the scale factor a(t)→ AeH0t when time
t→ ∞ where A and H0 are both positive constants. Thus, the scale factor can be taken as

a(t) ∝ sinh(H0t). (27)

Under this assumption, we obtain the following physical quantities

H =
ȧ
a
= H0 coth(H0t) (28)

and
Ḣ = −H2

0csch2(H0t), Ḧ = 2H3 coth(H0t)csch2(H0t). (29)
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Inserting Equations (28) and (29) into Equation (19), we obtain

Ṡ =
π(8 cosh(2H0t) + cosh(4H0t)− 1)sech4(H0t)sech(2H0t) tanh(H0t)

4H0L2
p

≥ 0, (30)

which implies that the total entropy is nondecreasing and the GSLT is satisfied. The derivative of the
above expression, i.e., the second derivative of the total entropy is

S̈ = −π(54 cosh(2H0t)− 52 cosh(4H0t) + 10 cosh(6H0t) + cosh(8H0t)− 45)sech6(H0t)sech2(2H0t)
16L2

p
. (31)

Analyzing expression (31), we obtain the conclusion S̈ ≤ 0 for the sufficiently large time t which
implies that the universe will tend to thermodynamic equilibrium. In order to see the conclusion
Ṡ ≥ 0 and S̈ ≤ 0 clearly, we draw Figures 1 and 2 to show the variation of the first and second
derivatives of the total entropy in the time range of 1/H0 to 6/H0, respectively. The term related with
the temperature of the Hubble horizon, 1 + Ḣ

2H2 , could be derived from Equations (28) and (29) as
1
2

[
1 + tanh2(H0t)

]
. This term is positive so the temperature of the Hubble horizon is positive. Further,

we obtain the conclusion from Equation (10) that the null energy condition holds in the last time of
the evolution.

1 2 3 4 5 6

0.00

0.02

0.04

0.06

0.08

0.10

0.12

t

S 
H

0
L

p2
�2
Π

Figure 1. The variation of the first derivative of the total entropy in the time range of 1/H0 to 6/H0.
This figure shows that the total entropy is nondecreasing and the GSLT (generalized second law of
thermodynamics) is satisfied.

At the end of this section, we investigate the special solution ρ + p = 0 which depicts the de Sitter
universe. When the equality ρ + p = 0 is satisfied, we can obtain the solutions Ḣ = 0 or Ḣ = −2H2.
For the solution Ḣ = −2H2, we see a(t) ∝ t1/2 which implies that the universe is not in accelerating
expansion. This is inconsistent with the current assumption. Hence the unique solution is Ḣ = 0
which implies that H is a constant for the de Sitter universe. Substituting the solution Ḣ = 0 into
Equation (19), we obtain Ṡ = 0 which implies that the GSLT is satisfied for the de Sitter universe.
According to the above analysis, we conclude that the entire accelerated evolutionary process of the
universe satisfies the GSLT and the total entropy of the universe tends to the maximal value which
equals to the total entropy of the de Sitter universe in the present model.
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Figure 2. The variation of the second derivative of the total entropy in the time range of 1/H0 to 6/H0.
This figure shows that the universe will tend to thermodynamic equilibrium for the sufficiently large
time t.

5. Conclusions

In this paper, we study the first law of thermodynamics and the GSLT in the universe described
by the emergence of space and the energy balance relation. First, we obtain the evolution equations
of the universe based on the emergence of the space and the energy balance relation. In the process
of derivation of the temperature of the Hubble horizon, we assume that the term 1 + Ḣ/H2 must
be greater than zero. This assumption is reasonable because this term equals exactly to unity for
the de Sitter universe and our universe is asymptotically de Sitter. Indeed, we show the validity of
the assumption for the accelerated universe whose evolution law is a(t) ∝ tα or a(t) ∝ sinh(H0t) in
Section 4. Next, we show that the first law of thermodynamics −dE = TdS is satisfied for the present
model. In fact, the validity of the first law of thermodynamics implies that the Clausius relation
δQ = TdS is satisfied in the present cosmological context. Therefore, the temperature of the matter
inside the universe can been taken as the temperature of the Hubble horizon because the Clausius
relation applies only to variations between the nearby states of local thermodynamic equilibrium.

Then, we analyze the GSLT and get the change rate of the total entropy according to the Gibbs
relation and the area-entropy relation. Furthermore, we obtain the constraints which are imposed on
the energy density and pressure of the matter by the present model. These constraints are ρ + p ≤ H2

8πL2
p

and ρ + 3p < 0 respectively. To arrive at more specific results, we consider two typical examples in
which the scale factor is taken as a(t) ∝ tα and a(t) ∝ sinh (H0t). The choice of the scale factor is based
on the astronomical observation and the consistency with the current model. Whether the scale factor
is taken as a(t) ∝ tα or a(t) ∝ sinh (H0t), the GSLT and these constraints are satisfied. At the same
time, the null energy condition ρ + p ≥ 0 is also satisfied. In addition, we find that the universe will
reach a thermodynamic equilibrium state and the total entropy reaches a maximal value when time t
tends to infinity. Hence we may conclude that there exists a good thermodynamic description for such
a universe.

Finally, we must point out that these evolution equations have been obtained and the dynamical
properties of such a universe have been studied in Ref. [36]. However, here we analyze
the thermodynamic properties for this universe and find that the first law of thermodynamics
and the GSLT are satisfied for two typical examples. The conclusions presented here further
support the thermodynamic interpretation of gravity and reveal the connection between gravity
and thermodynamics.
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