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Abstract: Multi-scale permutation entropy (MPE) is a statistic indicator to detect nonlinear dynamic
changes in time series, which has merits of high calculation efficiency, good robust ability, and
independence from prior knowledge, etc. However, the performance of MPE is dependent on the
parameter selection of embedding dimension and time delay. To complete the automatic parameter
selection of MPE, a novel parameter optimization strategy of MPE is proposed, namely optimized
multi-scale permutation entropy (OMPE). In the OMPE method, an improved Cao method is proposed
to adaptively select the embedding dimension. Meanwhile, the time delay is determined based on
mutual information. To verify the effectiveness of OMPE method, a simulated signal and two
experimental signals are used for validation. Results demonstrate that the proposed OMPE method
has a better feature extraction ability comparing with existing MPE methods.

Keywords: rotating machinery; parameter selection; multi-scale permutation entropy; mutual
information; improved Cao method

1. Introduction

Permutation entropy [1,2], as a statistic indicator to detect nonlinear dynamic changes, has been
widely used in the fault feature extraction of rotating machinery [3—6]. For comprehensive analysis,
multi-scale permutation entropy (MPE) is proposed to enhance the ability of character description
of permutation entropy (PE) [7-9]. MPE has obvious merits in describing the complexity in time
series, such as high calculation efficiency, good robust ability, and independence from prior knowledge,
etc. Recently, more attention has been paid to the application of MPE in fault diagnosis of rotating
machinery [10-13]. Zhao et al. [14] applied MPE and the hidden Markov model to identify different
fault types of the rolling bearings. Wu et al. [15,16] used MPE to extract the fault features and then
applied a support vector machine to identify the bearing fault types. Tiwari et al. [17] combined MPE
with an adaptive neuro fuzzy classifier to recognize incipient bearing faults. Zheng et al. [18] utilized
the MPE and support vector machines to recognize various bearing faults. Yao et al. [19] employed
the MPE to describe the fault characteristics and then used the extreme learning machine for bearing
pattern identifications.

These works have successfully applied MPE in fault diagnosis of rotating machinery. However,
the performance of MPE is dependent on the parameters setting, including embedding dimension m
and time delay 7. If the embedding dimension m and time delay T are too small, the reconstruction
vector will contain few states, which cannot reflect the real dynamic characteristics of the signal [20,21].
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On the other hand, if embedding dimension m and time delay 7 are too big, the reconstructed phase
space will homogenize the time series, leading to an inappropriate entropy value estimation [22].
Therefore, the parameter selection of embedding dimension m and time delay 7T plays an important
role in the MPE method [2]. Until now, most researchers have selected MPE parameters according to
their experience, thereby, an automatic selection of MPE parameters has become an urgent issue to
be solved.

Aiming to automatically select the optimum parameters of MPE, a novel parameter optimization
strategy of MPE is proposed in this paper. We call this method optimized multi-scale permutation
entropy (OMPE). In the OMPE method, an improved Cao method is proposed to adaptively select
embedding dimension m [23]. Meanwhile, the time delay T is determined based on mutual information
(MI) [24]. To verify the effectiveness of the OMPE method, a simulated signal and two experimental
signals are used for validation. Results demonstrate that the proposed OMPE method has a better
feature extraction ability compared with existing MPE methods.

The organization of the rest of this paper is as follows. Section 2 describes the proposed OMPE
method. Section 3 validates the advantages of OMPE using one simulated signal. The effectiveness of
the OMPE method is validated using two experimental cases in Section 4. Finally, Section 5 summarizes
the conclusions.

2. Optimized Multi-Scale Permutation Entropy

Permutation entropy (PE), as a dynamic indicator, is proposed to reflect non-linear behavior of
time series by Bandt and Pompe [1]. PE has obvious merits of high calculation efficiency, sensitivity to
the dynamic changes, and robustness to noise in estimating the complexity of time series. However, PE
confronts challenges in the field of fault feature extraction due to the fault information being embedded
in large frequency bands in the vibration signals of rotating machinery. To overcome this shortcoming,
multi-scale permutation entropy (MPE) is proposed to enhance the fault feature extraction ability of
PE, which can measure the complexity of time series over multi scales.

Since the order of the amplitude is considered in the phase space that is reconstructed by the
embedding dimension m and time delay 7, the determination of the embedding dimension m and time
delay T play an important role in the final performance of MPE. In this study, an optimized multi-scale
permutation entropy (OMPE) is proposed to free the parameter selection of MPE. First, the time delay is
calculated using mutual information. Based on the obtained time delay 7, we determine the embedding
dimension m based on an improved Cao method. Details are described in Sections 2.1 and 2.2.

2.1. Time Delay Calculation Based on Mutual Information

Mutual information (MI) utilizes the information change between the reconstruction space and
original time series to select the optimal time delay [24]. Since MI has merits of easy to perform, high
calculation efficiency, etc., this paper introduces the MI method to select the optimal time delay of MPE.

For an arbitrary signal X = {x;,i=1,2,---,N}, it can be reconstructed by time delay 7
as follows:

Y={yi} = {xi xipc}, i=1,2, N=7T, M

According to Ref. [25], the Shanon entropy of X and Y can be calculated as:

N
H(X) = =} p(xi)logy(p(x:)), 2

i=1

n—t

H(Y) =~ L p(yi) logy(p(vi)), ®)

where the p(x;) represents the probability that X = x;, and p(y;) represents the probability that Y = y;.
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Then, the mutual information between X and Y can be expressed as:

IX,Y) = H(Y) — H(Y|X)
N N—7 XiYj ’ !

The mutual information I(X, Y) measures the information change between the reconstruction
space and original time series, which can be utilized to determine the time delay 7. According to [24],
the first local minimum point of mutual information I(X,Y) under different time delay 7 is the
optimum time delay.

2.2. Embedding Dimension Calculation Based on Improved Cao Method

Cao method [23] utilizes the distance variation of the nearest neighbor points in the reconstruction
phase space to determine the optimum embedding dimension. It is regarded as an improvement of the
false nearest neighbor (FNN) method [26], as it can estimate more appropriate embedding dimension
than the traditional FNN method [23]. In the original Cao method, when the average distance of
the neighbor points stops changing at some embedding dimension my, the mg + 1 is the optimal
embedding dimension. However, the embedding dimension m is determined by empirical experience
in the original Cao method, which is manual and unsuitable for big data analysis or intelligent fault
diagnosis. Therefore, an improved Cao method with adaptive threshold is proposed to automatically
determine the optimal embedding dimension. In this paper, the Chebyshev distance is used to measure
the performance of MPE with a different embedding dimension m. The embedding dimension m
with the largest Chebyshev distance represents that the MPE values have the largest class separation
distance. Therefore, the proposed OMPE can extract the most discriminative MPE value as fault
features. The whole procedures of the proposed improved Cao method can be divided into two parts:
embedding dimension calculation (in Section 2.2.1.) and threshold adjustment (in Section 2.2.2.).

2.2.1. Embedding Dimension Calculation

Based on the MI principle, we can select the time delay 7. On the basis of selected time delay 7,
the embedding dimension can be determined using the Cao method in the following steps:

Step 1: For an arbitrary signal X = {x;,i = 1,2,---, N}, it can be reconstructed by time delay ©
and embedding dimension m as follows:

Y(m) = yilm) = {x,%ire, - Fipguoe py i =12, N (m=1)7 ©)

Note that when m = 1, Equation (5) equals Equation (1).
Step 2: Calculate the distance a(i, m) of neighbor points in the phase space.

. yi(m +1) = Yy (m+ D[]
a(i,m) = : ,i=1,2,---,N—mr, 6)
) = 1) = gy ()]

where n(i,m) (1 < n(i,m) < N —mt) is an integer such that y,,(; ) (m) is the nearest neighbor of
yi(m) in the m-dimensional reconstructed phase space. The ||e|| represents the Chebyshev distance as
expressed in Equation (7).

[lys(m) =y (m)ll = | maxc I%sje = e )

Step 3: Calculate the average of all a(i, m) using Equation (8).
1 N-mt

Y. a(i,m) ®)

i=1

E(m)

:N—mr
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Step 4: Use E(m) to calculate E1(m) as expressed in Equation (9).

E(m+1)

El(m) = E(m)

©)
In the original Cao method, E1(m) stops changing when m is greater than some value m.
Then mg + 1 is the desired embedding dimension. However, Cao doesn’t describe how to determine
mp. Hence, we propose a new threshold to determine the embedding dimension in Step 5.
Step 5: Define the increment AE1(m) as follows:

AE1(m) = E1(m +1) — E1(m) (10)

when AE1(m +1) < kAE1(m), m + 1 is the desired embedding dimension. Here, k is the threshold
of E1(m). In other words, k determines the embedding dimension. If k is too big, the embedding
dimension will be too low, the reconstruction vector will contain too few states which cannot reflect the
real dynamic characteristics of the signal; If k is too small, the embedding dimension will be too high,
the reconstructed phase space will homogenize the time series resulting inappropriate estimation [22].
Therefore, a novel strategy is proposed to obtain appropriate parameter k in this paper.

2.2.2. Threshold Adjustment using Chebyshev Distance

To obtain an appropriate parameter k, a novel strategy is proposed in this paper. In this method,
the Chebyshev distance is used to measure the performance of MPE under different parameter k’s.
The parameter k with the largest Chebyshev distance is the optimum threshold for the improved
Cao method.

Suppose that we have obtained the time delay T according to Section 2.1., the parameter k of
proposed improved Cao method contains six calculation steps as following.

Step 1: Set the maximum searching range k;;, and stride ks, and initialize parameter k = k.

Step 2: Calculate embedding dimension i according to Section 2.2.1.

Step 3: Calculate the MPE value using the obtained T and .

Step 4: Suppose there are c categories training samples, let the mpe, (my, T, S) represent the MPE
value of category a using scale S, time delay T and embedding dimension m;. Calculate the Chebyshev
distance D,;, between each categories according to Equation (11), then it will be ¢(c — 1) /2 distance.

Doy = |[mpea — mpey|| = max [mpeq(my, 7, j) — mpey (my, T, )] (11)
0<j<S
Step 5: Calculate the average distance DX according to Equation (12).

k2 )
DF = WZZDU (12)

Here,D* represents the average distance between different categories, which can be regarded as
the class separation distance. The parameter k with the largest D¥ represents that the MPE values have
the largest class separation distance.

Step 6: Repeat step 1-5 to calculate all the D¥ under each parameter k. The kopt corresponding to
the maximum DF .y is the optimum threshold for the improved Cao method.

The whole procedures of proposed improved Cao method can be seen in Figure 1.
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Figure 1. Flowchart of proposed improved Cao method.
2.3. Procedures of OMPE Method

Generally, four steps are required in our proposed OMPE as follows:

Step 1: Apply the MI method to calculate the time delay of MPE as mentioned in Section 2.1.
Then the optimal time delay 7,,+ can be obtained.

Step 2: Determine the threshold of the proposed improved Cao method which is described in
Section 2.2.2. Then the optimal threshold k,,¢ can be obtained.

Step 3: Utilize the obtained threshold k,, calculate the optimal time embedding dimension 71, ¢
of MPE by the proposed improved Cao method as mentioned in Section 2.2.1.

Step 4: Calculate the MPE value using the obtained optimum time delay 7,,+ and optimum
embedding dimension 1.

The flowchart of the OMPE is illustrated in Figure 2.

The proposed OMPE can automatically and adaptively select the optimum time delay 7,,; and
embedding dimension m,,: of MPE for an arbitrary signal. Since the adaptive threshold uses the
Chebyshev distance to choose the embedding dimension m with the largest class separation distance,
the proposed OMPE can extract the most discriminative MPE value as fault features, resulting in
higher classification accuracy.
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Time series
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Calculate optimal time delay 7, using MI

y

Determine the optimal threshold %,

y

Calculate optimal embedding dimension 1,
using proposed improved Cao method with £,

opt

Calculate the MPE using t,,, and m,,

Figure 2. Flowchart of the proposed optimized multi-scale permutation entropy (OMPE).
3. Simulation Validation

In this section, three bearing signals with different fault types are simulated for validation,
including ball fault (BF), inner race fault (IRF) and outer race fault (ORF). The details of the three
bearing theoretic models can be referred to in [27].

Here, we set the sampling frequency at 20,480 Hz, the data length N = 2048 points, the rotating
frequency fr = 50 Hz, intrinsic frequency f, = 2548 Hz, outer race fault characteristic f, = 203.9 Hz
with added noise SNR = —18.626 dB, inner race fault characteristic f; = 296.1 Hz with added noise
SNR = —27.91 dB, and ball fault characteristic fp = 262 Hz with added noise SNR = —36.15 dB. Figure 3
shows the time domains of three simulated bearing signals and their corresponding noised signals.

s (a) i Bal! fault (Bf) i (b) i BF' with adclied noise'

IR:F with ad:ded nois.e

OR:F with added nois:e

20 002 004 006 008 0.1-10g 002 004 006 008 0.1
Timef[s] Time[s]
Figure 3. The time domains of three simulated bearing signals: (a) Ball fault (BF); (b) BF with added

noise; (c¢) inner race fault (IRF); (d) IRF with added noise; (e) outer race fault (ORF); (f) ORF with
added noise.

The proposed method is applied to analyze these simulated signals as described in Section 2. First,
the searching area of parameter k is set from 0.4 to 2.0, and the stride is set to be 0.1. The threshold
k is used to determine the embedding dimension of MPE. If k is set smaller than 0.4, the embedded
dimension of MPE will be too large. This will cause that the MPE value cannot be obtained. Otherwise,
if k is set larger than 2, a smaller embedding dimension of MPE will be generated, resulting in an
inappropriate MPE values for complexity estimation. Based on the above reasons, the range of
parameter k is set from 0.4 to 2. The result of parameter k is plotted in Figure 4. As seen, the maximum
value is 0.3265 and the corresponding k = 0.5. Therefore, we set k = 0.5. Second, the MI and improved
Cao method is used to calculate the time delay T and embedding dimension m. The optimum
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embedding dimension and optimum time delay is shown in Table 1. Finally, the MPE can be calculated
using the optimum embedding dimension and optimum time delay.

04 T T 1 1 1 T T T T T T T T T T
Max value:

o X=0.5
9 03f Y=0.3265 4
=}
<
@
kS i
o 0.2
<
151
=t
g 0.1 7]
m

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 04 05 06 07 08 09 1.0 1.1 1.2 13 14 15 16 1.7 1.8 19 2.0

k value [-]
Figure 4. The result of parameter k for the simulated signals.

Table 1. The parameter settings of fixed parameter (FIX), Mutual information (MI)-false nearest
neighbor (FNN) and proposed methods.

Parameters Embedding Dimension Time Delay
Methods BF IRF ORF BF IRF ORF

FIX method 6 6 6 1 1 1
MI-FNN method 4 4 4 3 2
Proposed OMPE method 6 9 5 3 2 2

For comparison, other parameter selection methods are also used to calculate the MPE value. The
first approach uses fixed parameter m = 6 and T = 1 (called the FIX method) as described in [18].
The second approach is to use MI to calculate the time delay T and false nearest neighbor (FNN) to
calculate embedding dimension m (called as MI-FNN method) [28]. Table 1 lists the parameter settings
of FIX and MI-FNN methods. As seen in Table 1, it can be found that the embedding dimension m
of FIX and MI-FNN methods are kept a constant value of 6 and 4, respectively. Only the proposed
OMPE method can adaptively select suitable embedding dimension m (6, 9 and 5) for different bearing
vibration signals.

The MPE values of three methods are plotted in Figure 5. As seen in Figure 5, it can be found
that the MPE values of three simulated signals can be clearly discriminated in each scale using the
proposed method. However, the MPE values can be barely discriminated in each scale using the FIX
method or MI-FNN method. This phenomenon can be explained in the following way. First, the OMPE
uses different parameter combinations for different kinds of signals, which can better reflect the real
dynamic characteristics of the signal. Second, the proposed OMPE method uses Chebyshev distance
to choose the embedding dimension m with largest class separation distance, therefore, the OMPE
method can discriminate the three bearing fault types significantly.
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Figure 5. The MPE values of three parameter selection methods.

4. Experimental Validation

In this section, two experiments are designed to prove the effectiveness of the proposed method.
In Experiment 1, a compound gear fault experiment is designed. In Experiment 2, a compound bearing
and unbalance rotor fault experiment is designed. Meanwhile, the FIX method and MI-FNN method
are also used for comparison. For the purpose of a fair comparison, five conditions are the same as
follows: (1) 10 scales MPE are used as input features; (2) the k-nearest neighbor (KNN) classifier [29,30]
is used as classifier to identify the different fault types; (3) the length of each sample is 2048 points;
(4) the KNN is trained by 50% of samples, and the rest samples are utilized to test the performance; (5)
each method runs 20 times to reduce the randomness.

4.1. Experiment 1: Compound Gear Fault

In this section, compound gear fault experiments were conducted on rotating machinery called
SpectraQuest Machinery Fault Simulator (MFS). The test rig is shown in Figure 6a,b. It consists of a
reliance electric motor driving a three-way gearbox with straight cut bevel gears. A magnetic clutch
(also called load) is mounted at the rear of the gearbox. In this paper, the load was 5 in-lbs of torque.
The different gear faults were simulated by replaced the fault gear (including pitting in the driving
tooth, the broken tooth in the driving tooth, the missing tooth in the driving tooth and crack in the
follower tooth, shows in Figure 7). An accelerometer was installed on the top of the gearbox to collect
the vibration signals. The sampling frequency was 12800 Hz and the rotating speed was 3000 rpm.

(a) (b)
Motor E = Load
-\ i

Speed controller %—g]
a

—1.| Follower gear

i

<4
|
L . | Gearbox Accelerometer|

Figure 6. (a) The machinery fault simulator system; (b) the layout of the test rig.

Driving gear
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@) )

| Piin | -
The broken tooth ft’

The missing tooth

Figure 7. Faulty gears: (a) pitting in the driving tooth (PT); (b) broken tooth in the driving tooth (BT);
(c) missing tooth in the driving tooth (MT); (d) crack in the follower tooth (CT).

In Experiment 1, eight fault types were introduced to the rotating machinery, including Normal
condition (NOR), pitting in the driving tooth (PT), broken tooth in the driving tooth (BT), missing
tooth in the driving tooth (MT), crack in the follower tooth (CT), pitting in the driving tooth with crack
in the follower tooth (PC), broken tooth in the driving tooth with crack in the follower tooth (BC), and
missing tooth in the driving tooth with crack in the follower tooth (MC). Each class has 100 samples
and there are a total of 800 samples (100 samples x eight fault types). The waveforms under different
fault types are shown in Figure 8. The class labels of eight fault types in Experiment 1 are shown in
Table 2.

@ NOR o - pT
1 -1
=@ BT , @ MT
B U oWMMWWMMMM
°E 2
2, CT 5 D PC
2 AAANVARABVAMAY imransabssnn s
< 1 -2
L@ BC , () MC
0 WWMWWM OWWWWWMWWW
720 0.02 0.04 006 008 01 0.12 0.14 0.16 72() 002 0.04 006 008 01 0.12 0.14 0.16

Time[s] Timels]

Figure 8. The waveforms under different fault type in Experiment 1: (a) Normal (b) pitting in the
driving tooth (PT) (b) broken tooth in the driving tooth (BT) (c) missing tooth in the driving tooth (MT)
(d) crack in the follower tooth (CT); (f) pitting in the driving tooth with crack in the follower tooth (PC);
(g) broken tooth in the driving tooth with crack in the follower tooth (BC); (h) missing tooth in the
driving tooth with crack in the follower tooth (MC).

Table 2. Optimum embedding dimension, optimum time delay and class labels in Experiment 1.

Fault Type
m PT MT CT PC MC BC NOR BT

Embedding dimension 5 6 6 6 6 7 6 7
Time delay 3 2 3 2 2 2 2 2
Class label 1 2 3 4 5 6 7 8

The proposed method is used in this test as described in Section 2. First, the searching area of
parameter k is set from 0.4 to 2.0, and the stride is set to 0.1. The result of parameter k is shown in
Figure 9. As seen the maximum value is 0.2205 and the corresponding k = 0.5. Therefore, we set
k = 0.5. Second, the MI and improved Cao method is used to calculate the time delay T and embedding
dimension m. The optimum embedding dimension and optimum time delay are shown in Table 2.
Third, the MPE value is calculated using the optimum embedding dimension and optimum time delay.
Last, the MPE value is used as the input of KNN classifier to identify different fault types. The mean
testing accuracy of the proposed method is 99.38%. One of the final classification results using the
proposed method is drawn in Figure 10 (testing accuracy 159/160 = 99.38%).
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Max value:
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Figure 9. The result of parameter k in Experiment 1.

0 Real Class,
e Classification Output
e (<o

[oe]
T

=

D
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G
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Sample labels

1 1 1 1
80 100 120 140 160
Sample number

Figure 10. Classification result of Experiment 1 using the proposed method.

For comparison, the FIX method and MI-FNN method are also tested. In addition, the traversal
method is also used for comparison (called the TM method). In the TM method, we test MPE with
different combinations of embedding dimension m and time delay 7. The ranges of embedding
dimension m and T are set as m = 3 to 7 and 7= 1 to 10. The result of TM method is shown in Figure 11.
The parameters with the highest testing accuracy are used for comparison, that is 99.30% with m = 6
and T = 2. The testing accuracies of four methods are shown in Figure 12.

1

0.98
0.96
0.94
0.92
0.90
0.88
0.86
0.84

0.82

0.80

Figure 11. Testing accuracy of compound gear fault using the traversal method (TM) method.
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100

Ne}
\O

O O
N ©

Testing accuracy [%]

NeJ
(o)}

\O
()

FIX MI+FNN ™ OMPE
Methods

Figure 12. The testing accuracies of the four methods in Experiment 1.

From Experiment 1, five conclusions can be drawn as follows: First, from Figure 11, we can find
the performance of MPE is indeed influenced by embedding dimension m and time delay 7 as we
mentioned in Section 1. Second, the FIX method performs the worst of the four methods. In [1], Bandt
and Pompe recommend m =3 to 7 and T = 1. However the MPE with time delay 2 and 3 performs
better than that with time delay 1. This can prove the optimum parameters of MPE are not always
in the range of Bandt and Pompe’s recommendation. Third, the MI-FNN method has the largest
standard variance. This may be attributed to the inaccurate embedding dimension estimation of FNN
method. Four, the proposed method performs a little higher than the TM method. This can prove that
using the same parameter for all samples may not be the best parameter selection strategy. Last, the
proposed method has the highest mean accuracy with the least standard variance. This is because in
the proposed method, the Chebyshev distance is used to choose the embedding dimension m with

the largest class separation distance. Therefore, the proposed OMPE method can extract the most
discriminative MPE value as fault features.

4.2. Experiment 2: Compound Bearing and Unbalance Rotor Fault

Experiment 2 is designed to prove the effectiveness of the proposed method in the application of
identification compound bearing and unbalance rotor fault. The test rig (shown in Figure 13a) contains
a drive motor, two rolling bearings, an unbalance rotor, a load, and a data acquisition system. The type
of test bearing is MB ER-12K (the right bearing in Figure 13a). The bearing fault was simulated by
replacing different fault bearings, including inner race fault (IRF), outer race fault (ORF), ball fault (BF)
and combination fault (CF) (shown in Figure 13c). The unbalance fault was simulated by attaching
weights on the unbalance rotor, as shown in Figure 13b. The parameters of the MFS are given in
Table 3.

(a) (b)
| Motor | Rotor J Load JTest bearingJAccelerometer . M Weight

Normal
[y NS

Figure 13. (a) The machinery fault simulator system; (b) the unbalance rotor and attaching weights; (c)
the testing bearings with five health conditions.
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Table 3. Working parameters of Experiment 2.

Bearing Type MB ER-12K
Number of rolling elements 8
Rolling element diameter 0.3125 inch
Pitch diameter 1.318 inch
Contact angle 0°
Sampling frequency 12,800 Hz
Rotating speed 3000 RPM

In Experiment 2, ten fault types are designed, including NOR, IRF, ORF, BF, CF, unbalance fault
(UN), inner race fault with unbalance fault (IRFUN), outer race fault with unbalance fault (ORFUN),
ball fault with unbalance fault (BFUN), and combination fault with unbalance fault (CFUN). Each class
has 100 samples and there are a total of 1000 samples (100 samples x 10 fault types). The waveforms
under different fault types are shown in Figure 14. The class labels of ten fault types in Experiment 2
are shown in Table 4.

BFUN

W%WM%WWWWWWW M«MMWMW -

CFUN

Amplitude (m/s°)

"0 002 004 006 008 01 012 0.4 0.6 0 002 0.04 006 008 0.1 012 0.14 0.16
Time[s] Time(s]

Figure 14. The waveforms of different fault types in Experiment 2: (a) BF; (b) ball fault with unbalance
fault (BFUN); (¢) CF; (d) combination fault with unbalance fault (CFUN); (e) IRF; (f) inner race fault
with unbalance fault (IRFUN); (g) NOR; (h) outer race fault with unbalance fault (ORFUN); (i) ORF; (j)
unbalance fault (UN).

Table 4. Optimum embedding dimension, optimum time delay and class labels in Experiment 2.

Fault Type
m BF CF IRF NOR ORF BFUN CFUN IRFUN ORFUN UN

Embedding 6 6 6 5 6 6 6 6 6 7
dimension

Time delay 3 2 3 3 2 3 3 3 3 2
Class label 1 2 3 4 5 6 7 8 9 10

The proposed method is used in this test as described in Section 2. The whole procedure is the
same as Experiment 1. The searching area of parameter k is set from 0.4 to 2.0, and the stride is set to
be 0.1. The result of parameter k is shown in Figure 15. As seen the maximum value is 0.1654 and the
corresponding k = 0.5. Therefore, we set k = 0.5. The optimum embedding dimension and optimum
time delay is shown in Table 4. The mean testing accuracy of the proposed method is 80.6%. One of
the classification results using the proposed method is drawn in Figure 16 (testing accuracy 162/200 =
81%).
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0.15[
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Max value:
X=0.5
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04 05 06 07 08 09 10 LI 12 13 14 15 16 17 18 19
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Figure 15. The result of parameter k in Experiment 2.

20
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16
14
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Figure 16. Classification result of Experiment 2 using the proposed method.

For comparison, the FIX method and MI-FNN method are also tested. In addition, the traversal
method is also used for comparison. In the TM method, we test MPE with different combinations of
embedding dimension m and time delay 7. The ranges of embedding dimension m and T are set as m =
3to7 and 7= 1 to 10. The result of the TM method is shown in Figure 17. The highest testing accuracy
is 79.15% with m = 4 and 7= 1. The testing accuracies of four methods are shown in Figure 18.

Figure 17. Testing accuracy of compound bearing and unbalance rotor fault using the TM method.
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Figure 18. Testing accuracies of four methods in Experiment 2.

In Experiment 2, three conclusions can be drawn as follows. First, MPE using FIX does not
perform well with time delay 7= 1 (as seen in Figure 17). This means the fixed parameter may not
be suitable for all cases. Second, in Experiment 2, the MI-FNN method performs worse than the FIX
method with a lower testing accuracy. This phenomenon can be attributed to the inaccurate embedding
dimension estimation of the FNN method. Last, the proposed OMPE method has the highest testing
accuracy with the least standard variance. Above all, our OMPE method can enhance the feature
extraction ability compared with other three methods.

5. Conclusions

This paper proposes a parameter selection approach for MPE, namely optimized MPE (OMPE).
The mutual information and improved Cao method are applied to select the time delay and embedding
dimension of MPE. The performance of OMPE is validated using both simulated and experimental
signals. Test results demonstrate that OMPE has the best feature extraction performance with the
highest classification accuracy comparing with other three methods. The main contributions of this
paper are as follows:

(1) A parameter selection strategy is proposed to find the optimum couple of embedding
dimension and time delay of MPE;

(2) OMPE can enhance the feature extraction ability with help of parameter optimization process;

(3) Simulated and experimental signals show that OMPE method has a better performance in
describing the dynamic characteristics of vibration signal.

In this preliminary study, the parameter selection strategy was validated in the MPE method.
Further validation in hierarchical permutation entropy and composite multi-scale permutation entropy
will be considered in our future work.
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