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Abstract: In this review, we outline some principal theoretical knowledge of the properties of
frustrated spin systems and magnetic thin films. The two points we would like to emphasize: (i) the
physics in low dimensions where exact solutions can be obtained; (ii) the physics at phase boundaries
where interesting phenomena can occur due to competing interactions of the two phases around
the boundary. This competition causes a frustration. We will concentrate our attention on magnetic
thin films and phenomena occurring near the boundary of two phases of different symmetries.
Two-dimensional (2D) systems are in fact the limiting case of thin films with a monolayer. Naturally,
we will treat this case at the beginning. We begin by defining the frustration and giving examples
of frustrated 2D Ising systems that we can exactly solve by transforming them into vertex models.
We will show that these simple systems already contain most of the striking features of frustrated
systems such as the high degeneracy of the ground state (GS), many phases in the GS phase diagram
in the space of interaction parameters, the reentrance occurring near the boundaries of these phases,
the disorder lines in the paramagnetic phase, and the partial disorder coexisting with the order at
equilibrium. Thin films are then presented with different aspects: surface elementary excitations
(surface spin waves), surface phase transition, and criticality. Several examples are shown and
discussed. New results on skyrmions in thin films and superlattices are also displayed. By the
examples presented in this review we show that the frustration when combined with the surface effect
in low dimensions gives rise to striking phenomena observed in particular near the phase boundaries.

Keywords: frustration; phase transition; reentrance; disorder lines; surface spin waves;
magnetic thin films; theory; simulation

1. Introduction

Extensive investigations on materials have been carried out over the past three decades. This is due
to an enormous number of industrial applications which drastically change our lifestyle. The progress
in experimental techniques, the advance on theoretical understanding, and the development of
high-precision simulation methods together with the rapid increase of computer power have made
possible the rapid development in material science. Today, it is difficult to predict what will be
discovered in this research area in ten years.

The purpose of this review is to look back at early and recent results in the physics of frustrated
spin systems at low dimensions: 2D systems and magnetic thin films. We would like to connect these
results, published over a large period of time, on a line of thoughts: physics at phase boundaries.
A boundary between two phases of different orderings is determined as a compromise between
competing interactions, each of which favors one kind of ordering. The frustration is thus minimum
on the boundary (see reviews on many aspects of frustrated spin systems in Ref. [1]). When an
external parameter varies, this boundary changes and we will see in this review that many interesting
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phenomena occur in the boundary region. We will concentrate on the search for interesting physics
near the phase boundaries in various frustrated spin systems in this review.

In the 1970s, statistical physics with Renormalization Group analysis greatly contributed to the
understanding of the phase transition from an ordered phase to a disordered phase [2,3]. We will show
methods to study the phase transition in magnetic thin films where surface effects when combined with
frustration effects give rise to many new phenomena. Physical properties of solid surfaces, thin films,
and superlattices have been intensively studied due to their many applications [4–11].

A large part of this review, Section 2, is devoted to the definition of the frustration and to models
which are exactly solved. We begin in Section 3 with exactly solved models to have all properties
defined without approximation. As seen, many striking phenomena are exactly uncovered such as
partial disorder, reentrance, disorder lines, and multiple phase transitions. Only exact mathematical
techniques can allow us to reveal such beautiful phenomena which occur around the boundary
separating two phases of different ground-state orderings. These exact results permit to understand
similar behaviors in systems that cannot be solved such as 3D systems.

In Section 4, an introduction on surface effects in magnetic thin films is given. To avoid a
dispersion of techniques, I introduce only the Green’s function method which can be generalized in
more complicated cases such as non-collinear spin states. Calculations of the spin-wave spectrum and
the surface magnetization are in particular explained.

In Section 5 several striking results obtained mainly by the author’s group are shown on several
frustrated magnetic thin films including helimagnetic films. We show in particular the surface phase
transition, quantum fluctuations at low temperature, and the existence of partial phase transition.
Results obtained by Monte Carlo simulations are also shown in most cases to compare with the Green’s
function technique.

The question of the criticality in thin films is considered in Section 6. Here, the high-precision
multi-histogram techniques are used to show that critical exponents in magnetic thin films are effective
exponents with values between those of the 2D and 3D universality classes.

Section 7 is devoted to skyrmions, a hot subject at the time being due to their numerous possible
applications. Here again, we show only results obtained in the author’s group, but we mention a
large bibliography. Skyrmions are topological excitations. Skyrmions are shown to result from the
competition of different antagonist interactions under an applied magnetic field. We find the existence
of a skyrmion crystal, namely a network of periodically arranged skyrmions. Results show that such a
skyrmion crystal is stable up to a finite temperature. The relaxation time of skyrmions is shown to
follow a stretched exponential law.

Concluding remarks are given in Section 8.

2. Physics in Two Dimensions: Frustration Effects

2.1. Frustration

Since the 1980s, frustrated spin systems have been subjects of intensive studies [1]. The word
“frustration” has been introduced to describe the fact that a spin cannot find an orientation to
fully satisfy all interactions with its neighbors, namely the energy of a bond is not the lowest
one [12,13]. This will be seen below for Ising spins where at least one among the bond with the
neighbors is not satisfied. For vector spins, frustration is shared by all spins so that all bonds are
only partially satisfied, i.e., the energy of each bond is not minimum. Frustration results either
from the competing interactions or from the lattice geometry such as the triangular lattice with
antiferromagnetic nearest-neighbor (nn) interaction, the face-centered cubic (fcc) antiferromagnet and
the antiferromagnetic hexagonal-close-packed (hcp) lattice (see [1]).

Note that real magnetic materials have complicated interactions and there are large families of
frustrated systems such as the heavy lanthanides metals (holmium, terbium and dysprosium) [14,15],
helical MnSi [16], pyrochore antiferromagnets [17], and spin-ice materials [18]. Exact solutions on
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simpler systems may help understand qualitatively real materials. Besides, exact results can be used to
validate approximations.

We recall in the following some basic arguments leading to the definition of the frustration.
The interaction energy of two spins Si and Sj interacting with each other by J is written as
E = −J

(
Si · Sj

)
. If J is ferromagnetic (J > 0) then the minimum of E is −J corresponding to Si

parallel to Sj. If J is antiferromagnetic (J < 0), E is minimum when Si is antiparallel to Sj. One
sees that in a crystal with nn ferromagnetic interaction, the ground state (GS) of the system is the
configuration where all spins are parallel: the interaction of every pair of spins is “fully” satisfied,
namely the bond energy is equal to −J. This is true for any lattice structure. If J is antiferromagnetic,
the GS depends on the lattice structure: (i) for lattices containing no elementary triangles, i.e., bipartite
lattices (such as square lattice, simple cubic lattices, . . . ) in the GS each spin is antiparallel to its
neighbors, i.e., every bond is fully satisfied, its energy is equal to −|J|; (ii) for lattices containing
elementary triangles such as the triangular lattice, the fcc lattice, and the hcp lattice, one cannot
construct a GS where all bonds are fully satisfied (see Figure 1). The GS does not correspond to the
minimum interaction energy of every spin pair: the system is frustrated.

Let us formally define the frustration. We consider an elementary lattice cell which is a polygon
formed by faces called “plaquettes”. For example, the elementary cell of the simple cubic lattice is a
cube with six square plaquettes, the elementary cell of the fcc lattice is a tetrahedron formed by four
triangular plaquettes. According to the definition of Toulouse [12] the plaquette is frustrated if the
parameter P defined below is negative

P = ∏
〈i,j〉

sign(Ji,j), (1)

where Ji,j is the interaction between two nn spins of the plaquette and the product is performed over
all Ji,j around the plaquette.

We show two examples of frustrated plaquettes in Figure 1, a triangle with three antiferromagnetic
bonds and a square with three ferromagnetic bonds and one antiferromagnetic bond. P is negative
in both cases. If one tries to put Ising spins on those plaquettes, at least one of the bonds around the
plaquette will not be satisfied. For vector spins, we show below that the frustration is equally shared
by all bonds so that in the GS, each bond is only partially satisfied.

Figure 1. Two frustrated cells are shown. The thin (heavy) lines denote the ferromagnetic
(antiferromagnetic) bonds. Up and down spins are shown by green and red circles, respectively.
Question marks indicate undetermined spin orientation. Choosing an orientation for the spin marked
by the question mark will leave one of its bonds unsatisfied (frustrated bond with positive energy).

One sees that for the triangular plaquette, the degeneracy is three, and for the square plaquette
it is four. Therefore, the degeneracy of an infinite lattice for these cases is infinite, unlike the
non-frustrated case.
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The frustrated triangular lattice with nn interacting Ising spins was studied in 1950 [19,20].

2.2. Non-Collinear Spin Configurations

For vector spins, non-collinear configurations due to competing interactions were found in 1959
independently by Yoshimori [21], Villain [22] and Kaplan [23].

We emphasize that the frustration may be due to the competition between a Heisenberg
exchange model which favors a collinear spin configuration and the Dzyaloshinski-Moriya interaction
E = −D ·

(
Si ∧ Sj

)
[24,25] which favors the perpendicular configuration. We will return to this

interaction in the section on skyrmions later in this paper.
We show below how to determine the GS of some frustrated systems and discuss some of

their properties.
We consider the plaquettes shown in Figure 1 with XY spins. The GS configuration corresponds

to the minimum of the energy E of the plaquette. In the case of the triangular plaquette, suppose that
spin Si (i = 1, 2, 3) of amplitude S makes an angle θi with the Ox axis. One has

E = −J(S1 · S2 + S2 · S3 + S3 · S1)

= −JS2 [cos(θ1 − θ2) + cos(θ2 − θ3) + cos(θ3 − θ1)] (2)

where J < 0 (antiferromagnetic). Minimizing E with respect to 3 angles θi, we find the solution
θ1 − θ2 = θ2 − θ3 = θ3 − θ1 = 2π/3.

One can also write

E = −J(S1 · S2 + S2 · S3 + S3 · S1) = +
3
2

JS2 − J
2
(S1 + S2 + S3)

2.

J is negative, the minimum thus corresponds to S1 + S2 + S3 = 0 which gives the 120◦ structure.
This is true also for the Heisenberg spins.

For the frustrated square plaquette, we suppose that the ferromagnetic bonds are J and
the antiferromagnetic bond is −J connecting the spins S1 and S4 (see Figure 2). The energy
minimization gives

θ2 − θ1 = θ3 − θ2 = θ4 − θ3 =
π

4
and θ1 − θ4 =

3π

4
(3)

If the antiferromagnetic interaction is −η J (η > 0), the angles are [26]

cos θ21 = cos θ32 = cos θ43 ≡ θ =
1
2
[
η + 1

η
]1/2 (4)

and |θ14| = 3|θ|, where cos θij ≡ cos θi− cos θj. This solution exists if | cos θ| ≤ 1, namely η > ηc = 1/3.
One recovers when η = 1, θ = π/4, θ14 = 3π/4.

The GS spin configurations of the frustrated triangular and square lattices are displayed in Figure 2
with XY spins. We see that the frustration is shared by all bonds: the energy of each bond is −0.5J for
the triangular lattice, and −

√
2J/2 for the square lattice. Thus, the bond energy in both cases is not

fully satisfied, namely not equal to −J, as we said above when defining the frustration.
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Figure 2. Ground state of XY spins on frustrated triangular and square cells: non-collinear
spin arrangements. The thin lines denote the ferromagnetic interaction, the thick line is the
antiferromagnetic one.

At this stage, we note that the GS found above have a two-fold degeneracy resulting from the
equivalence of clockwise and counter-clockwise turning angle (noted by + and − in Figure 3) between
adjacent spins on a plaquette in Figure 2. Therefore the symmetry of these spin systems is of Ising type
O(1), in addition to the symmetry SO(2) due to the invariance by global spin rotation in the plane.

Figure 3. Triangular antiferromagnet with XY spins: the left (right) chirality is indicated by + (−).
See text.

From the GS symmetry, one expects that the respective breaking of O(1) and SO(2) symmetries
would behave respectively as the 2D Ising universality class and the Kosterlitz-Thouless transition [3].
However, the question of whether the two phase transitions would occur at the same temperature and
the nature of their universality remains an open question [26,27].

Let us determine the GS of a helimagnet. Consider the simplest case: a chain of Heisenberg spins
with ferromagnetic interaction J1(> 0) between nn and antiferromagnetic interaction J2(< 0) between
nnn. The interaction energy is

E = −J1 ∑
i

Si · Si+1 + |J2|∑
i

Si · Si+2

= S2 [−J1 cos θ + |J2| cos(2θ)]∑
i

1

∂E
∂θ

= S2 [J1 sin θ − 2|J2| sin(2θ)]∑
i

1 = 0

= S2 [J1 sin θ − 4|J2| sin θ cos θ]∑
i

1 = 0, (5)

where one has supposed that the angle between nn spins is θ. The first solution is

sin θ = 0 −→ θ = 0 which is the ferromagnetic solution
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and the second one is

cos θ =
J1

4|J2|
−→ θ = ± arccos

(
J1

4|J2|

)
. (6)

This solution is possible when −1 ≤ cos θ ≤ 1, i.e., when J1/ (4|J2|) ≤ 1 or |J2|/J1 ≥ 1/4 ≡ εc.
An example of configuration is shown in Figure 4. Please note that there are two degenerate
configurations of clockwise and counter-clockwise turning angles as other examples above.

Please note that the two frequently studied frustrated spin systems are the fcc and hcp
antiferromagnets. These two magnets are constructed by stacking tetrahedra with four frustrated
triangular faces. Frustration by the lattice structure such as these cases are called “geometry frustration”.
Another 3D popular model which has been extensively studied since 1984 is the system of stacked
antiferromagnetic triangular lattices (satl). The phase transition of this system with XY and Heisenberg
spins was a controversial subject for more than 20 years. The controversy was ended with our works:
the reader is referred to Refs. [28,29] for the history. In short, we found that in known 3D frustrated
spin systems (fcc, hcp, satl, helimagnets, . . . ) with Ising, XY, or Heisenberg spins, the transition is of
first order [30,31].

Figure 4. Example of a helimagnetic configuration using ε = |J2|/J1 > εc = 1/4 (J1 > 0, J2 < 0),
namely θ = 2π/3. Left: 3D view. Right: top view.

Another subject which has been much studied since the 1980s is the phenomenon called “order by
disorder”: we have seen that the GS of frustrated spin systems is highly degenerate and often infinitely
degenerate (entropy not zero at temperature T = 0). However, it has been shown in many cases that
when T is turned on the system chooses a state which has the largest entropy, namely the system
chooses its order by the largest disorder. We call this phenomenon “order by disorder” or “order by
entropic selection” (see references cited in section III. B of Ref. [30]).

We will not discuss these subjects in this review which is devoted to low-dimensional frustrated
spin systems.

3. Exactly Solved Frustrated Models

Any 2D Ising model with non-crossing interactions can be exactly solved. To avoid the calculation
of the partition function one can transform the model into a 16-vertex model or a 32-vertex model.
The resulting vertex model is exactly solvable. We have applied this method to search for the exact
solution of several Ising frustrated 2D models with non-crossing interactions shown in Figures 5–7.
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Figure 5. Kagomé lattice: Diagonal and horizontal bonds are nn antiferromagnetic interactions J1,
vertical double lines indicate the nnn interactions J2.

Figure 6. Exactly solved dilute centered square lattices: Interactions along diagonal, vertical and
horizontal spin pairs are noted by J1, J2, and J3, respectively.

Figure 7. Centered honeycomb lattice. Spins are numbered for decimation demonstration (see text).
Blue, red and black bonds denote interactions J1, J2 and J3, respectively.
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Details have been given in Ref. [32]. We outline below a simplified formulation of a model
for illustration. The aim is to discuss the results. As we will see these models possess spectacular
phenomena due to the frustration.

3.1. Example of the Decimation Method

We take the case of the centered honeycomb lattice with the following Hamiltonian

H = −J1 ∑
(ij)

σiσj − J2 ∑
(ij)

σiσj − J3 ∑
(ij)

σiσj (7)

where σi = ±1 is an Ising spin at the lattice site i. The first, second, and third sums are performed
on the spins interacting via J1, J2 and J3 bonds, respectively (see Figure 7). The case J2 = J3 = 0
corresponds to the honeycomb lattice, and the case J1 = J2 = J3 to the triangular lattice.

Let σ be the central spin of the lattice cell shown in Figure 7. Other spins are numbered from σ1 to
σ6. The Boltzmann weight of the elementary cell is written as

W = exp[K1(σ1σ2 + σ2σ3 + σ3σ4 + σ4σ5 + σ5σ6 + σ6σ1) +

K2σ(σ1 + σ2 + σ4 + σ5) + K3σ(σ3 + σ6)] (8)

where Ki ≡ Ji
kBT (i = 1, 2, 3). The partition function reads

Z = ∑
σ

∏
c

W (9)

where the sum is taken over all spin configurations and the product over all elementary cells of the
lattice. One imposes the periodic boundary conditions. The above model is exactly solvable. To that
end, we decimate the central spin of every elementary lattice cell. We finally get a honeycomb Ising
model (without centered spins) with multispin interactions.

After decimation of the central spin, namely after summing the values of the central spin σ,
the Boltzmann weight of an elementary cell reads

W ′ = 2 exp[K1(σ1σ2 + σ2σ3 + σ3σ4 + σ4σ5 + σ5σ6 + σ6σ1)]×
cosh[K2(σ1 + σ2 + σ4 + σ5) + K3(σ3 + σ6)] (10)

We show below that this model is in fact a case of the 32-vertex model on the triangular lattice
which has an exact solution.

We consider the dual triangular lattice of the honeycomb lattice obtained above [33]. The sites of
the dual triangular lattice are at the center of each elementary honeycomb cell with bonds perpendicular
to the honeycomb ones, as illustrated in Figure 8.

Figure 8. The dual triangular lattice, shown by discontinued lines, of the honeycomb lattice.
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Let us define the conventional arrow configuration for each site of the dual triangular lattice:
if all six spins of the honeycomb cell are parallel, then the arrows, called “standard configuration”,
are shown in Figure 9. From this “conventional” configuration, antiparallel spin pairs on the two sides
of a triangular lattice bond will have its corresponding arrow change the direction.

Figure 9. The conventional definition of the “standard” arrows for nn around a site of the triangular
lattice: spins are numbered so the arrows can be recognized in examples shown in Figure 10. Please
note that the configuration of all down spins has the same arrow configuration. See text.

As examples, two spin configurations on the honeycomb lattice and their corresponding arrow
configurations on the triangular lattice are displayed in Figure 10.

Figure 10. Two examples of spin configurations and their corresponding arrow configurations.
To understand, compare with the standard arrows defined in Figure 9. See text.

Counting all arrow configurations, we obtain 32. To each of these 32 vertices one associates the
Boltzmann weight W ′(σ1, σ2, σ3, σ4, σ5, σ6) given by Equation (10). Let us give explicitly a few of them:

ω1 = W ′(+,−,−,−,+,+) = 2e2K1 (11)

ω2 = W ′(+,+,−,+,+,−) = 2e−2K1 cosh(4K2 − 2K3) (12)

ω3 = W ′(+,−,+,−,+,+) = 2e−2K1 cosh(2K3) (13)

ω4 = W ′(+,+,+,+,+,−) = 2e2K1 cosh(4K2) (14)

.....
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Using the above expressions of the 32-vertex model, one finds the following equation for the
critical temperature (see details in Ref. [34]):

e2K1 + e−2K1 cosh(4K2 − 2K3)

+2e−2K1 cosh(2K3) + 2e2K1 +

e6K1 cosh(4K2 + 2K3) + e−6K1 = 2max{e2K1 +

e−2K1 cosh(4K2 − 2K3) ;

e2K1 + e−2K1 cosh(2K3); e6K1 cosh(4K1 + 2K3) + e−6K1} (15)

The solutions of this equation are given in Section 3.3.2 below for some special cases.
Following the case studied above, we can study the 2D models shown in Figures 5 and 6:

after decimation of the central spin in each square, these models can be transformed into a special case
of the 16-vertex model which yields the exact solution for the critical surface (see details in Ref. [32]).

Before showing some results in the space of interaction parameters, let us introduce the definitions
of disorder line and reentrant phase.

3.2. Disorder Line, Reentrance

It is not the purpose of this review to enter technical details. We would rather like to describe the
physical meaning of the disorder line and the reentrance. A full technical review has been given in
Ref. [32].

Disorder solutions exist in the paramagnetic region which separate zones of fluctuations of
different nature. They are where the short-range pre-ordering correlations change their nature to allow
for transitions in the phase diagrams of anisotropic models. They imply constraints on the analytical
behavior of the partition function of these models.

To obtain the disorder solution one makes a certain local decoupling of the degrees of freedom.
This yields a dimension reduction: a 2D system then behaves on the disorder line as a 1D system.
This local decoupling is made by a simple local condition imposed on the Boltzmann weights of the
elementary cell [35–37].

This is very important while interpreting the system behavior: on one side of the disorder line,
pre-ordering fluctuations have correlation different from those of the other side. Crossing the line,
the system pre-ordering correlation changes. The dimension reduction is often necessary to realize
this.

Please note that disorder solutions may be used in the study of cellular automata as it has been
shown in Ref. [38].

Let us give now a definition for the reentrance. A reentrant phase lies between two ordered phases.
For example, at low temperature (T) the system is in an ordered phase I. Increasing T, it undergoes a
transition to a paramagnetic phase R, but if one increases further T, the system enters another ordered
phase II before becoming disordered at a higher T. Phase R is thus between two ordered phases I and
II. It is called “reentrant paramagnetic phase” or “reentrant phase”.

How physically is it possible? At a first sight, it cannot be possible because the entropy of an
ordered phase is smaller than that of a disordered phase so that the disordered phase R cannot exist
at lower T than the ordered phase II. In reality, as we will see below, phase II has always a partial
disorder which compensates for the loss of entropy while going from R to II. The principle that entropy
increases with T is thus not violated.

3.3. Phase Diagram

3.3.1. Kagomé Lattice

The Kagomé lattice shown in Figure 5 has attracted much attention not only by its great interest
in statistical physics but also in real materials [17]. The Kagomé Ising model with only nn interaction
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J1 has been solved a long time ago [39]. No phase transition at finite T when J1 is antiferromagnetic.
Taking into account the nnn interaction J2, we have solved [40] this model by transforming it into a
16-vertex model which satisfies the free-fermion condition. The equation of the critical surface is

1
2
[exp(2K1 + 2K2) cosh(4K1) + exp(−2K1 − 2K2)] +

cosh(2K1 − 2K2) + 2 cosh(2K1) = 2max{1
2
[exp(2K1 + 2K2) cosh(4K1) +

exp(−2K1 − 2K2)] ; cosh(2K2 − 2K1) ; cosh(2K1)} (16)

We are interested in the region near the phase boundary between two phases IV (partially
disordered) and I (ferromagnetic) in Figure 11 (left). We show in Figure 11 (right) the small region near
the boundary α = J2/J1 = −1 which has the reentrant paramagnetic phase and a disorder line.

Figure 11. Left: Each color represents a ground-state configuration in the space (J1, J2) where +, −,
and x denote up, down, and free spins, respectively. Right: Phase diagram in the space (α = J2/J1, T)
with J1 > 0. T is in the unit of J1/kB. Solid lines are critical lines, dashed line is the disorder line. P, F,
and X stand for paramagnetic, ferromagnetic and partially disordered phases, respectively. The inset
shows schematically the enlarged region near the critical value J2/J1 = −1.

We note that only near the phase boundary such a reentrant phase and a disorder line can exist.
If we suppose that all interactions J1, J2 and J3 in the model shown in Figure 5 are different,

the phase diagram becomes very rich [41]. For instance, the reentrance can occur in an infinite region
of interaction parameters and several reentrant phases can occur for a given set of interactions when
T varies.

The Hamiltonian reads

H = −J1 ∑
(ij)

σiσj − J2 ∑
(ij)

σiσj − J3 ∑
(ij)

σiσj (17)

where σi is the Ising spin occupying the lattice site i, and the sums are performed over the spin pairs
connected by J1, J2 and J3, respectively.

The phase diagram at temperature T = 0 is shown in Figure 12 in the space (α = J2/J1, β = J3/J1),
supposing J1 > 0. The spin configuration of each phase is indicated. The three partially disordered
phases (I, II, and III) have free central spins. With J1 < 0 , it suffices to reverse the central spin in the F
phase of Figure 12. In addition, the permutation of J2 and J3 will not change the system, because it is
equivalent to a π/2 rotation of the lattice.

We examine now the temperature effect. We have seen above that a partially disordered phase
lies next to the ferromagnetic phase in the GS gives rise to the reentrance phenomenon. We expect
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therefore similar phenomena near the phase boundary in the present model. As it turns out, we find
below a new and richer behavior of the phase diagram.

We use the decimation of central spins described in Ref. [32], we get then a checkerboard Ising
model with multispin interactions. This corresponds to a symmetric 16-vertex model which satisfies
the free-fermion condition [42–44]. The critical temperature is the solution of the following equation

cosh(4K1) exp(2K2 + 2K3) + exp(−2K2 − 2K3)

= 2 cosh(2K3 − 2K2)± 4 cosh(2K1) (18)

Note the invariance of Equation (18) with respect to changing K1 → −K1 and interchanging K2

and K3. Let us show just the solution near the phase boundary in the plane (β = J3/J1, T) for two
values of α = J2/J1 . It is interesting to note that in the interval 0 > α > −1, there exist three critical
lines. Two of them have a common horizontal asymptote as β tends to infinity. They limit a reentrant
paramagnetic phase between the F phase and the partially disordered phase I for β between β2 and
infinite β (see Figure 13). Such an infinite reentrance has never been found before in other models.
With decreasing α, β2 tends to zero and the F phase is reduced (comparing Figure 13a,b) . For α < −1,
the F phase and the reentrance no longer exist.

Figure 12. (a) Generalized Kagomé lattice: J1, J2 and J3 denote the diagonal, vertical and horizontal
bonds, respectively. (b) The ground-state phase diagram in the space (α = J2/J1, β = J3/J1). Each
phase is displayed by a color with up, down, and free spins denoted by +, −, and o, respectively. I, II,
III, and F indicate the three partially disordered phases and the ferromagnetic phase, respectively.

We note that for −1 < α < 0, the model possesses two disorder lines (see equations in Ref. [41])
starting from a point near the phase boundary β = −1 for α close to zero; this point position moves to
β = 0 as α tends to −1 (see Figure 13).
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Figure 13. Phase diagram in the (β = J3/J1, T) space for negative α = J2/J1. (a) α = −0.25;
(b) α = −0.8. Partially disordered phases of type I and II and F are defined in Figure 12. The disorder
lines are shown by dotted lines.

3.3.2. Centered Honeycomb Lattice

We use the decimation of the central spin of each elementary cell as shown in Section 3.1. After the
decimation, we obtain a model equivalent to a special case of the 32-vertex model [45] on a triangular
lattice which satisfies the free-fermion condition. The general treatment has been given in Ref. [34].
Here we show the result of the case where K2 = K3. Equation (15) is reduced to

exp(3K1) cosh(6K2) + exp(−3K1) = 3[exp(K1) + exp(−K1) cosh(2K2)] (19)

When K2 = 0, Equation (15) gives the critical line

exp(3K1) cosh(2K3) + exp(−3K1) = 3[exp(K1) + exp(−K1) cosh(2K3)] (20)

When K3 = 0, we observe a reentrant phase. The critical lines are given by

cosh(4K2) =
exp(4K1) + 2 exp(2K1) + 1
[1− exp(4K1)] exp(2K1)

(21)

cosh(4K2) =
3 exp(4K1) + 2 exp(2K1)− 1
[exp(4K1)− 1] exp(2K1)

(22)

The phase diagram obtained from Equations (21) and (22) near the phase boundary α = −0.5 is
displayed in Figure 14. One observes here that the reentrant zone goes down to T = 0 at the boundary
α = −0.5 separating the GS phases II and III (see Figure 14b).

Please note that phase II has the antiferromagnetic ordering on the hexagon and the central spin
free to flip, while phase III is the ordered phase where the central spin is parallel to 4 diagonal spins
(see Figure 2 of Ref. [34]). Therefore, if −0.6 < α < −0.5 (reentrant region, see Figure 14b), when one
increases T from T = 0, ones goes across successively the ordered phase III, the narrow paramagnetic
reentrant phase and the partially disordered phase II. Two remarks are in order: (i) The reentrant
phase occurs here between an ordered phase and a partially disordered phase. However, as will be
seen below, we discover in the three-center square lattice, reentrance can occur between two partially
disordered phase; (ii) In any case, we find reentrance between phases when and only when there are
free spins in the GS. The entropy of the high-T partially disordered phase is higher than that of the
low-T one. The second thermodynamic principle is not violated.
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Figure 14. Centered honeycomb lattice: (a) Phase diagram in the space (K1, K2), discontinued line is the
asymptote; (b) Reentrance in the space (T, α = K2/K1). I, II, III phases denote paramagnetic, partially
disordered and ordered phases, respectively.

It is noted that the present honeycomb model does not possess a disorder solution with a reduction
of dimension as the Kagomé lattice shown earlier.

3.3.3. Centered Square Lattices

In this paragraph, we study several centered square Ising models by mapping them onto 8-vertex
models that satisfy the free-fermion condition. The exact solution is then obtained for each case. Let us
anticipate that in some cases, for a given set of parameters, up to five transitions have been observed
with varying temperature. In addition, there are two reentrant paramagnetic phases going to infinity
in the space of interaction parameters, and there are two additional reentrant phases found, each in a
small zone of the phase space [46,47].

We consider the dilute centered square lattices shown in Figure 6. The Hamiltonian of these
models reads

H = −J1 ∑
(ij)

σiσj − J2 ∑
(ij)

σiσj − J3 ∑
(ij)

σiσj (23)

where σi is an Ising spin at the lattice site i. The sums are performed over the spin pairs interacting by
J1, J2 and J3 bonds (diagonal, vertical and horizontal bonds, respectively).

Figure 15 shows the ground-state phase diagrams of the models displayed in Figure 6a,b,d,
where a = J2/J1 and b = J3/J1. The spin configurations in different phases are also displayed. The
model in Figure 15a has six phases (numbered from I to VI), five of which (I, II, IV, V and VI) are
partially disordered (at least one centered spin being free), the model in Figure 15b has five phases,
three of which (I, IV, and V) are partially disordered, and the model in Figure 15c has seven phases
with three partially disordered ones (I, VI, and VII).

It is interesting to note that each model shown in Figure 6 possesses the reentrance along most
of the phase boundary lines when the temperature is turned on. This striking feature of the centered
square Ising lattices has not been observed in other known models.

Let us show in Figure 16 the results of the three-center model of Figure 6a, in the space
(a = J2/J1, T) for typical values of b = J3/J1.
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Figure 15. Ground-state phase diagram in the space (a = J2/J1, b = J3/J1) for (a) three-center square
lattice; (b) two-adjacent center case; (c) and one-center case. Phase boundaries are indicated by heavy
lines. Each phase is numbered and the spin configuration is displayed (+, −, and o are up, down, and
free spins, respectively).

Figure 16. Three-center model: phase diagram in the space (T, a = J2/J1) for several values of
b = J3/J1: (a) b = −1.25, (b) b = −0.75, (c) b = −0.25, (d) b = 0.75. Reentrant regions indicated by
discontinued lines are enlarged in the insets. A number indicates the corresponding spin configuration
shown in Figure 15a. P is paramagnetic phase.

For b < −1, there are two reentrances as seen in Figure 16a for b = −1.25. The phase diagram is
shown using the same numbers of corresponding ground-state configurations of Figure 15. Please note
that the centered spins disordered at T = 0 in phases I, II and VI (Figure 15a) remain so at all T. Note
also that the reentrance occurs always at a phase boundary. This point is emphasized in this paper
through various shown models.
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For −1 < b < −0.5, there are three reentrant paramagnetic phases as shown in Figure 16b, two of
them on the positive a are so narrow while a goes to infinity. Please note that the critical lines in these
regions have horizontal asymptotes. For a large value of a, one has five transitions with decreasing
T: paramagnetic phase–partially disordered phase I—first reentrant paramagnetic phase—partially
disordered phase II—second reentrant paramagnetic phase—ferromagnetic phase (see Figure 16b). To
our knowledge, a model that exhibits such five phase transitions with two reentrances has never been
found before.

For −0.5 < b ≤ 0, another reentrance is found for a < −1 as seen in the inset of Figure 16c. With
increasing b, the ferromagnetic phase III in the phase diagram becomes large, reducing phases I and II.
At b = 0, only the ferromagnetic phase remains.

For positive b, we have two reentrances for a < 0, ending at a = −2 and a = −1 when T = 0 as
seen in Figure 16d.

In conclusion, we summarize that in the three-center square lattice model shown in Figure 6a, we
found two reentrant phases occurring on the temperature scale at a given set of interaction parameters.
A new feature found here is that a reentrant phase can occur between two partially disordered phases,
unlike in other models such as the Kagomé Ising lattice where a reentrant phase occurs between an
ordered phase and a partially disordered phase.

3.4. Summary and Discussion

The present section shows spectacular phenomena due to the frustration. What to be retained
is the fact that those phenomena occur around the boundary of two phases of different GSs, namely
different symmetries. These phenomena include

(1) the partial disorder at equilibrium: disorder is not equally shared on all particles as usually the
case in unfrustrated systems.

(2) the reentrance: this occurs around the phase boundary when T increases→ the phase with larger
entropy will win at finite T. In other words, this is a kind of selection by entropy.

(3) the disorder line: this line occurs in the paramagnetic phase. It separates the pre-ordering zones
between two nearby ordered phases.

In the present section, we looked for interesting effects of the frustration by solving exactly
several 2D Ising models with non-crossing interactions. This has been done by the decimation method
combined with the mapping to vertex models. We know that vertex models are exactly solvable when
the free-fermion conditions are satisfied. This is the case in the 8-, 16-, and 32-vertex models shown
above. The striking results mentioned above, namely the partial disorder, the reentrance, the disorder
line and the multiple phase transitions, are expected to exist in models other than the Ising model and
in three-dimensional lattices, although they cannot be exactly solved. We mention that partial disorder
in some 3D highly frustrated Ising systems has been found: for instance, the fully frustrated simple
cubic lattice [48,49], a stacked triangular Ising antiferromagnet [50,51] and a body-centered cubic (bcc)
crystal [52]. For non-Ising spins such as quantum spins, partial disorder has also been found [53–55].
As for the reentrance in 3D, we mention the case of a special lattice which is exactly solved [56]. We
believe that reentrance should also exist in the phase space of many other 3D systems. We found for
example numerical evidence of a reentrance for the bcc Ising case [52] and a frustrated XY model on
stacked 3D checkerboard lattices [55].

Please note that evidence of a reentrance has been found for the q-state Potts model on the 2D
frustrated Villain lattice [57,58].

Finally, through the examples shown above, we see that for the reentrance to occur it is necessary
to have free spins in the GS.
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4. Physics of Thin Films: Surface Magnetism, Background

4.1. Surface Parameters

Surface physics has been rapidly developed in the last 30 years thanks to the progress in the
fabrication and the characterization of films of very thin thickness down to a single atomic layer. A lot
of industrial applications have been made in memory storage, magnetic sensors, . . . using properties of
thin films.

Theory and simulation have also been in parallel developed to understand these new properties
and to predict further interesting effects. In the following we introduce some useful microscopic
mechanisms which help understand macroscopic effects observed in experiments.

The existence of a surface on a crystal causes a lot of modifications at the microscopic levels. First,
the lack of neighbors of atoms on the surface causes modifications in their electronic structure giving
rise to modifications in electron orbital and atomic magnetic moment by for example the spin-orbit
coupling and in interaction parameters with neighboring atoms (exchange interaction, for example).
In addition, surfaces can have impurities, defects (vacancies, islands, dislocations, . . . ). In short,
we expect that the surface parameters are different from the bulk ones. Consequently, we expect
physical properties at and near a surface are different from those in the bulk. For the fundamental
theory of magnetism and its application to surface physics, the reader is referred to Ref. [6].

In the following we outline some principal microscopic mechanisms which dominate properties
of magnetic thin films.

4.2. Surface Spin Waves: Simple Examples

In magnetically ordered systems, spin-wave (SW) excitations dominate thermodynamic properties
at low T. The presence of a surface modifies the SW spectrum. We show below that it gives rise to
SW modes localized near the surface. These modes lie outside the bulk SW spectrum and modify the
low-T behavior of thin films.

Let us calculate these modes in some simple cases. We give below for pedagogical purpose some
technical details.

We consider a thin film of NT layers stacked in the z direction. The Hamiltonian is written as

H = −2 ∑
<i,j>

JijSi · Sj − 2 ∑
<i,j>

DijSz
i Sz

j

= −2 ∑
〈i,j〉

Jij

(
Sz

i Sz
j +

1
2
(S+

i S−j + S−i S+
j )

)
− 2 ∑

<i,j>
DijSz

i Sz
j (24)

where Jij is the exchange interaction between two nn Heisenberg quantum spins, and Dij > 0 denotes
an exchange anisotropy. S+

j and S−j are the standard spin operators S±j = Sx
j ± iSy

j .
For simplicity, we suppose no crystalline defects and no impurities at the surface and all

interactions are identical for surface and bulk spins. It is known that in perfect crystals the spin
waves dominate low-temperature properties [6]. In a thin film, there often exist SW modes localized
near the surface. Such surface spin waves are at the origin of the low surface magnetization and
transition temperature. One can calculate the SW energy using the method of equation of motion,
the Holstein-Primakoff method and the Green’s function method. Here we use for illustration
the Green’s function method which the author has developed for thin films (see details in Ref.
[59,60]). This method shall be generalized below for helimagnets and other systems with non-collinear
spin configurations.

Let us define the double-time Green’s function by

Gi,j(t, t′) = 〈〈S+
i (t); S−j (t

′)〉〉 (25)
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The equation of motion of Gi,j(t, t′) is written as

ih̄
dGi,j(t, t′)

dt
= (2π)−1〈[S+

i (t), S−j (t
′)]〉+ 〈〈[S+

i ,H](t); S−j (t
′)〉〉 (26)

where [. . .] denotes the boson commutator and 〈. . .〉 the canonical thermal average given by

〈F〉 = Tre−βHF/Tre−βH (27)

with β = 1/kBT. When we perform the commutator of Equation (26), we obtain Green’s functions of
higher orders. These functions can be reduced by the use of the Tyablikov approximation [61]

〈〈Sz
mS+

i ; S−j 〉〉 ' 〈S
z
m〉〈〈S+

i ; S−j 〉〉, (28)

Thus, we get the same kind of Green’s function defined in Equation (25).
In a thin film, the system is supposed to be infinite in the xy plane, we can therefore use the

in-plane Fourier transforms

Gi,j(t, t′) =
1
∆

∫ ∫
dkxy

1
2π

∫ +∞

−∞
dω e−iω(t−t′) gn,n′(ω, kxy) eikxy .(Ri−Rj) (29)

Here, ω denotes the magnon frequency and kxy the wave vector parallel to the surface.
The position of the spin at the site i is Ri. n and n′ are respectively the planes to which i and j
belong (n = 1 is the index of the surface). Please note that the integration on kxy is performed in the
first Brillouin zone of surface ∆ in the xy plane.

Equation (26) yields

(h̄ω− An)gn,n′ + Bn(1− δn,1)gn−1,n′ + Cn(1− δn,NT )gn+1,n′ = 2δn,n′ < Sz
n > (30)

The coefficients An, Bn and Cn depend on the crystalline structure of the film, for instance:

• Film of simple cubic lattice

An = −2Jn < Sz
n > Cγk + 2C(Jn + Dn) < Sz

n >

+2(Jn,n+1 + Dn,n+1) < Sz
n+1 >

+2(Jn,n−1 + Dn,n−1) < Sz
n−1 > (31)

Bn = 2Jn,n−1 < Sz
n > (32)

Cn = 2Jn,n+1 < Sz
n > (33)

where C = 4 (in-plane coordination number) and γk =
1
2 [cos(kxa) + cos(kya)].

• Film of body-centered cubic lattice

An = 8(Jn,n+1 + Dn,n+1) < Sz
n+1 >

+8(Jn,n−1 + Dn,n−1) < Sz
n−1 > (34)

Bn = 8Jn,n−1 < Sz
n > γk (35)

Cn = 8Jn,n+1 < Sz
n > γk (36)

where γk = cos(kxa/2) cos(kya/2)

Using Equation (30) for n = 1, 2,. . . , NT , we get NT coupled equations which is written in
a matrix equation

M(ω)g = u (37)
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where u is a column matrix whose n-th element is 2δn,n′ < Sz
n >.

For each kxy we can calculate the magnon energy h̄ω(kxy) by solving the secular equation
det|M| = 0. This gives NT values of h̄ωi (i = 1, ..., NT). We note that ωi depends on all 〈Sz

n〉 contained
in the coefficients An, Bn and Cn.

The magnetization 〈Sz
n〉 of the layer n in the case where S = 1

2 is calculated by (see chapter 6 of
Ref. [6]):

〈Sz
n〉 =

1
2
− 〈S−n S+

n 〉 (38)

where 〈S−n S+
n 〉 is given by the following spectral theorem

〈S−i S+
j 〉 = lim

ε→0

1
∆

∫ ∫
dkxy

+∞∫
−∞

i
2π

[
gn,n′(ω + iε)− gn,n′(ω− iε)

]
× dω

eβω − 1
eikxy .(Ri−Rj). (39)

where ε = 0+ is a very small constant. Equation (38) becomes

〈Sz
n〉 =

1
2
− lim

ε→0

1
∆

∫ ∫
dkxy

+∞∫
−∞

i
2π

[gn,n(ω + iε)− gn,n(ω− iε)]
dω

eβh̄ω − 1
(40)

where the Green’s function gn,n is given by the solution of Equation (37)

gn,n =
|M|n
|M| (41)

|M|n is the determinant obtained by replacing the n-th column of |M| by u.
To simplify we write h̄ωi = Ei and h̄ω = E hereafter. We factorize

|M| = ∏
i
(E− Ei) (42)

using Ei (i = 1, . . . , NT), the poles of the Green’s function. gn,n is rewritten as

gn,n = ∑
i

fn(Ei)

E− Ei
(43)

where fn(Ei) is given by

fn(Ei) =
|M|n(Ei)

∏j 6=i(Ei − Ej)
(44)

With Equations (40) and (43) and

1
x− iη

− 1
x + iη

= 2πiδ(x) (45)

we get

〈Sz
n〉 =

1
2
− 1

∆

∫ ∫
dkxdky

NT

∑
i=1

fn(Ei)

eβEi − 1
(46)

where n = 1, ..., NT .
Since < Sz

n > depends on the neighboring magnetizations, we should solve by iteration the
Equation (46) written for n = 1, . . . , NT to get the layer magnetizations at T.
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The critical temperature Tc is calculated self-consistently using the Equation (46), with all < Sz
n >

tending to zero.
We show in Figure 17a the SW spectrum of a simple cubic film where there is no surface SW mode.

Figure 17b shows the case of a body-centered cubic ferromagnetic case where there are two branches
of surface localized modes.

Figure 17. (a) Spin-wave energy E = h̄ω of the simple cubic ferromagnetic film as a function of
k ≡ kx = ky for NT = 8 and D/J = 0.01, no surface mode is found; (b) Spin-wave energy for the
body-centered cubic film with the same parameter. Surface modes are indicated by SM.

Please note that a surface mode has a damping SW amplitude when going from the surface to the
interior. The SW amplitudes for each mode are in fact their eigenvectors calculated from Equation (41).
Since acoustic surface localized spin waves have low energies, integrands on the right-hand side of
Equation (46) are large, making < Sz

n > to be small and causing a diminution of Tc in thin films.
We show in Figure 18 the first- and second-layer magnetizations versus T in the films shown

above using NT = 4.

Figure 18. Surface and 2nd layer magnetizations (S and B curves, respectively) versus T for films of
(a) simple cubic and (b) body-centered cubic lattices. NT = 4, D = 0.01J, J = 1.

Calculations for antiferromagnetic thin films and other cases with non-collinear spin
configurations can be performed using generalized Green’s functions [59,60,62] with the general
Hamiltonian defined for two spins Si and Sj forming an angle cos θij: one can write the Hamiltonian
in the local coordinates as follows [63]
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H = − ∑
<i,j>

Ji,j

{
1
4
(
cos θij − 1

) (
S+

i S+
j + S−i S−j

)
+

1
4
(
cos θij + 1

) (
S+

i S−j + S−i S+
j

)
+

1
2

sin θij
(
S+

i + S−i
)

Sz
j −

1
2

sin θijSz
i

(
S+

j + S−j
)

+ cos θijSz
i Sz

j

}
− ∑

<i,j>
Ii,jSz

i Sz
j cos θij (47)

where an anisotropy (last term) is added for numerical convergence at long-wave lengths. This term is
necessary for very thin film thickness since it is known that there is no ordering for isotropic Heisenberg
spins in strictly 2D at finite temperatures [64].

The angles between nn spins in the GS are calculated by minimizing the interaction energy with
respect to interaction parameters [65,66]. Replacing the angle values in the Hamiltonian, and follow
the steps presented above for the collinear case, one then gets a matrix which can be numerically
diagonalized to obtain the SW spectrum. Other physical properties can be self-consistently calculated
using the SW spectrum as for the collinear spin configuration.

5. Frustrated Thin Films: Surface Phase Transition

Having given the background in the previous section, we can show some results here. The reader
is referred to the original papers for details. Our aim here is to discuss physical effects due to the
conditions of the surface.

As said earlier, the combination of the frustration and the surface effect gives rise to drastic effects.
This is seen in the examples shown in the following.

The effects of surface anisotropies and dipole-dipole interactions have been treated in some of
our earlier works. However, to keep the length of the present review reasonable, we do not discuss
them here. The reader is referred to Ref. [67] for the re-orientation transition in molecular thin films
for the Potts model with dipolar interaction in competition with the film perpendicular anisotropy.
The same problem was studied with the Heisenberg spin model in Ref. [68]. Please note that in these
works, evidence of the reentrance is found near the GS phase boundary between the in-plane spin
configuration and the perpendicular one.

5.1. Frustrated Surfaces

We show here the case of a ferromagnetic film with frustrated surfaces [65], using the analytical
Green’s function method and extensive Monte Carlo simulations. Effects of frustrated surfaces on the
properties of a ferromagnetic thin film are presented.

The system is made by stacking triangular layers of Heisenberg spins in the z direction.
The in-plane surface interaction Js can be antiferromagnetic or ferromagnetic. All other interactions are
ferromagnetic. We show that the ground-state spin configuration is non-collinear when Js is lower than
a critical value Jc

s . The film surfaces are then frustrated. We anticipate here that in this case, there are
two phase transitions, one for the disordering of the surface and the other for the disordering of the
interior layers. As seen below, good agreement between Monte Carlo and Green’s function results are
achieved.

5.2. Model

We consider a thin film made of Nz planes of triangular lattice of L × L sites, stacked in the
z direction.
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We use the following Hamiltonian

H = −∑
〈i,j〉

Ji,jSi · Sj − ∑
<i,j>

Ii,jSz
i Sz

j (48)

where Si is the Heisenberg spin at the lattice site i, ∑〈i,j〉 indicates the sum over the nearest-neighbor
spin pairs Si and Sj. The last term, which will be supposed very small, is needed to have a phase
transition at a finite temperature for the film with a very small thickness when all exchange interactions
Ji,j are ferromagnetic.

We suppose that the nn interactions on the surface are Js and Is, and all other interactions are
ferromagnetic and equal to J and I. The two surfaces of the film are frustrated if Js is antiferromagnetic
(Js < 0), due to the triangular lattice structure.

5.3. Ground State

We suppose here that the spins are classical Heisenberg spins. The classical GS can be calculated as
shown below. We recall that for antiferromagnetic systems of quantum spins, the quantum GS though
not far from the classical one, cannot be exactly determined because of the quantum fluctuations [6].

For Js > 0, the GS is ferromagnetic. When Js is antiferromagnetic, the surface when detached
from the bulk has the 120-degree ordering and the interior layers have the ferromagnetic ordering. The
interaction between the surface spins and those of the beneath layer causes a competition between the
collinear configuration and the 120-degree one.

We first determine the ground-state configuration for I = Is = 0.1 by minimizing the energy of
each spin starting from a random spin configuration. This is done by iteration until the convergence is
reached. The reader is referred to Ref. [65] for the numerical procedure. In doing so, we obtain the
ground-state configuration, without metastable states for the present model.

The result shows that when Js is smaller than a critical value Jc
s the magnetic GS is an “umbrella”

form with an angle α between nn surface spins and an angle β between a surface spin and its beneath
neighbor (see Figure 19). This structure is due to the interaction of the spins on the beneath layer on
the surface spins, acting like an external applied field in the z direction. It is obvious that when |Js| is
smaller than |Jc

s | the collinear ferromagnetic GS results in: the frustration is not strong enough to resist
the ferromagnetic interaction from the beneath layer.

Figure 19. Surface spin configuration: angle between nn spins on layer 1 is equal to α, angle between
vertical nn spins is β.
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Let us show cos(α) and cos(β) versus Js in Figure 20. The critical value Jc
s is found between −0.18

and −0.19. This value can be calculated analytically as shown below, by assuming the “umbrella
structure”. For the ground-state analysis, we consider just a single cell shown in Figure 19. This is
justified by the numerical determination presented above.

Figure 20. Angles versus surface interaction Js: cos(α) (diamonds) and cos(β) (crosses). Jc
s is indicated

by the arrow.

We consider the Hamiltonian given by (48). We take that (Ji,j = Js, Ii,j = Is) for nn surface spins
and all other (Ji,j = J > 0, Ii,j = I > 0) for the inside nn spins including interaction between a surface
spin and a nn spin on the second layer.

We number as in Figure 19 S1, S2 and S3 are on the surface layer, S′1, S′2 and S′3 on the second layer.
The Hamiltonian for the cell reads

Hp = −6 [Js (S1 · S2 + S2 · S3 + S3 · S1)

+Is (Sz
1Sz

2 + Sz
2Sz

3 + Sz
3Sz

1)

+ J
(
S′1 · S′2 + S′2 · S′3 + S′3 · S′1

)
+I
(
S′z1 S′z2 + S′z2 S′z3 + S′z3 S′z1

)]
− 2J

(
S1 · S′1 + S2 · S′2 + S3 · S′3

)
−2I

(
Sz

1S′z1 + S′z2 S′z2 + Sz
3S′z3

)
, (49)

We next decompose each spin into an xy component, which is a vector, and a z component
Si = (S‖i , Sz

i ). We see that only surface spins have xy vector components. The angle between these xy
components of nearest-neighbor surface spins is γi,j which is the projection of α defined above on the
xy plane. We have by symmetry

γ1,2 = 0, γ2,3 =
2π

3
, γ3,1 =

4π

3
. (50)

The angles of the spin Si and S′i with the z axis are by symmetry{
β1 = β2 = β3 = β,
β′1 = β′2 = β′3 = 0,

The total energy of the cell (49), with Si = S′i =
1
2 , can be rewritten as

Hp = −9(J + I)
2

− 3(J + I)
2

cos β− 9(Js + Is)

2
cos2 β

+
9Js

4
sin2 β. (51)

We minimize the cell energy



Entropy 2019, 21, 175 24 of 43

∂Hp

∂β
=

(
27
2

Js + 9Is

)
cos β sin β +

3
2
(J + I) sin β = 0 (52)

which gives the following solution

cos β = − J + I
9Js + 6Is

. (53)

For given values of Is and I, we see that the solution (53) exists if | cos β| ≤ 1, namely Js ≤ Jc
s

where Jc
s is the critical value. For I = −Is = 0.1, one has Jc

s ≈ −0.1889J in perfect agreement with the
numerical minimization shown in Figure 20.

The classical GS determined here will be used as input for the ground-state configuration in the
case of quantum spins presented below using the Green’s function method.

5.4. Results from the Green’s Function Method

We suppose the spins are quantum in this subsection. The details of the formulation for
non-collinear spin configurations have been given in Ref. [65]. We just show the results on the
surface phase transition and compare with the Monte Carlo results performed on the equivalent
classical model.

5.4.1. Phase Transition and Phase Diagram of the Quantum Case

Let us take J = 1 as the unit of energy. The temperature is in unit of J/kB. We show in Figure 21 the
results of the very frustrated case where Js = −0.5J much smaller than Jc

s = −0.1889J. Some remarks
are in order: (i) there is a strong spin contraction at T = 0 [6] for the surface layer which comes from
the antiferromagnetic nature of the in-plane surface interaction Js; (ii) the surface magnetization is
much smaller than the second-layer one, the surface becomes disordered at a temperature T1 ' 0.2557
while the second layer remains ordered up to T2 ' 1.522.

It is interesting to note that the system is partially disordered for temperatures between T1 and
T2. This result confirms again the existence of the partial disorder in quantum spin systems observed
in the bulk [54,69]. Please note that between T1 and T2, the ordering of the second layer acts as an
external field on the first layer, inducing therefore a small value of the surface magnetization.

Figure 21. Surface (S) and 2nd-layer (B) magnetizations versus T for the frustrated case where Js = −0.5
with I = −Is = 0.1. See text for comments.

We show now the case of non-frustrated surface in Figure 22 where Js = 0.5, with I = Is = 0.1.
Though the surface magnetization is smaller than the second-layer magnetization, the result suggests
there is only a single transition temperature.
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Figure 22. Surface (S) and 2nd-layer (B) magnetizations versus T for the non-frustrated case where
Js = 0.5 with I = Is = 0.1.

The phase diagram in the space (Js, T) is shown in Figure 23 where phase I denotes the surface
and bulk ordered phase with non collinear spin configuration at the surface. Phase II is the phase
where the surface is disordered but the bulk is still ordered, phase III is ferromagnetic, and phase IV is
paramagnetic. Please note that the surface transition does not exist for Js ≥ Jc

s .

Figure 23. Phase diagram in the space (Js, T) for the quantum Heisenberg model with Nz = 4,
I = |Is| = 0.1. Phase I is the surface non-collinear phase, phase II has surface disorder and bulk order,
phase III and IV are ferromagnetic and paramagnetic phases, respectively.

5.4.2. Monte Carlo Results

To study the phase transition occurring at a high temperature, one can use the classical spins and
Monte Carlo simulations to obtain the phase diagram for comparison. This is justified since quantum
fluctuations are not important at high T.

For Monte Carlo simulations (see methods in Refs. [2,70–74]), we use the same Hamiltonian (48)
but with the classical Heisenberg spin model of magnitude S = 1. We use the film size L× L× Nz

where Nz = 4 is the number of layers, and L = 24, 36, 48, 60 to detect the finite-size effects. To reduce
the lateral size effect, periodic boundary conditions are employed in the xy planes. The thermodynamic
equilibration is done with 106 Monte Carlo steps per spin and the averaging time is taken over 2× 106

Monte Carlo steps per spin. J = 1 is taken as unit of energy in the following.
Figure 24 shows the first- and second-layer magnetizations versus T where Js = 0.5

(no frustration). In this case, there is clearly just a single transition for surface and bulk, as in the
quantum case.
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Figure 24. Surface magnetization S (circles) and 2nd-layer magnetization B (diamonds) versus T in
unit of J/kB for the non-frustrated case Js = 0.5 with I = Is = 0.1, L = 36.

Let us show in Figure 25 the result of a frustrated case where Js = −0.5. As in the quantum case,
the surface becomes disordered at a temperature much lower than that for the interior layer.

Figure 25. Surface magnetization S (circles) and 2nd-layer magnetization B (diamonds) versus T in
unit of J/kB for the frustrated case Js = −0.5 with I = −Is = 0.1, L = 36.

The phase diagram is shown in Figure 26 in the space (Js, T). We see that there is a remarkable
similarity to that obtained for the quantum spin model shown in Figure 23.

Figure 26. Monte Carlo results of the phase diagram in the space (Js, T) for the classical Heisenberg
model with Nz = 4, I = |Is| = 0.1. Phases I to IV are defined in Figure 23.

5.5. Frustrated Thin Films

We have also studied frustration effects in an antiferromagnetic fcc Heisenberg film [66]. In this
case, the whole film is frustrated due to the geometry of the lattice.
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We consider the quantum Heisenberg spins occupying the lattice sites of a film of fcc structure
with (001) surfaces. The Hamiltonian reads

H = −∑
〈i,j〉

Ji,jSi · Sj −∑
i

Di(Sz
i )

2 (54)

where Si is the spin at the lattice site i, the first sum runs over the nn spin pairs Si and Sj, while the
second one runs over all sites. The second terms in the Hamiltonian are Ising-like uniaxial anisotropy
terms added to avoid the absence of long-range order of isotropic non-Ising spin model at finite T
when the film thickness tends to 1 [64].

Hereafter, let Js be the interaction between two nn surface spins, J = −1 (antiferromagnetic) for
all other interactions.

The GS depends Js with a critical value Jc
s = −0.5 at which the ordering of type I coexists with

ordering of type II (see Figure 27). The demonstration has been given in Ref. [66].
For Js < Jc

s , the spins in each yz plane are parallel while spins in adjacent yz planes are antiparallel
(Figure 27a). This ordering will be called hereafter “ordering of type I”: in the x direction the
ferromagnetic planes are antiferromagnetically coupled as shown in this figure. Of course, there is a
degenerate configuration where the ferromagnetic planes are antiferromagnetically ordered in the y
direction. Please note that the surface layer has an antiferromagnetic ordering for both configurations.
The degeneracy of type I is therefore 4 including the reversal of all spins.

For Js > Jc
s , the spins in each xy plane is ferromagnetic. The adjacent xy planes have an

antiferromagnetic ordering in the z direction perpendicular to the film surface. This will be called
hereafter “ordering of type II”. Please note that the surface layer is then ferromagnetic (Figure 27b).
The degeneracy of type II is 2 due to the reversal of all spins.

Figure 27. Ground-state spin configuration of the surface fcc cell: (a) type I for Js < −0.5; (b) type II for
Js > −0.5 (J = −1). Black and red circles indicate up and down spins, respectively. The vertical axis is
the z axis. The x and y axes along the cube in the yellow plane form with the z axis a direct triad.

Monte Carlo simulations have been used to study the phase transition in this frustrated film.
We just show below three typical cases, at and far from Jc

s . Figure 28 shows the sublattice layer
magnetizations at Jc

s = −0.5 where one sees that the surface layer undergoes a transition at a
temperature lower than the interior ones. Far from this value there is a single phase transition
as seen in Figure 29. However, when Js is negatively stronger, we have a hard surface, namely the
surface undergoes a phase transition at a T higher than that for the interior layer transition. This is
seen in Figure 30.
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Figure 28. (a) Layer sublattice magnetizations and (b) layer sublattice susceptibilities of first two cells
vs. T for Js = −0.5, D = 0.1 (J = −1). L1 to L4 indicate data for layer 1 to 4. The susceptibility of layer
1 is divided by a factor 5 for presentation scale convenience.

Figure 29. (a) Layer sublattice magnetizations and (b) layer sublattice susceptibilities of first two cells
vs. T for Js = −0.8 with D = 0.1 (J = −1). L1 to L4 indicate data for layer 1 to 4.
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Figure 30. (a) Layer sublattice magnetizations and (b) layer sublattice susceptibilities of first two cells
vs. T for Js = −1 with D = 0.1 (J = −1). L1 to L4 indicate data for layer 1 to 4.

The phase diagram is shown in Figure 31.

Figure 31. Phase diagram in the space (Js, Tc) with D = 0.1. I and II denote ordering of type I and II
defined in in Figure 27. III is paramagnetic phase. The yellow (gold) zone indicates the surface (bulk)
disordering while bulk (surface) is still ordered. The discontinued vertical line is a first-order line. See
text for comments.

Please note that near the phase boundary Jc
s (−0.5 ≤ Js ≤ −0.43) a reentrant phase is found

between phases I and II (not seen with the figure scale). As said in the 2D exactly solved models
above, one must be careful while examining the very small region near the phase boundary Jc

s where
unexpected phenomena can occur. This is the case here.

We have studied the nature of the phase transition by using the Monte Carlo multi-histogram
technique [72–74]. Critical exponents are found to have values between 2D and 3D universality classes.
The reader is referred to Ref. [66] for details. The criticality of thin films is treated in Section 6 below.
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5.6. Helimagnetic Films

Bulk helimagnets have been studied a long time ago [75–77]. A simple helimagnetic order
resulting from the competition between the nn and nnn interactions is shown in Section 2.2.
Helimagnetic films are seen therefore as frustrated films.

We have recently used the Green’s function method and Monte Carlo simulations to study
helimagnetic films in zero field [63,78] and in a perpendicular field [79]. We summarize here some
results and emphasize their importance.

Consider the following helimagnetic Hamiltonian

H = −∑
〈i,j〉

Ji,jSi · Sj −∑
i

H · Si (55)

where Ji,j is the interaction between two spins Si and Sj occupying the lattice sites i and j and H
denotes an external magnetic field applied along the c axis. We suppose the ferromagnetic interaction
J1 between nn everywhere. To generate a helical configuration in the c direction, one must take into
account an antiferromagnetic interaction J2 between nnn in the c direction, in addition to J1. Hereafter,
we suppose J2 is the same at the surface and in the bulk for simplicity. Please note that in the bulk in
zero field, the helical angle along the c axis is given by cos α = − J1

4J2
[see Equation (6)] for a simple

cubic lattice when |J2| > 0.25J1 (J2 < 0). Below this value, the ferromagnetic phase is stable.
In zero field the helical angle in a thin film has been shown [63] to be strongly modified near the

surface as presented in Figure 32.

Figure 32. Non-uniform angles across the film: C represents cosines of α1 = θ1 − θ2, . . . , α7 = θ7 − θ8

for J2/J1 = −1.2,−1.4,−1.6,−1.8,−2 (from top) with Nz = 8.

Some results from the laborious Green’s function are shown in Figure 33. To have a long-range
ordering at finite T, we added an anisotropic term d Sz

i Sz
j in the Hamiltonian where d << J1.

We observe in Figure 33 the crossover of the layer magnetizations at low T. This is due to quantum
fluctuations which are different for each layer, depending on the antiferromagnetic interaction strength
(namely the so-called zero-point spin contractions, see Ref. [6]). Without such a theoretical insight, it
would be difficult to understand experimental data when one observes this phenomenon at low T.
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Figure 33. Layer magnetizations versus T for J2/J1 = −1.4 with d = 0.1, Nz = 8. Black circles,
blue void squares, magenta squares, and red void circles are for first, second, third, and fourth layers,
respectively. Magnetization crossovers at low T are seen. See text for explanation.

In an applied field [79], we have observed a new phenomenon, namely a partial phase transition in
the helimagnetic film. Contrary to what has been shown above (surface phase transition below or above
the bulk one), here we have each single interior layer undergoes a separate transition. Theoretically,
we can understand this phenomenon by the following fact: under an applied magnetic field, due to
the surface effect shown in Figure 32 the spins of each layer in the GS make an angle with the c axis
different from those of the other layers of the film (in fact we examine only layers of half of the film,
the other half is symmetric because of the symmetry of the two surfaces). When the temperature
increases, the layers with large xy spin-components undergo a phase transition where the transverse
(in-plane) xy ordering is destroyed. This “in-plane” transition can occur at a temperature because
the xy spin-components do not depend on the field. Other layers with small xy spin-components,
not large enough to have an xy ordering, do not make a transition. In addition, these layers have
large z components, they cannot undergo a transition because the ordering in Sz is maintained by the
applied field.

The transition of several layers with the destruction of the xy ordering, not all layers, is a new
phenomenon found in this work with our helimagnetic films in a perpendicular field. Real helimagnetic
materials often have interactions more complicated than those in the model studied here, but the
important ingredient is the non-uniformity of the spin configuration in an applied field, whatever the
interactions are. The clear physical pictures given in our present analysis are believed to be useful in
the search for the interpretation of experimental data.

6. Criticality of Thin Films

One of the important fundamental questions in surface physics is the criticality of the phase
transition in thin films.

To clarify this aspect, we studied the critical behavior of magnetic thin films with varying film
thickness [80]. In that work, we have studied the ferromagnetic Ising model with the high-resolution
multiple histogram Monte Carlo method [72–74]. We found that though the 2D behavior remains
dominant at small thicknesses, there is a systematic continuous deviation of the critical exponents from
their 2D values. We explained these deviations using the concept of “effective” exponents proposed by
Capehart and Fisher [81] in a finite-size analysis. The variation the critical temperature with the film
thickness obtained by our Monte Carlo simulations is in excellent agreement with their prediction.

Let us summarize here this work.
We consider a film made from a ferromagnetic simple cubic lattice of size L× L× Nz. Periodic

boundary conditions (PBC) are used in the xy planes to reduce the lateral size effect. The z direction is
limited by the film thickness Nz. Nz = 1 corresponds to a 2D square lattice.
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The Hamiltonian is written as
H = −∑

〈i,j〉
Ji,jσi · σj (56)

where σi = ±1 is the Ising spin at the lattice site i, and the sum is performed over the nn spin pairs σi
and σj. Ji,j = J = 1 for all spin pairs.

Using the high-precision multi-histogram Monte Carlo technique [72–74] we have calculated
various critical exponents as functions of the film thickness using the finite-size scaling [82] described
as follows. In Monte Carlo simulations, one calculates by the multiple histogram technique averaged
total energy 〈E〉, specific heat Cv, averaged order parameter 〈M〉 (M: magnetization of the system),
susceptibility χ, first-order cumulant of the energy CU , and nth-order cumulant Vn of the order
parameter, for n = 1 and 2. These quantities are defined as

〈E〉 = 〈H〉, (57)

Cv =
1

kBT2

(
〈E2〉 − 〈E〉2

)
, (58)

M =
1

L× L× NT
〈∑

i
σi〉, (59)

χ =
1

kBT

(
〈M2〉 − 〈M〉2

)
, (60)

CU = 1− 〈E4〉
3〈E2〉2 , (61)

Vn =
∂ ln Mn

∂(1/kBT)
= 〈E〉 − 〈M

nE〉
〈Mn〉 . (62)

where 〈. . .〉 indicates the thermal average at a given T.
Let us summarize the multi-histogram technique [72–74]. With this technique, we calculate

the probability at a temperature T0 using the energy histogram recorded during the simulation.
The probability at temperatures around T0 can be deduced. For the multi-histogram technique,
we should make many simulations with different T0. The combination of these results gives a
good probability as a continuous function of temperature. Thermal averages of physical quantities
are calculated as continuous functions of T, and the results are valid over a much wider range of
temperature than the results from the single histogram technique.

Let Hj(E) be the energy histogram recorded during the j-th simulation. The overall probability
distribution [74] at temperature T obtained from n independent simulations, each with Nj
configurations, is given by

P(E, T) =
∑n

j=1 Hj(E) exp[E/kBT]

∑n
j=1 Nj exp[E/kBTj − f j]

, (63)

where
exp[ fi] = ∑

E
P(E, Ti). (64)

The thermal average of a physical quantity A is then calculated by

〈A(T)〉 = ∑
E

A P(E, T)/z(T), (65)

in which
z(T) = ∑

E
P(E, T). (66)
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In our simulations, the xy lattice sizes L× L with L = 20, 24, 30, . . . , 80 have been used. For Nz = 3,
sizes up to 160× 160 have been used to evaluate corrections to scaling. In each simulation, the standard
Metropolis MC simulations are used first to localize for each size the transition temperatures for
specific heat and for susceptibility. The equilibrating time is from 200,000 to 400,000 MC steps/spin
and the averaging time is from 500,000 to 1,000,000 MC steps/spin. We record next histograms at
8 different temperatures Tj(L) around the transition temperatures with 2 million MC steps/spin,
after equilibrating the system with 1 million MC steps/spin. Finally, we record again histograms at 8
different temperatures around the new transition temperatures with 2× 106 and 4× 106 MC steps/spin
for equilibrating and averaging time, respectively. Such an iteration procedure gives extremely good
results for systems studied so far. Errors shown in the following have been estimated using statistical
errors, which are very small thanks to our multiple histogram procedure, and fitting errors given by
fitting software.

Let us discuss first the 3D case where all dimensions can go to infinity. Consider a system of
size Ld where d is the space dimension. In the simulation for a finite L, one can identify the pseudo
“transition” temperatures by the maxima of Cv and χ, . . . . These maxima in general take place at close,
but not the same, temperatures. When L tends to infinity, these pseudo “transition” temperatures
tend to the “real” transition temperature Tc(∞). Thus, when we examine the maxima of Vn, Cv and
χ, we are not at Tc(∞). We have to bear this in mind for the discussion given in the following. Now,
let us define the reduced temperature, which is the “distance” from Tc(∞), by

t =
T − Tc(∞)

Tc(∞)
(67)

In the finite-size scaling theory, the following scaling relations are valid for large values of L at
their respective ’transition’ temperatures Tc(L) (see details in Ref. [83]):

Vmax
1 ∝ L1/ν, Vmax

2 ∝ L1/ν, (68)

Cmax
v = C0 + C1Lα/ν (69)

χmax ∝ Lγ/ν (70)

CU = CU [Tc(∞)] + AL−α/ν, (71)

MTc(∞) ∝ L−β/ν (72)

Tc(L) = Tc(∞) + CAL−1/ν, (73)

where A, C0, C1 and CA are constants. The exponent ν is calculated independently from Vmax
1 and Vmax

2 .
Using this value we calculate γ from the scaling of χmax, and α from Cmax

v . The value of Tc(∞) can be
calculated using the last expression. Next, with Tc(∞) we can calculate β from MTc(∞). We emphasize
that the Rushbrooke scaling law α + 2β + γ = 2 is in principle verified [82]. This is a way to verify the
obtained critical exponents.

Results obtained from multiple histograms described above are shown in Figure 34 for the
susceptibility and the first derivative V1 calculated with the continuous T, using Equations (63)–(66),
at temperatures around their maxima, with several sizes L× L (L = 20− 80).
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Figure 34. (a) Susceptibility and (b) V1, as functions of T for several L with Nz = 11, obtained by
multiple histogram technique.

The calculation of ν is shown in Figure 35 for Nz = 11 to illustrate the precision of the method:
the slope of the “perfect” straight line of our data points gives 1/ν.

Figure 35. ln Vmax
1 versus L in the ln− ln scale for Nz = 11 (a) without PBC in z direction (b) with

PBC in z direction. The slope values are given on the plot.

Other critical exponents are summarized in Table 1. Our results indicate a very small but
systematic deviation of the 2D critical exponents with increasing thickness. Note the precision of the
2D case (Nz = 1) with respect to the exact result: we have Tc(L = ∞, Nz = 1) = 2.2699± 0.0005. The
exact value of Tc(∞) is 2.26919 by solving the equation sinh2(2J/Tc) = 1. The excellent agreement of
our result shows no doubt the efficiency of the multiple histogram technique used in our work.

Table 1. Critical exponents, effective dimension, and critical temperature at infinite xy dimension for
thickness Nz from 1 to 13.

Nz ν γ α β deff Tc(L = ∞, Nz)

1 0.9990± 0.0028 1.7520± 0.0062 0.00199± 0.00279 0.1266± 0.0049 2.0000± 0.0028 2.2699± 0.0005
3 0.9922± 0.0019 1.7377± 0.0035 0.00222± 0.00192 0.1452± 0.0040 2.0135± 0.0019 3.6365± 0.0024
5 0.9876± 0.0023 1.7230± 0.0069 0.00222± 0.00234 0.1639± 0.0051 2.0230± 0.0023 4.0234± 0.0028
7 0.9828± 0.0024 1.7042± 0.0087 0.00223± 0.00238 0.1798± 0.0069 2.0328± 0.0024 4.1939± 0.0032
9 0.9780± 0.0016 1.6736± 0.0084 0.00224± 0.00161 0.1904± 0.0071 2.0426± 0.0016 4.2859± 0.0022

11 0.9733± 0.0025 1.6354± 0.0083 0.00224± 0.00256 0.1995± 0.0088 2.0526± 0.0026 4.3418± 0.0032
13 0.9692± 0.0026 1.6122± 0.0102 0.00226± 0.00268 0.2059± 0.0092 2.0613± 0.0027 4.3792± 0.0034

We show now the theory of Capehart and Fisher [81] on the variation of the critical temperature
with Nz. Defining the critical-point shift due to the finite size by

ε(Nz) = [Tc(L = ∞, Nz)− Tc(3D)] /Tc(3D) (74)
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the authors [81] showed that

ε(Nz) ≈
b

N1/ν
z

[1 + a/Nz] (75)

where ν = 0.6289 (3D value). Using Tc(3D) = 4.51, we fit the above formula with Tc(L = ∞, Nz) taken
from Table 1, we obtain a = −1.37572 and b = −1.92629. The Monte Carlo results and the fitted curve
are shown in Figure 36. The prediction of Capehart and Fisher is thus very well verified.

Figure 36. Critical temperature at infinite lateral linear size L versus Nz. Data points are Monte Carlo
results, continuous line is from Equation (75).

Note finally that the PBC in the z direction does not change the result if we do not apply the
finite-size scaling in that direction [80].

We have also shown that by decreasing the film thickness, a first-order transition in a frustrated
fcc Ising thin film can become a second-order transition [84].

7. Skyrmions in Thin Films and Superlattices

Skyrmions are topological excitations in a spin system. They result from the competition between
different interactions in an applied magnetic field.

The skyrmion has been named after Skyrme [85,86] for formulating a topological soliton to model
a particle in nuclear physics. Various kinds of skyrmions have been shown to exist in condensed
matter [87–94]. For a review on the history of chiral skyrmions see the introductory part of Ref. [95].

We consider in this section the case of a sheet of square lattice of size N × N, occupied by
Heisenberg spins interacting via a nn ferromagnetic interaction J and a nn Dzyaloshinskii-Moriya
(DM) interaction [24,25]. The Hamiltonian is written as

H = −J ∑
〈ij〉

Si · Sj + Dẑ ·∑
i

Si ∧ (Si+x + Si+y)

−H ∑
i

Sz
i (76)

where the D vector of the DM interaction is chosen along the ẑ direction perpendicular to the plane.
In zero field we have studied the spin waves and layer magnetizations at T = 0 and at finite

T [96]. The results show that the DM interaction strongly affects the first mode of the SW spectrum.
Skyrmions appear only when an external field is applied perpendicular to the film, as seen in the
following.

With H 6= 0, we minimize numerically the above Hamiltonian for a given pair (H, D), taking
J = 1 as unit, we obtain the GS configuration of the system. The phase diagram is shown in Figure 37.
Above the blue line is the field-induced ferromagnetic phase. Below the red line is the labyrinth phase
with a mixing of skyrmions and rectangular domains. The skyrmion crystal phase is found in a narrow
region between these two lines, down to infinitesimal D.
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Figure 37. Ground-state phase diagram in the (D, H) plane for lattice size 100× 100.

Let us show an example of the skyrmion crystal observed at (D = 1, H = 0.5) (Figure 38 left).
We see that the skyrmions form a crystal of triangular lattice. The size of each skyrmion depends on
the ratio H/D.

The labyrinth phase below the red line of Figure 37 is shown in Figure 38 (right) for the cases
(D = 1, H = 0.25) and (D = 1, H = 0).

We wish to study the effect of temperature on the skyrmion crystal. To that end, we define an
order parameter of the crystal as follows: we want to see the stability of the skyrmions at a finite
T so we make the projection of the actual spin configuration at time t at temperature T on the GS
configuration. We should average this projection over many Monte Carlo steps per spin. The order
parameter M is

M(T) =
1

N2(ta − t0)
∑

i
|

ta

∑
t=t0

Si(T, t) · S0
i (T = 0)| (77)

where Si(T, t) is the i-th spin at time t, at temperature T, and Si(T = 0) is its state in the GS. By this
definition, we see that the order parameter M(T) is close to 1 at very low T where each spin is only
weakly deviated from its state in the GS, and M(T) is zero when every spin strongly fluctuates in the
paramagnetic state.

We show in Figure 39 the dependence of M and Mz on T which indicates that the skyrmion crystal
remains ordered up to a finite T. This stability at finite T may be important for transport applications.

We have carried out a finite-size scaling on the phase transition at Tc. We have observed that from
the size 800× 800, all curves coincide within statistical errors. Thus, there is no observable finite-size
effects for larger lattice sizes.

An important feature of topological systems such as the present system and disordered systems
in general (spin glasses, random-field models, . . . ) is the relaxation behavior. In general, they do not
follow the simple exponential law [97]. We have studied the relaxation time of the skyrmion crystal
and found that it follows a stretched exponential law [98].

The DM interaction has been shown to generate a skyrmion crystal in a 2D lattice. However,
skyrmions have been shown to exist in various kinds of lattices [99–102] and in crystal liquids [87–89].
Experimental observations of skyrmion lattices have been realized in MnSi in 2009 [93,94] and in
doped semiconductors in 2010 [92]. Also, the existence of skyrmion crystals have been found in thin
films [90,91] and direct observation of the skyrmion Hall effect has been realized [103]. In addition,
artificial skyrmion lattices have been devised for room temperatures [104].

It is noted that applications of skyrmions in spintronics have been largely discussed and
their advantages compared to early magnetic devices such as magnetic bubbles have been
pointed out in a recent review by W. Kang et al. [105]. Among the most important applications
of skyrmions, let us mention skyrmion-based racetrack memory [106], skyrmion-based logic
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gates [107,108], skyrmion-based transistor [109–111] and skyrmion-based artificial synapse and neuron
devices [112,113].

Figure 38. Left: A skyrmion crystal is observed for D/J = 1 and H/J = 0.5. From above, skyrmion
crystal viewed in the xy plane, a 3D view, zoom of the structure of a single vortex. The value of Sz is
indicated on the color scale. Right top: GS for D = 1 and H = 0, a mixing of domains of long and
round islands. Right bottom: GS for D = 1 and H = 0.25, a mixing of domains of long islands and
vortices. We call these structures the “labyrinth phase”.

Figure 39. Order parameter M (red symbols) defined in Equation (77) versus T, for H = 0.5 and
lattice size 1800× 1800. The projection Mz versus T (blue symbols) of Sz on Sz

0 of the GS as defined in
Equation (77) but for the z components only.
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Finally, we mention that we have found skyrmions confined at the interface of a superlattice
composed alternately of a ferromagnetic film and a ferroelectric film [114–116]. These results may have
important applications.

8. Conclusions

In this review, we have shown several studied cases on the frustration effects in two dimensions
and in magnetic thin films.

The main idea of the review is to show some frustrated magnetic systems which present several
common interesting features. These features are discovered by solving exactly some 2D Ising frustrated
models, they occur near the frontier of two competing phases of different ground-state orderings.
Without frustration, such frontiers do not exist. Among the striking features, one can mention
the “partial disorder”, namely several spins stay disordered in coexistence with ordered spins at
equilibrium, the “reentrance”, namely a paramagnetic phase exists between two ordered phases in
a small region of temperature, and “disorder lines”, namely lines on which the system loses one
dimension to allow for a symmetry change from one side to the other. Such beautiful phenomena can
only be uncovered and understood by means of exact mathematical solutions.

We have next studied frustrated magnetic systems close to the 2D solvable systems. We have
chosen thin magnetic thin films with Ising or other spin models that are not exactly solvable.
Guided by the insights of exactly solvable systems, we have introduced ingredients in the Hamiltonian
to find some striking phenomena mentioned above: we have seen in thin films partial disorder
(surface disorder coexisting with bulk order), reentrance at phase boundaries in fcc antiferromagnetic
films. Thin films have their own interest such as surface spin rearrangement (helimagnetic films) and
surface effects on their thermodynamic properties. Those points have been reviewed here.

The surface effects have been studied by means of the Green’s function method for frustrated
non-collinear spin systems. Monte Carlo simulations have also been used to elucidate many physical
phenomena where analytical methods cannot be used. Surface spin waves, surface magnetization,
and surface phase transition have been analyzed as functions of interactions, temperature, and
applied field.

We have also treated the question of surface criticality. Results of our works show that critical
exponents in thin films depend on the film thickness, their values lie between the values of 2D and
3D universality classes. Recent results on skyrmions have also been reviewed in this paper. One of
the striking findings is the discovery of a skyrmion crystal in a spin system with DM interaction in
competition with an exchange interaction, in a field. This skyrmion crystal is shown to be stable at
finite temperature.

To conclude, we would like to say that investigations on the subjects discussed above continue
intensively today. Please note that there is an enormous number of investigations of other researchers
on the above subjects and on other subjects concerning frustrated magnetic thin films. We have
mentioned these works in our original papers, but to keep the paper length reasonable we did not
present them here. Also, for the same reason, we have cited only a limited number of experiments and
applications in this review.
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Abbreviations

The following abbreviations are used in this manuscript:

bcc body-centered cubic (lattice)
DM Dzyaloshinskii-Moriya
fcc face-centered cubic (lattice)
GS ground state
hcp hexagonal close-packed (lattice)
MC Monte Carlo
nn nearest neighbors
nnn next-nearest neighbors
PBC periodic boundary conditions
SW spin wave
2D two dimensions
3D three dimensions
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