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Abstract: Gene regulation may be studied from an information-theoretic perspective. Gene1

Regulatory programs are representations of the complete regulatory phenomenon associated to2

each biological state. In diseases such as cancer, these programs exhibit major alterations, which3

have been associated to the spatial organization of the genome into chromosomes. In this work, we4

analyze intrachromosomal, or cis-, and interchromosomal, or trans- Gene Regulatory programs in5

order to assess the differences that arise in the context of breast cancer. We find that using Information6

Theoretic approaches, it is possible to differentiate cis- and trans- regulatory programs in terms of7

the changes that they exhibit in the breast cancer context, indicating that in breast cancer there is a8

loss of trans-regulation. Finally, we use these programs to reconstruct a possible spatial relationship9

between chromosomes.10

Keywords: Gene Regulatory Program; Mutual Information; Markov Random Field; Spatial11

Dependency Structures; Cancer Transcriptomics12

1. Introduction13

1.1. The Gene Regulatory Program14

In order to respond to external stimuli, maintain the basal function, or adapt to new environments,15

the cell triggers a sophisticated mechanism to produce the specific class and amount of elements16

responsible for carrying out the particular tasks involved in a cellular context. Processes such17

as development, cell differentiation and homeostasis are driven and controlled by a set of genes18

interacting in time and space to respond to the changing environment. We will call to said set of genes19

and the manner in which they interact as Gene Regulatory Program (GRP).20

21

In the eukaryotic cell, DNA is packed forming structural units called chromosomes. The human22

cell contains 23 chromosomes. Chromosomes are composed by the already mentioned DNA molecule23

(in which the genetic information is encoded), and structural proteins called histones, which attach the24

DNA molecule to them. These elements form the chromatin fiber, which in turn is coiled to generate25

the structure of a chromosome.26

27

To initiate the gene transcription (production of an RNA molecule from DNA), and the consequent28

gene regulatory program, the chromosome must be “open”, i.e., DNA should be visible to the proteins29

which will carry out the transcriptional process. Opening of DNA is a highly coordinated event that30
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allow the simultaneous production of RNA molecules in different sections of the chromosome, but31

also in different chromosomes. This co-regulated production of genes is one of the most important32

factors to generate a GRP. Fom now on, intra-chromosomal regulation will be termed cis- regulation33

whereas we will refer to inter-chromosomal trans- regulation. In this, we are somewhat extending or34

borrowing the classical concepts of cis- and trans- regulation (Stergachis et al. 2014) instead of the more35

verbose intra-chromosomal and inter-chromosomal terms.36

1.2. Spatial anomalies in cancer-associated GRPs37

The whole GRP determine the phenotype. Since gene regulation is keystone for the correct38

functioning of the living cell, abnormal performance of the way in which genes are co-regulated in39

time and space give place to aberrant phenotypes. A paradigmatic example of this is cancer.40

41

During the rise and development of a cancerous phenotype, several abnormal signals of gene42

regulation are triggered. This set of signals produce a faster cell growth, cell duplication and43

proliferation, evasion of of immune system, and others. The majority of said hallmarks of cancer44

(Hanahan and Weinberg 2011) are produced by genes in which mutations, different expression patterns45

or epigenetic signals appear. This altered gene expression pattern can be studied by means of next46

generation sequencing (NGS) techniques such as RNA-Seq, which allow to have at the genome-wide47

level the information of the amount of any RNA transcript from a given sample (person).48

49

NGS opened the possibility to have the information regarding the gene expression of the50

whole genome of several samples. The large data corpus allow to increase the statistical power and51

observe general behavior of a cancerous phenotype and compare it with a non-cancerous one. Other52

approaches to this problem have been developed including 3C, 4C (Aguilar-Arnal and Sassone-Corsi53

2015) and Hi-C chromosome capture techniques (Dryden et al. 2014) as well as ultra-microscopy54

(Cremer et al. 2017), among others.55

56

With the aforementioned in mind, a simple and direct point of investigation is the observation of57

a GRP in cancer and compare it with a normal (non-cancerous) program. This is, comparing at the58

genome-wide level, the whole set of gene interactions between these two phenotypes (cancer and59

normal).60

61

Previously (De Anda-Jaúregui et al. 2018; Espinal-Enriquez et al. 2017; García-Cortés et al. 2018),62

we observed that in breast cancer, trans- (inter-chromosome) gene interactions are more scarce and63

weaker in cancer samples compared to the healthy phenotype. Furthermore, in breast cancer, cis-64

interactions become stronger but between physically close genes, and this gene correlation strength65

decays with the distance. Said effect is not present in the normal phenotype.66

67

In order to characterize in a quantitative manner the qualitative differences observed between68

the two phenotypes, in this work we have implemented an information theoretical approach, by69

constructing a series of indicators that, as it will be shown later, allow the classification for the70

distinctive patterns of both GRPs.71

72

1.3. An information theoretical approach to gene regulatory programs73

A paradigmatic question in contemporary computational biology, is the probabilistic inference74

of the best set of regulatory interactions between genes starting from a large –but incomplete– data75

corpus Ω. This is, being able to found the maximum-likelihood or maximum-entropy solution to the76

deconvolution of the GRP of the cells starting from data sampled in, say RNA sequencing experiments77

over whole genome transcriptomes. Such deconvolution involves the inverse problem of large scale78
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probabilistic inference over an incomplete and noisy sample space.79

80

A paramount solution to this extremely difficult task is founded on the tenets of Information81

Theory (Hernández-Lemus and Rangel-Escareño 2011), as we will show in what follows.82

83

Let Xi = {X1, X2, . . . , XN} be a set of N random variables, representing the expression levels of84

N genes in a transcriptome. For each duplex Di,j = (i, j) (i.e. a pair of genes), the mutual information85

function I(Xi, Xj) is given by (Cover and Thomas 2012):86

I(Xi, Xj) = ∑
i∈I

∑
j∈J

P(Xi, Xj) log
P(Xi, Xj)

P(Xi) P(Xj)
(1)

I and J are the complete gene expression sampling spaces for genes i and j respectively –i.e. the87

sets of all possible values of the experimentally measured gene expression levels Xi, and Xj, within88

a large experimental data corpus Ω. P(Xi, Xj) is the joint probability distribution of Xi and Xj and89

P(Xi) and P(Xj) are the marginal probability distributions of Xi and Xj, respectively. As it is widely90

know, the mutual information function I(Xi, Xj) quantifies the statistical dependence between two91

given random variables Xi and Xj (Cover and Thomas 2012).92

93

We can also define the off-diagonal mutual information, I† as follows :94

I†(Xi, Xj) = I(Xi, Xj) ·
(
1− δij

)
(2)

δij is Kronecker’s delta. The purpose of I†(Xi, Xj) is to eliminate self-information from our95

calculations. From now on, we will drop the † superscript and we will always refer to the off-diagonal96

mutual information in all of our further calculations.97

98

A GRP encompasses the full set of interactions among genes that gives rise to a transcriptional99

phenotype. Within the context of the theoretical and experimental settings we have just described, let100

us define what the solution of a GRP Deconvolution problem is.101

102

Following previous work (De Anda-Jaúregui et al. 2018), we define a Gene Regulatory103

Program (GRP) as a graph G[I(Xi, Xj)] of all the mutual information functions for a given empirical104

transcriptomics sampling space Ω. It can be shown that G[I(Xi, Xj)] is indeed a Markov Random105

Field (Kindermann 1980; Moussouris 1974) considering mutual information distributions under the106

pairwise sufficiency assumption (Merchan and Nemenman 2016).107

108

We will consider both cis and trans GRPs Gk,l [I(Xi, Xj)], here k, l = {1, 2, . . . , 22, x} are indexes109

working as the chromosome label. k = l implies associations between genes i and j located in the110

same chromosome (cis-GRPs, G[I(Xi, Xj)]
cis ) , whereas k 6= l are statistical dependencies in different111

chromosomes (trans-GRPs, G[I(Xi, Xj)]
trans ). Partitions of the global GRP G[I(Xi, Xj)] into its cis- and112

trans- constituents, are called subregulatory programs from now on.113

2. Analysis114

2.1. Data115

The inference of the GRPs G[I(Xi, Xj)] is based the RNA sequencing of basal breast cancer116

patients and healthy samples from the Cancer Genome Atlas (TCGA) collaboration (TCGA 2012)117

data acquired, and pre-processed as described in (Espinal-Enriquez et al. 2017). Briefly, we used 142118

Basal-like subtype breast cancer samples, as well as 101 solid-tissue normal samples. Each sample119

contains 15,642 annotated genes, after removal of low-counts transcripts (< 5 per sample). This set120
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of un-paired data were pre-processed, normalized and bias-reduced, to have a comparable set of121

expression data between cancer and normal samples.122

2.2. GRP inference123

GRPs for tumors and controls were obtained by calculating MI values for every pair of genes i, j124

in the genome as measured in the aforementioned RNA sequencing data. These calculations were125

performed using an in-house (Tovar et al. 2015) parallel implementation based on the ARACNE126

(Margolin et al. 2006) engine.127

2.3. Measures of change in MI between health and disease128

In order to characterize in a quantitative manner the qualitative differences observed between129

the mutual information distributions making up for the statistical dependence structure behind the130

different conditions, we have implemented a series of indicators that, as it will be shown later allow131

the classification for the distinctive patterns or features of the GRPs.132

133

Consider two GRPs Gk,l
tumor and Gk,l

control representing the set of interactions among genes in a134

phenotype. We may define a difference matrix Gk,l
∆ as follows:135

136

∆Gk,l = Gk,l
tumor − G

k,l
control137

138

∆Gk,l describes the changes in the interactions among genes, in terms of MI, between the two139

phenotypes.140

141

2.3.1. Gain Loss Score142

The first indicator that we define is the Gain Loss Score, GLS an aggregated measure of the143

direction of MI changes in a GRP.144

GLSk,l =
|(∆[I(Xi, Xj)] ∈ Gk,l

∆ ) > 0| − (∆[I(Xi, Xj)] ∈ Gk,l
∆ ) < 0|

|(∆[I(Xi, Xj)] ∈ Gk,l
∆ )|

(3)

Basically, GLS is the difference between the number of gene pairs that exhibit a gain in MI values145

minus the number of gene pairs that exhibit a loss in MI values between the two phenotypes, divided146

by the total number of gene pairs. This indicator will be positive if there are more gains, and negative147

if there are more losses.148

2.3.2. Gain Loss Ratio149

The second indicator we define is the Gain Loss Ratio, GLR which is an aggregated measure of150

the magnitude of the losses and gains of MI. Basically, it is the ratio of the absolute mean value of MI151

gains over the absolute mean value of MI losses.152

153

GLRk,l =
absMean(∆Gk,l > 0)
absMean(∆Gk,l < 0)

(4)

The GLR indicator will be larger than 1 if the average value of MI gains is larger than the average154

value of MI losses, and will be smaller than 1 otherwise.155

2.4. Comparison of GRPs between control and cancer conditions156

To assess the changes in the overall behavior of GRPs between both conditions, we used the157

Kolmogorov-Smirnov (KS) test. We performed the KS test between cancer GRPt
ij and control GRPc

ij158
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GRPs to quantify the distance metric between the MI distributions. The null distribution of this statistic159

is calculated under the null hypothesis that the samples are drawn from the same distribution.160

2.5. Comparison between cis- and trans-GRPs in each condition161

To assess differences between cis- and trans- GRPs within the same biological condition, we again162

made use of the KS test. In each phenotype (tumor or control), we performed the KS test to compare,163

for each chromosome k, the difference between the cis− GRPkk and every trans− GRPkl regulatory164

programs.165

166

Additionally, we decided to compare, in both biological conditions, each cis− GRPkk to every167

trans− GRPkl for each chromosome k by using the Hellinger distance,H2(X, Y). The Hellinger distance168

H2 is a semi-quadratic form of f-divergence to measure the difference between two probability169

functions. Unlike the KS metric –already introduced– that considers maximum deviations (as given by170

the supremne difference), we may think ofH2(X, Y) as a weighted average of the odds ratio given by171

a probability distribution X which is absolutely continuous respect to another probability distribution172

Y. For the case of the sub-regulatory programs we have the following expression:173

H2(δGk,k, δGk,l) =
1√
2

∥∥∥√δGk,k −
√

δGk,l
∥∥∥

2
(5)

Here ‖·‖2 is the Euclidean norm. δGk,k is the probability density of the cis-GRP for chromosome k174

and δGk,l is the probability density of the trans-GRP involving chromosomes k and l.175

3. Results and Discussion176

3.1. Intra- and Inter-chromosome interactions exhibit differences in MI changes177

We have previously observed that intra and inter-chromosome interactions behave differently in178

breast cancer and regular breast tissue; if a threshold is established based on MI values, as to generate179

sparse graphs, the observed effect may be thought of as a loss of trans-regulation in breast cancer, as180

compared to healthy breast tissue (Espinal-Enriquez et al. 2017). By considering full cis- and trans-181

GRPs it is possible to further assess the way in which these types of interactions change.182

183

In Figure 1 we observe the changes of cis- GRPs (∆Gcis) for every chromosome as well and trans-184

GRPs (∆G trans) for every pair of chromosomes, in terms of two indicators: GLS , a measure of the185

direction of MI changes, and GLR, a measure of the magnitude of losses and gains in MI.186

187

It may be seen that trans interactions between any two pairs of chromosomes exhibit overall188

more losses than gains in terms of MI, with higher MI drops than MI gains. On the other hand, (cis)189

interactions in each chromosome have more varied behaviors: a) either they also exhibit losses, but190

both their frequency and magnitude are lower than the one observed in trans interactions (this is191

the case for chromosomes 1, 2, 5, 6, 11, 17, 19 and X); or b) they exhibit more losses than gains, but192

the average magnitude of the gains is higher than the average magnitude of the losses (the case for193

chromosomes 3, 4, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, and 22); the behavior of chromosome 21 is the194

only one where there are more gains, and gains have a higher magnitude.195

196

GLS and GLR are proportional. As it can be observed from Figure 1, an increase in g/l scrore, is197

accompanied with an increase in the GLR.198

3.2. cis- patterns depend on the chromosome size199

The structure of a chromosome is composed by two arms: the p (short) and q arms, separated by a200

centromere (Supplementary Figure S2). Based on the position of the centromere, the chromosomes are201
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classified into metacentric, where the centromere is placed in the middle of the chromosome, acrocentric,202

where the centromere is placed closer to the extreme of the chromosome, and submetacentric, which the203

centromere is not in the center of the chromosome, but neither at the extreme position.204

205

There is a direct relationship between the structure and number of genes in the chromosomes:206

metacentric and submetacentric chromosomes contain more genes than acrocentric chromosomes.207

Chromosome 1, 19, or 2, which are metacentric chromosomes, contain around 2,000 genes; meanwhile208

chromosome 21, 22, 13 or 14 contain around 300 genes.209

210

Interestingly, the GLS and GLR in the cis- GRPs exhibit a different pattern depending on the211

size of the chromosomes: the larger chromosomes show lower GLS and GLR than acrocentric and212

smaller chromosomes. Supplementary Figure 1 and supplementary table 1 provide a more detailed213

description of this phenomenon.214

215

This apparently functional behavior appears to be highly related to the structure of the216

chromosome. This is, during cancer the loss of information observed in terms of mutual information,217

depends on the number of genes in the chromosome, which is in turn related to the size of the218

chromosome. A possible explanation to this behavior could be related to the closeness between genes219

inside the chromosome. Meanwhile chromosomes 1, 17, 11 or 19 present a high density of genes,220

chromosomes 21, 18, or 13 are less dense and present less genes.221
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Figure 1. A scatterplot, where each point represents a subregulatory program for a pair of chromosomes,
comprised of all MI values for each pair of genes in Chromosome i and Chromosome j. By comparing
the MI between gene pairs in tumor and control, in terms of GLS (whether there are more losses
or gains in MI) and GLR (whether MI losses or MI gains have a higher magnitude), we identify
that interchromosomal interactions between genes in any pair of chromosomes have more losses
than gains of MI in disease, with an average MI loss greater than the average MI gain. Meanwhile,
intrachromosomal interactions may exhibit three different behaviors: i) they have more losses with
higher average MI loss, although with higher GLS and GLR values than the interchromosomal
interactions (chromosomes 1, 2, 5, 6, 11, 17, 19, X); ii) they have more losses, but the average MI gain is
higher (chromosomes 3, 4, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 22) or iii) they have more gains, with a
higher average MI gain (21).
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3.3. Cis-GRPs are more similar in health and disease than trans-GRPs222

Based on previous observations regarding the changes in gene regulation observed in breast223

cancer, the observed phenomenon may obey to one of the following: trans-regulation becoming224

weaker, cis-regulation becoming stronger, or a combination of the two. By comparing whole GRPs225

between health and disease, it is possible to have a complete assessment of this phenomenon.226

227

In figure 2, a heatmap is presented in which the color intensity is proportional to the log228

negative Kolmogorov-Smirnov (KS) distance between GRPs in tumors and the corresponding GRPs229

in health (− log(kstc)). As it is kown KS distance ksij arises from an uniparametric test to compare230

probability distributions ksij = supx |Fi,n(x) − Fj,m(x)| where Fi,n and Fj,m are the corresponding231

cummulative distributions. In the central diagonal, the KS distances between cis-GRPs may be232

found, while KS distances between trans-GRPs are found elsewhere. It may be seen that cis-GRPs are233

closer between health and disease (ranging from 0.07 to 0.18) than trans-GRPs which are notably farther.234

235

These observations, along with those mentioned in section 2.1, may be pointing to a phenomenon236

in which trans-regulation in fact becomes weaker, whereas the cis-regulation is less severely affected,237

and therefore prevails as the main component of the regulatory phenomenon.238
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Figure 2. A heatmap showing the differences between GRPs in health and disease. In each square,
the color intensity is proportional to − log(kstc), the Kolmogorov-Smirnov distance between the
subregulatory program for ij in cancer vs the subregulatory program for ij in control. We may observe
that in general, the distances between trans- GRPs in control and cancer are greater than the distances
between cis- GRPs in health and disease.

3.4. Differences in cis- and trans-GRPs in health and disease239

A final question is to observe whether cis- and trans- regulation behaves differently within the240

same phenotype. We may evaluate this through the use of GRPs. We do so by comparing, for each241

chromosome k, the Gk,k with each Gk,l through the use of the KS test.242

243

In figure 3 we show two heatmaps, one for tumors (panel A) and one for controls (panel B). In244

each heatmap, the color intensity is proportional to the (negative log) KS distance between the Gk,k
245

(cis) and the Gk,l (trans). The figure clearly illustrates how, in the case of cancer, trans-GRPs involving246
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a given chromosome are virtually equidistant to the corresponding cis-GRP for said chromosome.247

Meanwhile, in healthy breast tissue, each trans-GRP has a unique distance from the corresponding248

cis-GRP. Furthermore, in all chromosomes in cancer, KS values are lower than those for the healthy249

phenotype.250

251
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Figure 3. A heatmap showing the differences between cis− GRPk and trans− GRPkl in terms of KS
statistic. Notice that in tumors, each trans− GRPkl is almost equidistant to cis− GRPkk (that is, each
column has virtually the same color intensity in all rows), which is not the case in controls.

3.4.1. Reconstructing a spatial dimension of gene regulation through information theoretic approaches252

As we have mentioned, the difference between cis- and trans- regulation is at its core, a spatial253

difference, as chromosomes are fundamentally units of biological organization in localized space.254

Therefore, the differences observed through these Information Theoretical approaches may be255

reflecting this spatial organization.256

257

To illustrate this, we used another distance matrix: Hellinger distance between the Probability258

Density Functions (PDFs) associated to each GRP. For each chromosome k, the Hellinger distance259

between PDF(Gk,k) and each PDF(Gk,l) was calculated, in the cancer and healthy phenotypes.260

261

In figure 4, we show network visualizations (panel A, cancer, panel B, healthy) in which each node262

represents a chromosome, and the links represent the aforementioned Hellinger distance between263

PDF(Gk,k) and each PDF(Gk,l). Through this, we may use a force-directed layout to organize these264

chromosomes in space. In these visualizations, the thickness and color intensity of the edges is higher265

if the distance between the PDFs is smaller. Furthermore, in the case of cancer, we may observe that the266

layout (based on the aforementioned Hellinger distances) pushes together certain pairs of chromosomes267

(such as chromosomes 2 and X, or 3 and 8). This is a phenomenon that is not observed in health.268

269

It is important to mention that this observation by itself is not revealing a true spatial orientation270

of chromosomes in the cell nucleus space. However, based on the relationship that exists between271

information-theoretic based correlations in gene expression, and the spatial organization of genes, it272

may be indicative of specific spatial arrangements observed in each phenotype. In the end, ours is273

a descriptive method that may serve as a hypothesis generator; ultimately, experimental validation274

is needed. Our results could serve as an starting point for experimental explorations using novel275

technologies such as hi-C, ultra-microscopy, and future related techniques.276

enrique
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Figure 4. A network visualization of spatial behavior in terms of MI. Each node represents a
chromosome. Each directed link has as weight the Hellinger distance (as calculated with the textmineR R
package) between the PDFs of cis− GRPkk and trans− GRPkl . The intensity of each link (transparency
and thickness) is inversely proportional to the Hellinger distance. The nodes are arranged using
a prefuse force-directed layout algorithm, considering the inverse of the Hellinger distance. This
pushes nodes where cis− GRPkk and trans− GRPkl are similar together. Notice that the position of
chromosomes is different in tumors and controls. Also notice that, overall, links are thicker (that is,
PDFs are closer) in controls. Supplementary Figure 1 provides a force-directed visualization that shows
some cases in tumor networks where chromosomes are "pushed together" (such as 2 and X, or 3 and 8).

4. Conclusions277

Despite the enormous effort that has been devoted to dissect and analyze the molecular278

origins of breast cancer, the complex gene regulatory mechanisms behind this terrible disease still279

constitute a conundrum challenging diagnostic and therapeutic interventions. With the advent of high280

throughput experimental approaches (and the big data provided by them), information theoretical281

tools have allowed us to analyze at an extremely detailed level such complex gene regulatory programs.282

283

Here we have analyzed how cancer-associated gene regulatory programs present a robust284

phenomenon of spatial organization, associating mechanistic features of gene regulation with the three285

dimensional structure of genomes and its influence on the transcriptional machinery. In brief, we have286

discovered how the global regulatory patterns diverge from health. How some relationships are lost,287

and few are gained. Cis-regulation becomes the norm, while trans-regulation becomes undifferentiated.288

A new spatial organization thus emerges.289

290

A number of questions and hypotheses arise from this study, namely291

• To what extent changes in gene regulation are relevant to breast cancer evolution?292

• What are the possible consequences (functional or otherwise) of regulatory localization?293

• Why different chromosomes behave differently? Including, but not limited to size effects.294

• Are these patterns different in different cancers? Are they similar?295

Rigurous quantitative studies, firmly grounded on the tenets of information theory will no doubt296

continue shedding light on the phenomenology of complex diseases, thus providing pivotal insights297

to the advancement of medical science.298
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Supplementary Materials: The following supplementary materials are available online:299

300

Figure S1: Classification of Chromosme types. Classifications of Chromosomes: I Telocentric Centromere301

placement very close to the top, p arms barely visible if visible at all. II Acrocentric q arms are still much302

longer than the p arms, but the p arms are longer than those in telocentric. III Submetacentric p and q arms303

are very close in length but not equal. IV Metacentric p and q arms are equal in length. A: Short arm (p arm)304

B: Centromere C: Long arm (q arm) D: Sister Chromatids. Figure used under CC BY-SA 4.0 licensing. Source:305

https://commons.wikimedia.org/w/index.php?curid=49028965306

http://www.mdpi.com/1099-4300/xx/1/5/s1307

308

Figure S2: Force-directed chromosome-wise GRP network visualizations.309

http://www.mdpi.com/1099-4300/xx/1/5/s2310

GRP for control and cancer. The whole Gene Regulatory Program for Basal and healthy311

phenotype are available upon request.312
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