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Abstract: In this work, the capacity of multiple-input multiple-output channels that are subject
to constraints on the support of the input is studied. The paper consists of two parts. The first
part focuses on the general structure of capacity-achieving input distributions. Known results are
surveyed and several new results are provided. With regard to the latter, it is shown that the support
of a capacity-achieving input distribution is a small set in both a topological and a measure theoretical
sense. Moreover, explicit conditions on the channel input space and the channel matrix are found such
that the support of a capacity-achieving input distribution is concentrated on the boundary of the
input space only. The second part of this paper surveys known bounds on the capacity and provides
several novel upper and lower bounds for channels with arbitrary constraints on the support of the
channel input symbols. As an immediate practical application, the special case of multiple-input
multiple-output channels with amplitude constraints is considered. The bounds are shown to be within
a constant gap to the capacity if the channel matrix is invertible and are tight in the high amplitude
regime for arbitrary channel matrices. Moreover, in the regime of high amplitudes, it is shown that
the capacity scales linearly with the minimum between the number of transmit and receive antennas,
similar to the case of average power-constrained inputs.

Keywords: MIMO; channel capacity; amplitude constraint; input distrbution; capacity bounds

1. Introduction

While the capacity of a multiple-input multiple-output (MIMO) channel with an average power
constraint is well understood [1], there is surprisingly little known about the capacity of the more
practically relevant case in which the channel inputs are subject to amplitude constraints. Shannon
was the first who considered a channel that is constrained in its amplitude [2]. In that paper,
he derived corresponding upper and lower bounds and showed that in the low-amplitude regime,
the capacity behaves as that of channel with an average power constraint. The next major contribution
to this problem was a seminal paper of Smith [3] published in 1971. Smith showed that, for the
single-input single-output (SISO) Gaussian noise channel with an amplitude-constrained input,
the capacity-achieving inputs are discrete with finite support. In [4], this result is extended to
peak-power-constrained quadrature Gaussian channels. Using the approach of Shamai [4], it is shown
in [5] that the input distribution that achieves the capacity of a MIMO channel with an identity channel
matrix and a Euclidian norm constraint on the input vector is discrete. Even though the optimal input
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distribution is known to be discrete, very little is known about the number or the optimal positions of
the corresponding constellation points. To the best of our knowledge, the only case for which the input
distribution is precisely known is considered in [6], where it is shown for the Gaussian SISO channel
with an amplitude constraint that two point masses are optimal if amplitude values are smaller than
1.665 and three for amplitude values of up to 2.786. Finally, it has been shown very recently that the
number of mass points in the support of the capacity-achieving input distribution of a SISO channel is
of the order O(A2) with A the amplitude constraint.

Based on a dual capacity expression, in [7], McKellips derived an upper bound on the capacity of
a SISO channel that is subject to an amplitude constraint. The bound is asymptotically tight; that is,
for amplitude values that tend to infinity. By cleverly choosing an auxiliary channel output distribution
in the dual capacity expression, the authors of [8] sharpened McKellips’ upper bound and extended
it to parallel MIMO channels with a Euclidian norm constraint on the input. The SISO version of
the upper bound in [8] has been further sharpened in [9] by yet another choice of auxiliary output
distribution. In [10], asymptotic lower and upper bounds for a 2× 2 MIMO channel are presented and
the gap between the bounds is specified.

In this work, we make progress on this open problem by deriving several new upper and lower
bounds that hold for channels with arbitrary constraints on the support of the channel input distribution
and then apply them to the practically relevant special case of MIMO channels that are subject to
amplitude-constraints.

1.1. Contributions and Paper Organization

The remainder of the paper is organized as follows. The problem is stated in Section 2. In Section 3,
we study properties of input distributions that achieve the capacity of input-constrained MIMO
channels. The section reviews known results on the structure of optimal input distributions and
presents several new results. In particular, Theorem 3 shows that the support of a capacity-achieving
input distribution must necessarily be a small set both topologically and measure theoretically.
Moreover, Theorem 8 characterizes conditions on the channel input space as well as on the channel
matrix such that the support of the optimal input distribution is concentrated on the boundary of the
channel input space.

In Section 4, we derive novel upper and lower bounds on the capacity of a MIMO channel
that is subject to an arbitrary constraint on the support of the input. In particular, three families
of upper bounds are proposed, which are based on: (i) the maximum entropy principle (see the
bound in Theorem 9); (ii) the dual capacity characterization (see the bound in Theorem 10); and (iii)
a relationship between mutual information and the minimum mean square error that is known as
the I-MMSE relationship (see the bound in Theorem 11). On the other hand, Section 4 provides
three different lower bounds. The first one is given in Theorem 12 and is based on the entropy
power inequality. The second one (see Theorem 13) is based on a generalization of the celebrated
Ozarow–Wyner bound [11] to the MIMO case. The third upper bound (see Theorem 14) is based on
Jensen’s inequality and depends on the characteristic function of the channel input distribution.

In Section 5, we evaluate the performance of our bounds by studying MIMO channels with
invertible channel matrices. In particular, Theorem 17 states that our upper and lower bounds are
within n log2(ρ) bits, where ρ is the packing efficiency and n the number of transmit and receive
antennas. For diagonal channel matrices, it is then shown (see Theorem 18) that the Cartesian product
of simple pulse-amplitude modulation (PAM) constellations achieves the capacity to within 1.64n bits.

Section 6 is devoted to MIMO channels with arbitrary channel matrices. It is shown that,
in the regime of high amplitudes, similar to the case of average power-constrained channel inputs,
the capacity scales linearly with the minimum of the number of transmit and receive antennas.

In Section 7, our upper and lower bounds are applied to the SISO case, which are then compared
with bounds known from the literature. Finally, Section 8 concludes the paper. Note that parts of the
results in this paper were also published in [12].
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1.2. Notation

Vectors are denoted as bold lowercase letters, random vectors as bold uppercase letters,
and matrices as bold uppercase sans serif letters (e.g., x, X, X). For any deterministic vector x ∈ Rn,
n ∈ N, we denote the Euclidian norm of x by ‖x‖. For some random X ∈ supp(X) ⊆ Rn and any p > 0,
we define

‖X‖p :=
(

1
n
E[‖X‖p]

) 1
p
, (1)

where supp(X) denotes the support of X. Note that for p ≥ 1, the quantity in Equation (1) defines
a norm and for n = 1 we simply have ‖X‖p

p = E[|X|p].
The norm of a matrix H ∈ Rn×n is defined as

‖H‖ := sup
x:x 6=0

‖Hx‖
‖x‖ ,

whereas Tr(H) is denoting its trace. The n× n identity matrix is represented as In.
Let S be a subset of Rn. Then,

Vol(S) :=
∫
S

dx

denotes its volume. Moreover, the boundary of S is denoted as ∂S .
Let R+ := {x ∈ R : x ≥ 0}. We define an n-dimensional ball or radius r ∈ R+ centered at x ∈ Rn

as the set
Bx(r) := {y ∈ Rn : ‖x− y‖ ≤ r}.

Recall that, for any x ∈ Rn and r ∈ R+,

Vol
(
Bx(r)

)
=

π
n
2

Γ
( n

2 + 1
) rn,

where Γ(z) denotes the gamma function.
For any matrix H ∈ Rk×n and some S ⊂ Rn, we define

HS := {y ∈ Rk : y = Hx , x ∈ S}.

Note that for an invertible H ∈ Rn×n, we have

Vol(HS) = |det(H)|Vol(S)

with det(H) the determinant of H. We define the maximum and minimum radius of a set S ⊂ Rn that
contains the origin as

rmax(S) := min{r ∈ R+ : S ⊂ B0(r)},
rmin(S) := max{r ∈ R+ : B0(r) ⊆ S}.

For a given vector a = (a1, . . . , an) ∈ Rn
+, we define

Box(a) := {x ∈ Rn : |xi| ≤ ai, i = 1, . . . , n}

and the smallest box containing a given set S ⊂ Rn as

Box(S) := inf{Box(a) : S ⊆ Box(a)},

respectively.



Entropy 2019, 21, 200 4 of 33

The entropy of any discrete random object X is denoted as H(X), whereas h(X) (i.e., the differential
entropy) is used whenever X is continuous. The mutual information between two random objects X and
Y is denoted as I(X; Y) and N (m, C) denotes the multivariate normal distribution with mean vector
m and covariance matrix C. Finally, log+

a (x) := max{loga(x), 0}, for any base a > 0, Q(x), x ∈ R,
denotes the Q-function, and δx(y) the Kronecker delta, which is one for x = y and zero otherwise.

2. Problem Statement

Consider a MIMO system with nt ∈ N transmit and nr ∈ N receive antennas. The corresponding
nr-dimensional channel output for a single channel use is of the form

Y = HX + Z,

for some fixed channel matrix H ∈ Rnr×nt (considering a real-valued channel model is without loss of
generality). Here and hereafter, we assume Z ∼ N (0, Inr ) is independent of the channel input X ∈ Rnt

and H is known to both the transmitter and the receiver.
Now, let X ⊂ Rnt be a convex and compact channel input space that contains the origin

(i.e., the length-nt zero vector) and let FX denote the cumulative distribution function of X. As of the
writing of this paper, the capacity

C(X , H) := max
FX :X∈X

I(X; Y) = max
FX :X∈X

I(X; HX + Z), (2)

of this channel is unknown and we are interested in finding novel lower and upper bounds.
Even though most of the results in this paper hold for arbitrary convex and compact X , we are
mainly interested in the two important special cases:

(i) per-antenna amplitude constraints, i.e., X = Box(a) for some given a = (A1, . . . , Ant) ∈ Rnt
+ ; and

(ii) nt-dimensional amplitude constraint, i.e., X = B0(A) for some given A ∈ R+.

Remark 1. Note that determining the capacity of a MIMO channel with average per-antenna power constraints
is also still an open problem and has been solved for some special cases only [13–17].

3. Properties of an Optimal Input Distribution

Unlike the special cases of real and complex-valued SISO channels (i.e., nt = nr = 1), the structure
of the capacity-achieving input distribution, denoted as F?

X, is in general not known. To motivate why
in this paper we are seeking for novel upper and lower bounds on the capacity (Equation (2)) instead of
trying to solve the optimization problem directly, in this section we first summarize properties optimal
input distributions must posses, which demonstrate how complicated the optimization problem
actually is. Note that, whereas an optimal input distribution always exists, it does not necessarily need
to be unique.

3.1. Necessary and Sufficient Conditions for Optimality

To study properties of an optimal input distribution, we need the notion of a point of increase of
probability distribution.

Definition 1. (Points of Increase of a Distribution) A point x ∈ Rn, n ∈ N, is said to be a point of increase of
a given probability distribution FX if for any open set A ⊂ Rn containing x, FX(A) > 0.

The following result provides necessary and sufficient conditions for the optimality of a channel
input distribution.
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Theorem 1. Let FX be some given channel input distribution and let E(FX) ⊂ X denote the set of points of
increase of FX. Then, the following holds:

• FX is capacity-achieving if and only if the Karush–Kuhn–Tucker (KKT) conditions

h(x; FX) ≤ h(HX + Z), x ∈ X , (3a)

h(x; FX) = h(HX + Z), x ∈ E(FX) ⊂ X , (3b)

are satisfied [3,18], where

h(x; FX) := −
∫
Rnr

1

(2π)
nr
2

e−
‖y−Hx‖2

2 log2
(

fY(y)
)
dy

with fY being the probability density of the channel output induced by the channel input X ∼ FX.
• FX is unique and symmetric if H is left invertible [18].
• FY (i.e., the channel output distribution) is unique [18,19].

3.2. General Structure of Capacity-Achieving Input Distributions

Theorem 1 can be used to find general properties of the support of a capacity-achieving input
distribution, which we will do in this subsection.

Remark 2. Fully characterizing an input distribution that achieves the capacity of a general MIMO channel
with per-antenna or an nt-dimensional amplitude constraint is still an open problem. To the best of our
knowledge, the only general available for showing that discrete channel inputs are optimal was developed by
Smith in [3] for the amplitude and variance-constrained Gaussian SISO channel. Since then, it has been useful
to also characterize the optimal input distribution of several other SISO channels (see, for instance, [4,20–24]).
The method relies on the following series of steps:

1. Towards a contradiction, it is assumed that the set of points of increase E(FX) is infinite.
2. The assumption in Step 1 is then used to establish a certain property of the function h(x; FX) on the input

space X . For example, by showing that h(x; FX) has an analytic continuation to C. Then, by means of the
Identity Theorem of complex analysis and the Bolzano–Weierstrass Theorem [25], Smith was able to show
that h(x; FX) must be constant.

3. By using either the Fourier or Laplace transform of h(x; FX) together with the property of h(x; FX)

established in Step 2, a new a property of the channel output distribution FY is established. For example,
Smith was able to show that FY must be constant.

4. A conclusion out of Step 3 is used to reach a contradiction. The contradiction implies that E(FX) must be
finite. For example, to reach a contradiction, Smith was using the fact that the channel output distribution
FY results from a convolution with a Gaussian probability density, which cannot be constant.

Remark 3. Under the restriction that the output space, Y , of a Gaussian SISO channel is finite and the
channel input space, X , is subject to an amplitude constraint, Witsenhausen has shown in [26] that the
capacity-achieving input distribution is discrete with the number of mass points bounded as |X | ≤ |Y|.
The approach of Witsenhausen, however, does not use the variational technique of Smith and relies on arguments
from convex analysis instead.

According to Remark 2, assuming in the MIMO case that E(FX) is of infinite cardinality does
not help (or at least it is not clear how this assumption should be used) in showing that the
capacity-achieving input distribution is discrete and finite. However, by using the weaker assumption
that E(FX) contains a non-empty open subset in conjunction with the following version of the Identity
Theorem, we can show that the support of the optimal input distribution is a small set in a certain
topological sense.
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Theorem 2. (Identity Theorem for Real-Analytic Functions [27]) For some n ∈ N let U be a subset of Rn

and f , g : U → R be two real-analytic functions that agree on a set A ⊆ U . Then, f and g agree on Rn if one of
the following two conditions is satisfied:

(i) A is an open set.
(ii) A is a set of positive Lebesgue measure.

Furthermore, for n = 1, it suffices for A to be an arbitrary set with an accumulation point.

We also need the definitions of a dense and a nowhere dense set.

Definition 2. (Dense and Nowhere Dense Sets) A subset A ⊂ X is said to be dense in the set X if every
element x ∈ X either belongs to A or is an accumulation point of A. A subset A ⊂ X is said to be nowhere
dense if for every nonempty open subset U ⊂ X , the intersection A∩ U is not dense in U .

With Theorem 2 at our disposal, we are now able to prove the following result on the structure of
the support of the optimal input distribution.

Theorem 3. The set of points of increase E(F?
X) of an optimal input distribution F?

X is a nowhere dense subset
of X that is of Lebesgue measure zero.

Proof. It is not difficult to show that h(x; F?
X) is a real-analytic function on Rnt ([18] Proposition 5).

Now, in order to prove the result, we follow a series of steps similar to those outlined in Remark 2.
Towards a contradiction, assume that the set of points of increase E(F?

X) of F?
X is not a nowhere dense

subset of X . Then, according to Definition 2, there exists an open set U ⊂ X such that E(F?
X) ∩ U is

dense in U .
By using the KKT condition in Equation (3b), we have that h(x; F?

X) is constant on the intersection
E(F?

X) ∩ U . Thus, as E(F?
X) ∩ U is dense in U , it follows by the properties of continuous functions

(real-analytic functions are continuous) that h(x; F?
X) is also constant on U . Moreover, as U is an open set,

Theorem 2 implies that h(x; F?
X) must also be constant on Rnt . This, however, leads to a contradiction

as h(x; F?
X) cannot be constant on all of Rnt , which can be shown by taking the Fourier transform of

h(x; F?
X) and solving for the probability density fY(y) of the channel output (the reader is referred to

[3] for details). Therefore, we conclude that E(F?
X) is a nowhere dense subset of X .

Showing that E(F?
X) has Lebesgue measure zero follows along similar lines by assuming that

E(F?
X) is a set of positive measure. Then, Property (ii) of Theorem 2 can be used to conclude that

h(x; F?
X) must be zero on all of U . This again leads to a contradiction, which implies that E(F?

X) must be
of Lebesgue measure zero.

Remark 4. Note that if X = B0(A) for some A ∈ R+ and h(x; F?
X) is orthogonally equivariant (i.e., it only

depends on ‖x‖), then E(F?
X) can be written as a union of concentric spheres. That is,

E(F?
X) =

⋃
j
C(Aj) (4)

with C(Aj) := {x ∈ Rnt : ‖x‖ = Aj} for some Aj ∈ R+. To see this, let

g(x) := h(x; F?
X)− h(HX + Z)

and observe that if x ∈ E(F?
X), then g(x) = 0. Combining this with the symmetry of the function ‖x‖ 7→ g(‖x‖),

we have that (We know that it is abuse of notation to use the same letter for the functions x 7→ g(x) and ‖x‖ 7→
g(‖x‖) even if they are different. It is an attempt to say in a compact way that g is orthogonally equivariant.)

∀‖x‖ = ‖y‖ : x ∈ E(F?
X)⇒ y ∈ E(F?

X).
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Moreover, this implies that
E(F?

X) =
⋃
j∈I
C(Aj),

where I is possibly of infinite cardinality. In fact, I has finite cardinality. To see this, note that, if g(x) is
real-analytic, then so is g(‖x‖). However, as ‖x‖ 7→ g(‖x‖) is a non-zero real-analytic function on R, it can
have at most finitely many zeros on an interval.

As an example consider the special case nr = nt = n with H = In. Then, the union in Equation (4) implies
that the cardinality of E(F?

X) is uncountable and that discrete inputs are in general not optimal. Therefore,
Theorem 3 can generally not be improved in the sense that for n > 1, statements about the cardinality of E(F?

X)

cannot be made. Note, however, that the magnitude of X is discrete. An example of the corresponding optimal
input distribution for the case of n = 2 is given in Figure 1.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x1

x 2

Figure 1. An example of a support of an optimal input distribution for the special case nt = nr = n = 2.

Even though Theorem 3 does not allow us to conclude that the optimal input distribution of
an arbitrary MIMO channel is discrete and finite, for the special case of a SISO channel we have the
following partial result.

Theorem 4. (Optimal Input Distribution of a SISO Channel [3,6,28]) For some fixed h ∈ R and A ∈ R+,
consider the SISO channel Y = hX + Z with input space X = [−A, A]. Let F?

X be an input distribution that
achieves the capacity, C(X , h), of that channel. Then, F?

X satisfies the following properties:

• F?
X is unique.

• F?
X is symmetric.

• F?
X is discrete with the number of mass points being of the order O(A2).

• F?
X contains probability mass points at {−A, A}.

Moreover, binary communication with mass points at {−A, A} is optimal if and only if A ≤ Ā, where Ā ≈
1.665.

Theorem 4 can now be used to also address the special cases of multiple-input single output
(MISO) and single-input multiple output (SIMO) channels.
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Theorem 5. Let Y = hTX? + Z be a MISO channel with channel matrix hT ∈ Rnt and some optimal input
X? ∈ X ⊂ Rnt . Then, the distribution of hTX∗ is discrete with finitely many mass points. On the other hand,
let Y = hX? + Z be a SIMO channel with channel matrix h ∈ Rnr . Then, the optimal input X? ∈ X ⊂ R has
a discrete distribution with finitely many mass points.

Proof. For the MISO case, the capacity can expressed as

C(X , hT) = max
FX :X∈X

I(X; hTX + Z)

= max
FX :X∈X

I(hTX; hTX + Z)

= max
FS :S∈hTX

I(S; S + Z)

= max
FS :|S|≤rmax(h

TX )
I(S; S + Z). (5)

Using Theorem 5 we have that the maximizing distribution in Equation (5) F?
S , where S := hTX,

is discrete with finitely many mass points.
For the SIMO case, the channel input distribution is discrete as a SIMO channel can be transformed

into a SISO channel. Thus, let A ∈ R+ be finite. Then, the capacity of the SIMO channel can be
expressed as

C(X , h) = max
FX :|X|≤A

I(X; hX + Z)

= max
FX :|X|≤A

I(X; ‖h‖X + Z). (6)

Again, it follows from Theorem 5 that the mutual information in Equation (6) is maximized
by a channel input distribution, F?

X, that is discrete with finitely many mass points. This concludes
the proof.

Remark 5. Note that in the MISO case, we do not claim F?
X to be discrete with finitely many points. To illustrate

the difficulty, let hT = [1,−1] so that

hTX? = hT

(
X?

1
X?

2

)
= X?

1 − X?
2 .

As X?
1 and X?

2 can be arbitrarily correlated, we cannot rule out cases in which X?
1 = X − D and

X?
2 = X− 2D, with D a discrete random variable and X of arbitrary distribution. Clearly the distribution of

X? is not discrete.

Note that in general it can be shown that the capacity-achieving input distribution is discrete
if the optimization problem in Equation (2) can be reformulated as an optimization over one
dimensional distributions. This, for example, has been done in [5] for parallel channels with a total
amplitude constraint.

3.3. Properties of Capacity-Achieving Input Distributions in the Small (But Not Vanishing) Amplitude Regime

In this subsection, we study properties of capacity-achieving input distribution in the regime of
small amplitudes. To that end, we will need the notion of a subharmonic function.

Definition 3. (Subharmonic Function) Let f be a real-valued function that is twice continuously differentiable
on an open set G ⊂ Rn. Then, f is subharmonic if ∇2 f ≥ 0 on G, where ∇2 denotes the Laplacian (if f is

twice differentiable, its Laplacian is given by ∇2 f (x1, . . . , xn) = ∑n
i=1

∂2 f
∂x2

i
).
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We use the following Theorem, which states that a subharmonic function always attains its
maximum on the boundary of its domain.

Theorem 6. (Maximum Principle of Subharmonic Functions [29]) Let G ⊂ Rn be a connected open set.
If f : G → R is subharmonic and attains a global maximum in the interior of G, then f is constant on G.

In addition to Theorem 6, we need the following result that has been proven in [30].

Lemma 1. Let the likelihood function of the output of a MIMO channel be defined as

` : Rnr → R , `(y) =
fY(y)

1
(2π)

nr
2

e−
‖y‖2

2

and let Ay denote the Hessian matrix of loge
(
`(y)

)
. Then, the Laplacian (or the trace of Ay) is given by

∇2 loge
(
`(y)

)
= Tr(Ay) = E

[
‖HX‖2|Y = y

]
−
∥∥E[HX|Y = y]

∥∥2. (7)

Theorem 7. Suppose that r2
max(HX ) ≤ log2(e). Then, x 7→ h(x; FX) is a subharmonic function for every FX.

Proof. Let FX be arbitrary and observe that

h(x; FX) = −E
[
log2

(
fY(Hx + Z)

)]
= −E

[
`(Hx + Z)

]
−E

[
log2

(
1

(2π)
nr
2

e−
‖Hx+Z‖2

2

)]

= −E
[
`(Hx + Z)

]
+E

[
‖Hx + Z‖2

2

]
log2(e) + log2

(
(2π)

nr
2

)
= −E

[
`(Hx + Z)

]
+
‖Hx‖2 + nr

2
log2(e) + log2

(
(2π)

nr
2

)
.

With this expression in hand, the Laplacian of h(x; FX) with respect to x can be bounded from
below as follows:

∇2h(x; FX) = ∇2
(
−E
[
`(Hx + Z)

]
+
‖Hx‖2 + nr

2
log2(e) + log2

(
(2π)

nr
2

))
= −E

[
∇2`(Hx + Z)

]
+∇2 ‖Hx‖2

2
log2(e)

(a)
= −E

[
Tr
(
HHTAHx+Z

)]
+∇2 ‖Hx‖2

2
log2(e)

= −E
[
Tr
(
HHTAHx+Z

)]
+ Tr

(
HHT) log2(e)

(b)
≥ −E

[
Tr
(
HHT)Tr

(
AHx+Z

)]
+ Tr

(
HHT) log2(e)

= Tr
(
HHT) (−E[Tr(AHx+Z)

]
+ log(e)

)
(c)
≥ Tr

(
HHT) (−r2

max(HX ) + log(e)
)

, (8)

where (a) follows from Equation (7) and the chain rule for the Hessian; (b) from using the
well-known inequality

Tr(CD)2 ≤ Tr(C)2Tr(D)2
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that holds for C and D positive semi-definite; and (c) from using the inequality

Tr
(
Ay
)
= E

[
‖HX‖2|Y = y

]
−
∥∥E[HX|Y = y]

∥∥2

≤ E
[
‖HX‖2|Y = y

]
≤ r2

max(HX ).

Thus, according to the assumption that r2
max(HX ) ≤ log2(e), the right-hand side of Equation (8)

is nonnegative, which proves the result.

Now, knowing that h(x; FX) is a subharmonic function allows us to characterize the support of an
optimal input distribution of a MIMO channel provided that the radius of the channel input space, X ,
is sufficiently small.

Theorem 8. Let F?
X be a capacity-achieving input distribution and r2

max(HX ) ≤ log2(e). Then, E(F?
X) ⊆ ∂X .

Proof. From the KKT conditions in Equation (3), we know that, if x ∈ E(F?
X), then x is a maximizer

of h(x; F?
X). According to Theorem 7, we also know that h(x; F?

X) is subharmonic. Hence, from the
Maximum Principle of Subharmonic Functions (i.e., Theorem 6), it follows E(F?

X) ⊆ ∂X .

Combining Theorem 8 with the observations made in Remark 4 leads to the following corollary.

Corollary 1. Let X = B0(A) and A ≤ 1
‖H‖ log2(e). Then,

E(F?
X) ⊆ C(A),

where C(A) := {x ∈ Rn : ‖x‖ = A} denotes a sphere of radius A.

We conclude this section by noting that for the special case nt = nr = n with H = In, the exact
value of A such that E(F?

X) = C(A) has been characterized in terms of an integral equation in [31],
which is approximately equal to 1.5

√
n.

4. Upper and Lower Bounds on the Capacity

The considerations in the previous section have shown that characterizing the structure of
an optimal channel-input distribution is a challenging question in itself that we could only partially
answer. A full characterization, however, is a necessary prerequisite to narrow down the search
space in Equation (2) to one that is tractable. Except for some special cases (i.e., special choices of
X ), optimizing over the most general space of input distributions that consists of all continuous
nt-dimensional probability distributions FX with X ∈ X , is prohibitive (Note that Dytso et al. [32]
summarized methods of how to optimize functionals over the space of probability distributions that
are constrained in there support). Thus, up to the writing of this paper, there is little hope in being able
to solve the problem in Equation (2) in full generality so that in this section we are proposing novel
lower and upper bounds on the capacity C(X , H). Nevertheless, these bounds will allow us to better
understand how the capacity of such MIMO channels behaves.

Towards this end, in Section 4.1, we provide four upper bounds. The first is based on an upper
bound on the differential entropy of a random vector that is constraint in its pth moment, the second
and third bounds are based on duality arguments, and the fourth on the relationship between mutual
information and the minimum mean square error (MMSE), I-MMSE relationship for short, known
from [33]. The three lower bounds proposed in Section 4.2, on the other hand, are based on the
celebrated entropy power inequality, a generalization of the Ozarow–Wyner capacity bound taken
from [11], and on Jensen’s inequality.
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4.1. Upper Bounds

To establish our first upper bound on Equation (2), we need the following result ([11] Th. 1).

Lemma 2. (Maximum Entropy Under pth Moment Constraint) Let n ∈ N and p ∈ (0, ∞) be arbitrary.
Then, for any U ∈ Rn such that h(U) < ∞ and ‖U‖p < ∞, we have

h(U) ≤ n log2

(
kn,p n

1
p ‖U‖p

)
,

where

kn,p :=

√
π e

1
p
( p

n
) 1

p Γ
( n

p + 1
) 1

n

Γ
( n

2 + 1
) 1

n
.

Theorem 9. (Moment Upper Bound) For any channel input space X and any fixed channel matrix H,
we have

C(X , H) ≤ C̄M(X , H) := inf
p>0

nr log2

(
knr ,p

(2πe)
1
2

n
1
p
r ‖x̃ + Z‖p

)
,

where x̃ ∈ HX is chosen such that ‖x̃‖ = rmax(HX ).

Proof. Expressing Equation (2) in terms of differential entropies results in

C(X , H) = max
FX :X∈X

h(HX + Z)− h(Z)

(a)
≤ max

FX :X∈X
nr log2

(
knr ,p

(2πe)
1
2

n
1
p
r ‖HX + Z‖p

)
(b)
= nr log2

(
knr ,p

(2πe)
1
2

n
1
p
r max

FX :X∈X
‖HX + Z‖p

)
, (9)

where (a) follows from Lemma 2 with the fact that h(Z) = nr
2 log2(2πe); and (b) from the monotonicity

of the logarithm.
Now, notice that ‖HX+Z‖p is linear in FX and therefore it attains its maximum at an extreme point

of the set FX := {FX : X ∈ X} (i.e., the set of all cumulative distribution functions of X). As a matter
of fact [26], the extreme points of FX are given by the set of degenerate distributions on X ; that is,
{FX(y) = δx(y), y ∈ X}x∈X . This allows us to conclude

max
FX :X∈X

‖HX + Z‖p = max
x∈X
‖Hx + Z‖p.

Observe that the Euclidian norm is a convex function, which is therefore maximized at the
boundary of the set HX . Combining this with Equation (9) and taking the infimum over p > 0
completes the proof.

The following Theorem provides two alternative upper bounds that are based on duality arguments.

Theorem 10. (Duality Upper Bounds) For any channel input space X and any fixed channel matrix H

C(X , H) ≤ C̄Dual,1(X , H) := log2

(
cnr (d) +

Vol
(
B0(d)

)
(2πe)

nr
2

)
, (10)
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where

d := rmax(HX ) , cnr (d) :=
nr−1

∑
i=1

(
nr − 1

i

) Γ
(

nr−1
2

)
2

nr
2 Γ
( nr

2
)di,

and

C(X , H) ≤ C̄Dual,2(X , H) :=
nr

∑
i=1

log2

(
1 +

2Ai√
2πe

)
, (11)

where a = (A1, . . . , Anr ) such that Box(a) = Box(HX ).

Proof. Using duality bounds, it has been shown in [8] that for any centered n-dimensional ball of
radius r ∈ R+

max
FX :X∈B0(r)

I(X; X + Z) ≤ log2

(
cn(r) +

Vol
(
B0(r)

)
(2πe)

n
2

)
, (12)

where cn(r) := ∑n−1
i=1 (n−1

i )
Γ( n−1

2 )
2

n
2 Γ( n

2 )
ri.

Now, observe that

C(X , H) = max
FX :X∈X

h(HX + Z)− h(HX + Z|HX)

= max
FX :X∈X

I(HX; HX + Z)

= max
FX̃ :X̃∈HX

I(X̃; X̃ + Z) (13)

(a)
≤ max

FX̃ :X̃∈B0(d),d:=rmax(HX )
I(X̃; X̃ + Z)

(b)
≤ log2

(
cnr (d) +

Vol
(
B0(d)

)
(2πe)

nr
2

)
.

where (a) follows from enlarging the optimization domain; and (b) from using the upper bound in
Equation (12). This proves Equation (10).

To show the upper bound in Equation (11), we proceed with an alternative upper bound
to Equation (13):

C(X , H) = max
FX̃ :X̃∈HX

I(X̃; X̃ + Z)

(a)
≤ max

FX̃ :X̃∈Box(HX )
I(X̃; X̃ + Z)

(b)
≤ max

FX̃ :X̃∈Box(HX )

nr

∑
i=1

I(X̃i; X̃i + Zi)

(c)
=

nr

∑
i=1

max
FX̃i

:|X̃i |≤Ai

I(X̃i; X̃i + Zi)

(d)
≤

nr

∑
i=1

log2

(
1 +

2Ai√
2πe

)
,

where the (in)equalities follow from: (a) enlarging the optimization domain; (b) single-letterizing
the mutual information; (c) choosing individual amplitude constraints (A1, . . . , Anr ) =: a ∈ Rnr

+ such
that Box(a) = Box(HX ); and (d) using the upper bound in Equation (12) for n = 1. This concludes
the proof.
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As mentioned at the beginning of the section, another simple technique for deriving upper bounds
on the capacity is to use the I-MMSE relationship [33]

I(X; X + Z) =
log2(e)

2

∫ 1

0
E
[∥∥X−E[X |√γX + Z]

∥∥2
]

dγ. (14)

For any γ ≥ 0, the quantity E
[
‖X−E[X |√γX + Z]‖2] is known as the MMSE of estimating X

from the noisy observation
√

γX + Z. An important fact that will be useful is that the conditional
expected value E[X |√γX + Z] is the best estimator in the sense that it minimizes the mean square
error over all measurable functions f : Rnr → Rnt ; that is, for any Y ∈ Rnr and X ∈ Rnt

E
[
‖X−E[X|Y]‖2

]
= inf

f is measurable
E
[
‖X− f (Y)‖2

]
. (15)

Theorem 11. (I-MMSE Upper Bound) For any channel input space X and any fixed channel matrix H

C(X , H) ≤ C̄I−MMSE(X , H) = log2(e)

 nr
2 + nr

2 log2

(
r2
max(HX )

nr

)
, r2

max(HX ≥ nr

r2
max(HX )

2 , r2
max(HX ) ≤ nr

.

Proof. Fix some ε ∈ [0, 1] and observe that

2
log2(e)

I(X; HX + Z)
(a)
=

2
log2(e)

I(HX; HX + Z)

(b)
=
∫ 1

0
E
[
‖HX−E[HX|√γHX + Z]‖2]dγ

=
∫ ε

0
E
[
‖HX−E[HX|√γHX + Z]‖2]dγ

+
∫ 1

ε
E
[
‖HX−E[HX|√γHX + Z]‖2]dγ

(c)
≤
∫ ε

0
E
[
‖HX− 0‖2]dγ

+
∫ 1

ε
E
[∥∥∥HX− 1√

γ
(
√

γHX + Z)
∥∥∥2
]

dγ

= εE
[
‖HX‖2]+ ∫ 1

ε

1
γ
E
[
‖Z‖2]dγ

= εE
[
‖HX‖2]+E

[
‖Z‖2] loge

(
1
ε

)
= εE

[
‖HX‖2]+ nr loge

(
1
ε

)
,

where the (in)equalities follow from: (a) using that I(HX; HX + Z) = I(X; HX + Z) for any fixed
H; (b) using the I-MMSE relationship in Equation (14); and (c) using the property that conditional
expectation minimizes mean square error (i.e., (15)).

Now, notice that

max
FX :X∈X

I(X; HX + Z) ≤ max
FX :X∈X

log2(e)
2

(
εE
[
‖HX‖2]+ nr loge

(
1
ε

))
(a)
=

1
2

(
ε max

x̃∈X
‖Hx̃‖2 + nr loge

(
1
ε

))
(b)
=

1
2

(
ε r2

max(HX ) + nr loge

(
1
ε

))
, (16)
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where (a) follows from maxFX :X∈X E
[
‖HX‖2] = maxx̃∈X ‖Hx̃‖2 (the same argument was used in the

proof of Theorem 9); and (b) from the definition of r2
max(HX ).

Since ε is arbitrary, we can choose it to minimize the upper bound in Equation (16). Towards this
end, we need the following optimization result

min
ε∈[0,1]

(
ε a + b log

(
1
ε

))
=

{
b + b log

( a
b
)
, a ≥ b

a, a ≤ b
, (17)

which is easy to show. Combining Equation (16) with Equation (17), we obtain the following upper
bound on the capacity

max
FX :X∈X

I(X; HX + Z) ≤
{

nr
2 + nr

2 log
(

r2
max(HX )

nr

)
, r2

max(HX ) ≥ nr

r2
max(HX ), r2

max(HX ) ≤ nr
.

This concludes the proof.

Corollary 2. For any channel input space X and any fixed channel matrix H

C̄I−MMSE(X , H) ≤ log2(e)

 nr
2 + nr

2 loge

(
‖H‖2r2

max(X )
nr

)
, ‖H‖2r2

max(X ) ≥ nr

‖H‖2r2
max(X )
2 , ‖H‖2r2

max(X ) ≤ nr

.

Proof. The corollary follows by upper bounding Equation (16) using the fact that r2
max(HX ) ≤

‖H‖r2
max(X ).

Remark 6. In the proof of Theorem 11, instead of using sub-optimal estimators f (Y) = 0 and f (Y) = 1
γ Y,

we could have used an optimal linear estimator of the form f (Y) = KXYK−1
Y Y, where KXY denotes the

cross-covariance matrix between X and Y and KY the covariance matrix of Y. This choice would result in the
capacity upper bound

C(X , H) ≤ max
KX :X∈X

1
2

log2

(
det
(

Inr + HKXHT
))

(18)

with KX the covariance matrix of the channel input. While Equation (18) is a valid upper bound, as of the
writing of this paper, it is not clear how to perform an optimization over covariance matrices of random variables
with bounded support. One possibility to avoid this is to use the inequality between arithmetic and geometric
mean and bound the determinant by the trace:

det
(

Inr + HKXHT
)
≤

Tr
(

Inr + HKXHT
)

nr

nr

=

(
‖Z + HX‖2

2
nr

)nr

. (19)

However, combining Equation (19) with Equation (18) is merely a special case of the moment upper bound
of Theorem 9 for p = 2. Therefore, the estimators in Theorem 11 are chosen to obtain a non-trivial upper bound
avoiding the optimization over covariance matrices.

In Section 5, we present a comparison of the upper bounds of Theorems 9–11 by means of
a simple example.

4.2. Lower Bounds

A classical approach to bound a mutual information from below is to use the entropy power
inequality (EPI).
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Theorem 12. (EPI Lower Bounds) For any fixed channel matrix H and any channel input space X with X
absolutely continuous, we have

C(X , H) ≥ CEPI(X , H) := max
FX :X∈X

nr

2
log2

(
1 +

2
2

nr h(HX)

2πe

)
. (20)

Moreover, if nt = nr = n, H ∈ Rn×n invertible, and X uniformly distributed over X , then

C(X , H) ≥ CEPI(X , H) :=
n
2

log2

(
1 +
|det(H)| 2n Vol(X )

2
n

2πe

)
. (21)

Proof. By means of the EPI

2
2

nr h(HX+Z) ≥ 2
2

nr h(HX) + 2
2

nr h(Z),

we conclude

2
2

nr C(X ,H) ≥ 1 + (2πe)−12
2

nr max
FX :X∈X

h(HX)
,

which finalizes the proof of the lower bound in Equation (20).
To show the lower bound in Equation (21), all we need is to recall that

h(HX) = h(X) + log2 |det(H)|,

which is maximized for X uniformly distributed over X . However, if X is uniformly drawn from X ,
we have

2
2
n h(HX) = Vol(HX )

2
n = |det(H)|

2
n Vol(X )

2
n ,

which completes the proof.

The considerations in Section 3 suggest that a channel input distribution that maximizes
Equation (2) might be discrete. Therefore, there is a need for lower bounds that unlike the bounds in
Theorem 12 rely on discrete inputs.

Theorem 13. (Ozarow–Wyner Type Lower Bound) Let XD ∈ supp(XD) ⊂ Rnt be a discrete random vector
of finite entropy, g : Rnr → Rnt a measurable function, and p > 0. Furthermore, let Kp be a set of continuous
random vectors, independent of XD, such that for every U ∈ Kp we have h(U) < ∞, ‖U‖p < ∞, and

supp(U + xi) ∩ supp(U + xj) = ∅ (22)

for all xi, xj ∈ supp(XD), i 6= j. Then,

C(X , H) ≥ COW(X , H) := [H(XD)− gap]+,

where
gap := inf

U∈Kp
g measurable

p>0

(
G1,p(U, XD, g) + G2,p(U)

)

with

G1,p(U, XD, g) := nt log2

(‖U + XD − g(Y)‖p

‖U‖p

)
, (23)

G2,p(U) := nt log2

 knt ,p n
1
p
t ‖U‖p

2
1
nt

h(U)

, (24)
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and knt ,p as defined in Lemma 2, respectively.

Proof. The proof is identical to ([11] Theorem 2). To make the manuscript more self-contained,
we repeat it here.

Let U and XD be statistically independent. Then, the mutual information I(XD; Y) can be lower
bounded as

I(XD; Y)
(a)
≥ I(XD + U; Y)

= h(XD + U)− h(XD + U|Y)
(b)
= H(XD) + h(U)− h(XD + U|Y). (25)

Here, (a) follows from the data processing inequality as XD + U → XD → Y forms a Markov
chain in that order; and (b) from the assumption in Equation (22). By using Lemma 2, we have that the
last term in Equation (25) can be bounded from above as

h(XD + U|Y) ≤ nt log2

(
knt ,p n

1
p
t ‖XD + U− g(Y)‖p

)
.

Combining this expression with Equation (25) results in

I(XD; Y) ≥ H(XD)−
(
G1,p(U, XD, g) + G2,p(U)

)
,

with G1,p and G2,p as defined in Equations (23) and (24), respectively. Maximizing the right-hand side
over all U ∈ Kp, measurable functions g : Rnr → Rnt , and p > 0 provides the bound.

Interestingly, the bound of Theorem 13 holds for arbitrary channels and is therefore not restricted
to MIMO channels. The interested reader is referred to [11] for details.

We conclude the section by providing a lower bound that is based on Jensen’s inequality and
holds for arbitrary inputs.

Theorem 14. (Jensen’s Inequality Lower Bound) For any channel input space X and any fixed channel
matrix H, we have

C(X , H) ≥ CJensen(X , H) := max
FX :X∈X

log+
2

((
2
e

) nr
2

ψ−1(X, H)

)
(26)

with

ψ(X, H) := E
[

exp
(
−‖H(X− X′)‖2

4

)]
= E

∣∣∣∣∣φX

(
HTZ√

2

)∣∣∣∣∣
2
 ,

where X′ is an independent copy of X and φX denotes the characteristic function of X.

Proof. To show the lower bound, we follow an approach of Dytso et al. [34]. Note that by
Jensen’s inequality

h(Y) = −E[log2 fY(Y)] ≥ − log2 E[ fY(Y)] = − log2

∫
Rnr

fY(y) fY(y)dy. (27)

Now, evaluating the integral in Equation (27) results in

∫
Rnr

fY(y) fY(y)dy =
1

(2π)nr

∫
Rnr

E
[

e−
‖y−HX‖2

2

]
E
[

e−
‖y−HX′‖2

2

]
dy
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(a)
=

1
(2π)nr

E
[∫

Rnr
e−
‖y−HX‖2+‖y−HX′‖2

2 dy
]

(b)
=

1
(2π)nr

E
[

e−
‖HX−HX′‖2

4

∫
Rnr

e−‖y−
H(X−X′)

2 ‖2
dy
]

(c)
=

1

2nr π
nr
2
E
[

e−
‖H(X−X′)‖2

4

]
, (28)

where (a) follows from the independence of X and X′ and Tonelli’s Theorem ([35] Chapter 5.9);

(b) from completing a square; and (c) from the fact that
∫
Rnr e−‖y−

H(X−X′)
2 ‖2

dy =
∫
Rnr e−‖y‖

2
dy = π

nr
2 .

Combining Equation (27) with Equation (28) and subtracting h(Z) = nr
2 log2(2πe) completes the proof

of the first version of the bound.
To show the second version, observe that

E
[
e−
‖H(X−X′)‖2

4

]
(d)
= E

[
φ H(X−X′)√

2

(Z)
]

(e)
= E

[
φ HX√

2
(Z)φ−HX′√

2
(Z)
]

( f )
= E

[
φX

(
HTZ√

2

)
φX′

(
−HTZ√

2

)]
(g)
= E

[
φX

(
HTZ√

2

)
φX

(
−HTZ√

2

)]
(h)
= E

[
φX

(
HTZ√

2

)
φ∗X

(
HTZ√

2

)]

= E

∣∣∣∣∣φX

(
HTZ√

2

)∣∣∣∣∣
2
 ,

where (d) follows from Parseval’s identity ([35] Chapter 9.5) by noting that exp(−‖ · ‖2/2)
is a characteristic function of Z and φ H(X−X′)√

2

(·) is a characteristic function of H(X−X′)√
2

; (e) from using

the property that the characteristic function of a sum of random vectors is equal to the product of its
characteristic functions; ( f ) from using the fact that a characteristic function is a linear transformation;
(g) from using that X and X′ have the same characteristic function; and (h) from the fact that the
characteristic function is Hermitian. This completes the proof.

Remark 7. As is evident from our examples in the following sections, in many cases, the Jensen’s inequality
lower bound of Theorem 14 performs remarkably well. The bound, however, is also useful for MIMO channels
that are subject to an average power constraint. For example, evaluating Equation (26) with X ∼ N (0, KX)

results in

I(X; HX + Z) ≥ 1
2

log+
2

((
2
e

)min(nr ,nt)

det
(

Inr + HKXHT
))

.

Note that this bound is within min(nr ,nt)
2 log2

( 2
e
)

bits of the capacity of the power-constrained channel.

In Section 3, we discuss that the distributions that maximize mutual information in nt-dimensions
are typically singular, which means that they are concentrated on a set of Lebesgue measure zero.
Singular distributions generally do not have a probability density, whereas the characteristic function
always exists. This is why the version of Jensen’s inequality lower bound in Theorem 14 that is
based on the characteristic function of the channel input is especially useful for amplitude-constrained
MIMO channels.
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5. Invertible Channel Matrices

Consider the symmetric case of nt = nr = n antennas with H ∈ Rn×n being invertible. In this
section, we evaluate some of the lower and upper bounds proposed in the previous section for the
special case of H being also diagonal and then characterize the gap to the capacity for arbitrary
invertible channel matrices.

5.1. Diagonal Channel Matrices

Suppose the channel inputs are subject to per-antenna or an n-dimensional amplitude constraint.
Then, the duality upper bound C̄Dual,2(X , H) of Theorem 10 takes on the following form.

Theorem 15. (Upper Bounds) Let H = diag(h11, . . . , hnn) ∈ Rn×n be fixed. If X = Box(a) for some
a = (A1, . . . , An) ∈ Rn

+, then

C̄Dual,2(Box(a), H) =
n

∑
i=1

log2

(
1 +

2|hii|Ai√
2πe

)
. (29)

Moreover, if X = B0(A) for some A ∈ R+, then

C̄Dual,2(B0(A), H) =
n

∑
i=1

log2

(
1 +

2|hii|A√
n
√

2πe

)
. (30)

Proof. The bound in Equation (29) immediately follows from Theorem 10 by observing that
Box(HBox(a)) = Box(Ha). The bound in Equation (30) follows from Theorem 10 by the fact that

Box
(
HB0(A)

)
⊂ Box

(
HBox

(
B0(A)

))
= Box(h),

where h := A√
n (|h11|, . . . , |hnn|). This concludes the proof.

For an arbitrary channel input spaceX , the EPI lower bound of Theorem 12 and Jensen’s inequality
lower bound of Theorem 14 take on the following form.

Theorem 16. (Lower Bounds) Let H = diag(h11, . . . , hnn) ∈ Rn×n be fixed and X arbitrary. Then,

CJensen(X , H) = log+
2

((
2
e

) n
2 1

ψ(H, b?)

)
(31)

with

ψ(H, b?) := min
b∈X

n

∏
i=1

ϕ(|hii|Bi),

where b := (B1, . . . , Bn) and ϕ : R+ → R+,

ϕ(x) :=
1
x2

(
e−x2 − 1 +

√
πx
(
1− 2Q(

√
2x)
))

. (32)

Moreover,

CEPI(X , H) =
n
2

log2

(
1 + Vol(X )

2
n
|∏n

i=1 hii|
2
n

2πe

)
. (33)
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Proof. For some given values Bi ∈ R+, i = 1, . . . , n, let the ith component of X = (X1, . . . , Xn) be
independent and uniformly distributed over the interval [−Bi, Bi]. Thus, the expected value appearing
in the bound of Theorem 14 can be written as

E
[

e−
‖H(X−X′)‖2

4

]
= E

[
e−

∑n
i=1 h2

ii(Xi−X′i )
2

4

]
= E

[
n

∏
i=1

e−
h2

ii(Xi−X′i )
2

4

]
=

n

∏
i=1

E
[

e−
h2

ii(Xi−X′i )
2

4

]
. (34)

Now, if X′ is an independent copy of X, it can be shown that the expected value at the right-hand
side of Equation (34) is of the explicit form

E
[

e−
h2

ii(xi−x′i )
2

4

]
= ϕ(|hii|Bi)

with ϕ as defined in Equation (32). Finally, optimizing over all b = (B1, . . . , Bn) ∈ X results in the
bound (31). The bound in Equation (33) follows by inserting |det(H)| = |∏n

i=1 hii| into Equation (21),
which concludes the proof.

In Figure 2, the upper bounds of Theorems 9 and 15 and the lower bounds of Theorem 16 are
depicted for a diagonal 2× 2 MIMO channel with per-antenna amplitude constraints. It turns out that
the moment upper bound and the EPI lower bound perform well in the small amplitude regime while
the duality upper bound and Jensen’s inequality lower bound perform well in the high amplitude
regime. Interestingly, for this specific example, the duality upper bound and Jensen’s lower bound are
asymptotically tight.
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EPI lower bound, CEPI
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Figure 2. Comparison of the upper and lower bounds of Theorems 9, 11, 15, and 16 evaluated for
a 2× 2 MIMO system with per-antenna amplitude constraints A1 = A2 = A (i.e., a = (A, A)) and
channel matrix H =

(
0.3 0
0 0.1

)
. The nested figure represents a zoom into the region 0 dB ≤ A ≤ 5 dB to

visualize the differences between the bounds at small amplitude constraints.

5.2. Gap to the Capacity

Our first result provides and upper bound to the gap between the capacity in Equation (2) and
the lower bound in Equation (21).



Entropy 2019, 21, 200 20 of 33

Theorem 17. Let H ∈ Rn×n be of full rank and

ρ(X , H) :=
Vol
(
B0 (rmax(HX ))

)
Vol(HX )

.

Then,
C(X , H)− CEPI(X , H) ≤ n

2
log2

(
(πn)

1
n ρ(X , H)

2
n

)
.

Proof. For notational convenience, let the volume of an n-dimensional ball of radius r > 0 be
denoted as

Vn(r) := Vol
(
B0(r)

)
= Vn(1)rn =

π
n
2 rn

Γ
( n

2 + 1
) .

Now, observe that, by choosing p = 2, the upper bound of Theorem 9 can further be upper
bounded as

C̄M(X , H) ≤ n log2

(
kn,2

(2πe)
1
2

n
1
2 ‖x̃ + Z‖2

)
(a)
=

n
2

log2

(
1
n
E
[
‖x̃ + Z‖2])

(b)
=

n
2

log2

(
1 +

1
n
‖x̃‖2

)
,

where (a) follows since kn,2 =
√

2πe
n ; and (b) since E[‖Z‖2] = n. Therefore, the gap between

Equation (21) and the moment upper bound of Theorem 9 can be upper bounded as follows:

C̄M(X , H)− CEPI(X , H) =
n
2

log2

 1 + 1
n‖x̃‖2

1 + Vol(HX )
2
n

2πe


a)
=

n
2

log2

1 + 1
n

(
Vn(‖x̃‖)

Vn(1)

) 2
n

1 + Vol(HX )
2
n

2πe



=
n
2

log2

1 + 1
n

(
ρ(X ,H)Vol(HX )

Vn(1)

) 2
n

1 + Vol(HX )
2
n

2πe


b)
≤ n

2
log2

(
1
n

2πe
(

ρ(X , H)

Vn(1)

) 2
n
)

c)
≤ n

2
log2

(
(πn)

1
n ρ(X , H)

2
n

)
.

where (a) is due to the fact that ‖x̃‖ is the radius of an n-dimensional ball; (b) follows from the
inequality 1+cx

1+x ≤ c for c ≥ 1 and x ∈ R+; and (c) follows from using Stirling’s approximation to

obtain
(

1
Vn(1)

) 2
n ≤ 1

2eπ1− 1
n

n1+ 1
n .

The term ρ(X , H) is referred to as the packing efficiency of the set HX . In the following proposition,
we present the packing efficiencies for important special cases.
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Proposition 1. (Packing Efficiencies) Let H ∈ Rn×n be of full rank, A ∈ R+, and a := (A1, . . . , An) ∈
Rn
+. Then,

ρ
(
B0(A), In

)
= 1, (35)

ρ
(
B0(A), H

)
=
‖H‖n

|det(H)| , (36)

ρ
(
Box(a), In

)
=

π
n
2

Γ
( n

2 + 1
) ‖a‖n

∏n
i=1 Ai

, (37)

ρ
(
Box(a), H

)
≤ π

n
2

Γ
( n

2 + 1
) ‖H‖n‖a‖n

|det(H)|∏n
i=1 Ai

. (38)

Proof. The packing efficiency in Equation (35) follows immediately. Note that

rmax
(
HB0(A)

)
= max

x∈B0(A)
‖Hx‖ = ‖H‖A.

Thus, as H is assumed to be invertible, we have Vol(HB0(A)) = |det(H)|Vol(B0(A)),
which results in Equation (36). To show Equation (37), observe that

Vol
(
B0
(
rmax

(
InBox(a)

)))
= Vol

(
B0(‖a‖)

)
=

π
n
2

Γ
( n

2 + 1
)‖a‖n.

The proof of Equation (37) is concluded by observing that Vol(InBox(a)) = ∏n
i=1 Ai. Finally,

observe that Box(a) ⊂ B0(‖a‖) implies rmax(HBox(a)) ≤ rmax(HB0(‖a‖)) so that

ρ
(
H, Box(a)

)
≤

Vol
(
B0(‖H‖‖a‖)

)
Vol
(
HBox(a)

) =
π

n
2

Γ
( n

2 + 1
) ‖H‖n‖a‖n

|det(H)|∏n
i=1 Ai

,

which is the bound in Equation (38).

We conclude this section by characterizing the gap to the capacity when H is diagonal and the
channel input space is the Cartesian product of n PAM constellations. In this context, PAM(N, A)

refers to the set of N ∈ N equidistant PAM-constellation points with amplitude constraint A ∈ R+

(see Figure 3 for an illustration), whereas X ∼ PAM(N, A) means that X is uniformly distributed over
PAM(N, A) [11].

����������
��
��
��
��

�
�
�
�

A−A X

2∆

0

Figure 3. Example of a pulse-amplitude modulation constellation with N = 4 points and amplitude
constraint A (i.e., PAM(4, A)), where ∆ := A/(N− 1) denotes half the Euclidean distance between two
adjacent constellation points. In the case N is odd, 0 is a constellation point.

Theorem 18. Let H = diag(h11, . . . , hnn) ∈ Rn×n be fixed and X = (X1, . . . , Xn). Then, if Xi ∼
PAM(Ni, Ai), i = 1, . . . , n, for some given a = (A1, . . . , An) ∈ Rn

+, it holds that

C̄Dual,2(Box(a), H)− COW(Box(a), H) ≤ c · n bits, (39)
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where Ni :=
⌊

1 + 2Ai |hii |√
2πe

⌋
and

c := 1 +
1
2

log2

(πe
6

)
+

1
2

log2

(
1 +

6
πe

)
≈ 1.64.

Moreover, if Xi ∼ PAM(Ni, A), i = 1, . . . , n, for some given A ∈ R+, it holds that

C̄Dual,2(B0(A), H)− COW(B0(A), H) ≤ c · n bits, (40)

where Ni :=
⌊

1 + 2A|hii |√
n
√

2πe

⌋
.

Proof. Since the channel matrix is diagonal, letting the channel input X be such that its elements Xi,
i = 1, . . . , n, are independent, we have that

I(X; HX + Z) =
n

∑
i=1

I(Xi; hiiXi + Zi).

Let Xi ∼ PAM(Ni, Ai) with Ni :=
⌊

1 + 2Ai |hii |√
2πe

⌋
and observe that half the Euclidean distance

between any pair of adjacent points in PAM(Ni, Ai) is equal to ∆i := Ai/(Ni − 1) (see Figure 3),
i = 1, . . . , n. To lower bound the mutual information I(Xi; hiiXi + Zi), we use the bound of Theorem 13
for p = 2 and nt = 1. Thus, for some continuous random variable U that is uniformly distributed over
the interval [−∆i, ∆i) and independent of Xi, we have that

I(Xi; hiiXi + Zi) ≥ H(Xi)−
1
2

log2

(πe
6

)
− 1

2
log2

(
E
[
(U + Xi − g(Yi))

2]
E[U2]

)
. (41)

Now, note that the entropy term in Equation (41) can be lower bounded as

H(Xi) = log2

(⌊
1 +

2Ai|hii|√
2πe

⌋)
≥ log2

(
1 +

2Ai|hii|√
2πe

)
+ log2(2), (42)

where we have used that bxc ≥ x
2 for every x ≥ 1. On the other hand, the last term in Equation (41)

can be upper bounded by upper bounding its argument as follows:

E
[
(U + Xi − g(Yi))

2]
E[U2]

a)
= 1 +

3E
[
(Xi − g(Yi))

2]
∆2

i
b)
≤ 1 +

3E[Z2
i ](Ni − 1)2

A2
i |hii|2

= 1 +
3(Ni − 1)2

A2
i |hii|2

c)
≤ 1 +

3
(

2Ai |hii |√
2πe

)2

A2
i |hii|2

= 1 +
6

πe
. (43)

where (a) follows from using that Xi and U are independent and E[U2] =
∆2

i
3 ; (b) from using the

estimator g(Yi) =
1

hii
Yi; and (c) from Ni =

⌊
1 + 2Ai |hii |√

2πe

⌋
≤ 1 + 2Ai |hii |√

2πe
. Combining Equations (41), (42),

and (43) results in the gap in (39).
The proof of the capacity gap in Equation (40) follows along similar lines, which concludes

the proof.
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We are also able to determine the gap to the capacity for a general invertible channel matrix.

Theorem 19. For any X and any invertible H

C(X , H)− COW(X , H) ≤ log2(πn) +
n
2

log2

(
1 + 4n(4 + 4n)

(
‖H−1‖2r2

max(HX )

r2
min(X )

+
n‖H−1‖2

r2
min(X )

))
.

Proof. Let X be uniformly distributed over a set constructed from an n-dimensional cubic lattice with
the number of points equal to N =

⌊
‖x̃ + Z‖n

2
⌋
, where x̃ ∈ HX is chosen such that ‖x̃‖ = rmax(HX ),

and scaled such that it is contained in the input space X . Note that the minimum distance between
point in X are given by

dmin

(
supp(X)

)
:=

rmin(X )

N
1
n

.

Now, we compute the difference between the moment upper bound of Theorem 9 and the
Ozarow–Wyner lower bound of Theorem 13:

C̄M(X , H)− COW(X , H)
(a)
≤ log2(‖x̃ + Z‖2)− H(X) + gap

= n log2(‖x̃ + Z‖2)− log2(b‖x̃ + Z‖n
2c) + gap

(b)
≤ log2(2) + gap, (44)

where (a) follows from Theorem 9 by choosing p = 2; and (b) by using the bound bxc ≥ x
2 for x > 1.

The next step in the proof consists in bounding the gap term, which requires to upper bound the terms
in Equations (23) and (24) individually. Towards this end, choose p = 2 and let U be a random vector
that is uniformly distributed over a ball of radius dmin(X). Thus, for (23) it follows

G1,2(U, X, g) = n log2

(
‖U + X− g(Y)‖2

‖U‖2

)
(a)
= n log2

(
‖U−H−1Z‖2

‖U‖2

)

=
n
2

log2

(
1 +
‖H−1Z‖2

2
‖U‖2

2

)
(b)
=

n
2

log2

(
1 +

4(4 + 4n)‖H−1Z‖2
2

d2
min

(
supp(X)

) )
(c)
≤ n

2
log2

(
1 +

(4 + 4n)‖H−1Z‖2
2 ‖x̃ + Z‖2

2
r2
min(X )

)
(d)
=

n
2

log2

(
1 +

(4 + 4n)‖H−1Z‖2
2
(
r2
max(HX ) + n

)
r2
min(X )

)
(e)
≤ n

2
log2

(
1 +

4(4 + 4n)‖H−1‖2‖Z‖2
2
(
r2
max(HX ) + n

)
r2
min(X )

)

=
n
2

log2

(
1 +

4(4 + 4n)‖H−1‖2n
(
r2
max(HX ) + n

)
r2
min(X )

)
.
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where (a) follows by choosing g(Y) = H−1Y: (b) by using ‖U‖2
2 = r2

4+2n , where r = dmin(supp(X))
2 is

the radius of an n-dimensional ball; (c) from dropping the floor function in the expression for the
minimum distance, i.e.,

d−1
min

(
supp(X)

)
=

N
1
n

rmin(X )
=

⌊
‖x̃ + Z‖n

2
⌋ 1

n

rmin(X )
≤ ‖x̃ + Z‖2

rmin(X )
;

(d) follows by expanding ‖x̃ + Z‖2
2 using that ‖x̃‖ = rmax(HX ); and (e) from using the bound

‖H−1Z‖2 ≤ ‖H−1‖‖Z‖2.
On the other hand, the term G2,p(U) can be bounded from above as follows ([36] Appendix L):

G2,p(U) = n log2

 kn,p n
1
p ‖U‖p

2
1
n h(U)

 ≤ n log2

(
(πn)

1
n

)
.

Combining these two bounds with the one in (44) provides the result.

6. Arbitrary Channel Matrices

For an arbitrary MIMO channel with an average power constraint, it is well known that the
capacity is achieved by a singular value decomposition (SVD) of the channel matrix (i.e., H = UΛVT)
along with considering the equivalent channel model

Ỹ = ΛX̃ + Z̃,

where Ỹ := UTY, X̃ := VTX, and Z̃ := UTZ, respectively.
To provide lower bounds for channels with amplitude constraints and SVD precoding, we need

the following lemma.

Lemma 3. For any given orthogonal matrix V ∈ Rnt×nt and constraint vector a = (A1, . . . , Ant) ∈ Rnt
+ , there

exists a distribution FX of X such that X̃ = VTX is uniformly distributed over Box(a). Moreover, the components
X̃1, . . . , X̃nt of X̃ are mutually independent with X̃i uniformly distributed over [−Ai, Ai], i = 1, . . . , nt.

Proof. Suppose that X̃ is uniformly distributed over Box(a); that is, the density of X̃ is of the form

fX̃(x̃) =
1

Vol
(
Box(a)

) , x̃ ∈ Box(a).

Since V is orthogonal, we have VX̃ = X and by the change of variable Theorem for x ∈ VBox(a)

fX(x) =
1

|det(V)| fX̃(V
Tx) =

1
|det(V)|Vol

(
Box(a)

) =
1

Vol
(
Box(a)

) .

Therefore, such a distribution of X exists.

Theorem 20. (Lower Bounds with SVD Precoding) Let H ∈ Rnr×nt be fixed, nmin := min(nr, nt),
and X = Box(a) for some a = (A1, . . . , Ant) ∈ Rnt

+ . Furthermore, let σi, i = 1, . . . , nmin, be the ith singular
value of H. Then,

CJensen(Box(a), H) = log+
2

((
2
e

) nmin
2 1

ψ(H, b?)

)
(45)

and

CEPI(Box(a), H) =
nmin

2
log2

1 +

∣∣∏nmin
i=1 Aiσi

∣∣ 2
nmin

2πe

, (46)
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where

ψ(H, b?) := min
b∈Box(a)

nmin

∏
i=1

ϕ(σiBi)

with b := (B1, . . . , Bnt) and ϕ as defined in Equation (32).

Proof. Performing the SVD, the expected value in Theorem 14 can be written as

E
[

e−
‖H(X−X′)‖2

4

]
= E

[
e−
‖UΛVT (X−X′)‖2

4

]
= E

[
e−
‖ΛVT (X−X′)‖2

4

]
= E

[
e−
‖Λ(X̃−X̃′)‖2

4

]
.

By Lemma 3, there exists a distribution FX such that the components of X̃ are independent and
uniformly distributed. Since Λ is a diagonal matrix, we can use Theorem 16 to arrive at Equation (45).

Note that by Lemma 3 there exists a distribution on X such that X̃ is uniform over Box(a) ⊂ Rnt

and ΛX̃ is uniform over ΛBox(a) ⊂ Rnmin , respectively. Therefore, by the EPI lower bound given in
Equation (20), we obtain

CEPI(Box(a), H) =
nmin

2
log2

1 +
2

2
nmin

h(ΛX̃)

2πe


=

nmin

2
log2

1 +
Vol
(
ΛBox(a)

) 2
nmin

2πe


=

nmin

2
log2

1 +

(
∏nmin

i=1 Ai
) 2

nmin
∣∣∏nmin

i=1 σi
∣∣ 2

nmin

2πe

,

which is exactly the expression in Equation (46). This concludes the proof.

Remark 8. Notice that choosing the optimal b for the lower bound in Equation (45) is an amplitude allocation
problem, which is reminiscent of waterfilling in the average power constraint case. It would be interesting to
study whether the bound in Equation (45) is connected to what is called mercury waterfilling in [37,38].

In Figure 4, the lower bounds of Theorem 20 are compared to the moment upper bound of
Theorem 2 for the special case of a 3× 1 MIMO channel. Similar to the example presented in Figure 2,
the EPI lower bound performs well in the low amplitude regime, while Jensen’s inequality lower
bound performs well in the high amplitude regime.

We conclude this section by showing that for an arbitrary channel input space X , in the large
amplitude regime the capacity pre-log is given by min(nr, nt).

Theorem 21. Let X be arbitrary and H ∈ Rnr×nt fixed. Then,

lim
rmin(X )→∞

C(X , H)

log2

(
1 + 2rmin(X )√

2πe

) = min(nr, nt).

Proof. Notice that there always exists a ∈ Rnt
+ and c ∈ R+ such that Box(a) ⊆ X ⊂ cBox(a). Thus,

without loss of generality, we can consider X = Box(a), a = (A, . . . , A), for sufficiently large A ∈ R+.
To prove the result, we therefore start with enlarging the constraint set of the bound in Equation (11):

Box
(
HBox(a)

)
⊆ B0

(
rmax

(
HBox(a)

))
⊆ B0

(
rmax

(
HB0(

√
nt A)

))
= B0

(
rmax

(
UΛVTB0(

√
nt A)

))
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= B0
(
rmax

(
UΛB0(

√
nt A)

))
= B0

(
rmax

(
ΛB0(

√
nt A)

))
⊆ B0(r)

⊆ Box(a′),

where r :=
√

nt A
√

∑nmin
i=1 σ2

i and a′ :=
( r√

nmin
, . . . , r√

nmin

)
∈ Rnmin

+ . Therefore, by using the upper bound
in Equation (11), it follows that

C(Box(a), H) ≤
nr

∑
i=1

log2

(
1 +

2Ai√
2πe

)
≤ nmin log2

1 +
2√
2πe

√
nt A

√
∑nmin

i=1 σ2
i√

nmin

.

Moreover,

lim
A→∞

C(Box(a), H)

log2

(
1 + 2A√

2πe

) ≤ nmin lim
A→∞

log2

(
1 + 2√

2πe

√
nt A

√
∑

nmin
i=1 σ2

i√
nmin

)
log2

(
1 + 2A√

2πe

) = nmin.

Next, using the EPI lower bound in Equation (46), we have that

lim
A→∞

CEPI(Box(a), Λ)

log2

(
1 + 2A√

2πe

) = nmin lim
A→∞

1
2 log2

(
1 +

A|∏nmin
i=1 σi|

2
nmin

2πe

)
log2

(
1 + 2A√

2πe

) = nmin.

This concludes the proof.
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Figure 4. Comparison of the upper bound in Theorem 2 with the lower bounds of Theorem 20 for
a 3× 1 MIMO system with amplitude constraints A1 = A2 = A3 = A (i.e., a = (A, A, A)) and channel
matrix h = (0.6557, 0.0357, 0.8491).
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7. The SISO Case

In this section, we apply the upper and lower bounds presented in the previous sections to the
special case of a SISO channel that is subject to an amplitude constraint (i.e., X = [−A, A] for some
A ∈ R+) and compare them with the state-of-the art. More precisely, we are interested in upper and
lower bounds to the capacity

C([−A, A], h) := max
FX :X∈[−A,A]

I(X; hX + Y). (47)

Without loss of generality, we assume h = 1 in all that follows.

7.1. Upper and Lower Bounds

As a starting point for our comparisons, the following Theorem summarizes bounds on the
capacity (47) that are known from the literature. The bounds are all based on the duality approach that
we generalize in Section 4 to the MIMO case.

Theorem 22. (Known Duality Upper Bounds) Let A > 0 be arbitrary. Then, the following are valid upper
bounds to the capacity of the amplitude-constrained SISO channel defined in Equation (47).

• McKellips upper bound [7]:

C([−A, A], 1) ≤ C̄McK([−A, A], 1) := log2

(
1 +

2A√
2πe

)
. (48)

• Thangaraj–Kramer–Böcherer upper bound ([8] Theorem 1):

C([−A, A], 1) ≤ C̄TKB([−A, A], 1) :=

 β(A) loge

(√
2

πe A
)
+ Hb

(
β(A)

)
, A2 ≤ 6.304 dB

C̄McK([−A, A], 1), else,
(49)

where β(A) := 1
2 −Q(2A) and Hb denotes the binary entropy function.

• Rassouli–Clerckx upper bound [9]:

C([−A, A], 1) ≤ C̄RC([−A, A], 1) := C̄TKB([−A, A], 1) + W(A), (50)

where

W(A) :=
1
2

(
loge

(
σ2(A)

)
+

1
σ2(A)

− 1
)(

1
2
+ Q(2A)

)
+

g(2A)

2σ2(A)
,

σ2(A) := 1 +
2g(2A)

1 + 2Q(2A)
,

and
g(x) := x2Q(x)− x√

2π
e−

x2
2 .

Now, we apply the moment upper bound of Theorem 9 to the SISO case.

Theorem 23. (Moment Upper Bound) Let A > 0 be arbitrary. Then,

C([−A, A], 1) ≤ C̄M([−A, A], 1) = inf
p>0

log2

(
k1,p

(2πe)
1
2
E
[
|A + Z|p

] 1
p

)
, (51)
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where the expected value is of the explicit form

E
[
|A + Z|p

]
=

2
p
2 Γ
(

p+1
2

)
√

π
1F1

(
− p

2
;

1
2

;−A2

2

)
with 1F1(a; b; z) being the confluent hypergeometric function of the first kind ([39] Chapter 13).

Proof. First, note that rmax([−A, A]) = A. Then, by using the expression for the raw absolute moment
of a Gaussian distribution given in [40], we have that

max
a∈[0,A]

E
[
|a + Z|p

]
= max

a∈[0,A]

2
p
2 Γ
(

p+1
2

)
√

π
1F1

(
− p

2
;

1
2

;− a2

2

)
.

The proof is concluded by observing that f (a) := 1F1

(
− p

2 ; 1
2 ;− a2

2

)
is an increasing function

in a.

The following theorem establishes the EPI and the Jensen lower bound of Section 4.2 assuming
the channel input symbols are uniformly distributed.

Theorem 24. (Lower Bounds with Uniform Inputs) Let A > 0 be arbitrary and the channel input X be
uniformly distributed over [−A, A]. Then,

C([−A, A], 1) ≥ CEPI([−A, A], 1) =
1
2

log2

(
1 +

2A2

πe

)
(52)

and

C([−A, A], 1) ≥ CJensen([−A, A], 1) = log2

 √
2A2

e
1
2

(
e−A2 − 1 +

√
πA

(
1− 2Q

(√
2A
)))

. (53)

Proof. The lower bound in Equation (52) follows from Theorem 12 by observing that Vol(X ) = 2A.
To show the lower bound in Equation (53), consider Theorem 14 and let X and X′ be independent and
uniformly distributed over [−A, A]. Then, we have

E
[

e−
|X−X′ |2

4

]
=

1
4A2

∫ A

−A

∫ A

−A
e−

(x−x′)2
4 dx dx′

=
1

A2

(
e−A2 − 1 +

√
πA

(
1− 2Q

(√
2A
)))

,

which concludes the proof.

Restricting the channel inputs to be discrete allows for another set of lower bounds
on Equation (47).

Theorem 25. (Lower Bounds with Discrete Inputs) Let A > 1 be arbitrary, XB ∈ {−A, A} equally likely,
and XD ∼ PAM(N) with N =

⌈
1 + A√

2πe

⌉
. Then,

C([−A, A], 1) ≥ CBinary([−A, A], 1) := I(XB; XB + Z) (54)

=
1

loge(2)

A2 −
∫ ∞

−∞

e−
y2
2

√
2π

loge

(
cosh(A2 − Ay)

)
dy

 , (55)
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C([−A, A], 1) ≥ CJensen([−A, A], 1) = − log2

√e
2

1
N2 ∑

(xDi
,xDj

)∈PAM(N)2

e−
(xDi

−xDj
)2

4

, (56)

and
C([−A, A], 1) ≥ COW([−A, A], 1) = C̄McK([−A, A], 1)− 2. (57)

Proof. The expression of the mutual information in Equation (54) for a uniform binary input XB ∈
{−A, A} is found in [41] by using the I-MMSE relationship. The bound in Equation (56) follows from
using Theorem 14 and the bound in Equation (57) from Theorem 13, respectively. This concludes
the proof.

Figure 5 compares the upper and lower bounds presented in this section in dependency of
the amplitude constraint A. Observe that for values of A smaller than ≈1.665 (i.e., to the left of
the gray vertical line), the lower bound (55) is in fact equal to the capacity. Up to constraints of
A ≈ 1, the moment upper bound in Equation (51) is the best after which the bound in Equation (50)
becomes the tightest. The best lower bound for constraint values smaller than A ≈ 10 is the bound in
Equation (56) after which the lower bound in Equation (53) becomes the tightest. Note that all lower
and upper bounds are asymptotically tight (i.e., for A→ ∞).
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Figure 5. Comparison of upper and lower bounds on the capacity of a SISO channel with amplitude
constraint A. The capacity of this channel is known for amplitudes smaller than A ≈ 10 log10(1.665) =
2.214 dB only (i.e., to the left of the gray vertical line) and unknown elsewhere. The nested figure
represents a zoom into the region −1.9 dB ≤ A ≤ −1.88 dB to highlight the differences between the
Moment upper bound (51), the Rassouli–Clerckx upper bound in Equation (50), and the lower bound
with binary inputs in Equation (56).
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7.2. High and Low Amplitude Asymptotics

In this subsection, we study how the capacity in Equation (47) behaves in the high and low
amplitude regimes. To this end, we need the following expression

C̄AWGN([−A, A], 1) :=
1
2

log2

(
1 + A2

)
,

which is either the capacity of a SISO channel with an average power constraint A2 or the moment
bound in Equation (51) evaluated for p = 2.

Theorem 26. (SISO High and Low Amplitude Asymptotics) It holds

lim
A→0

C([−A, A], 1)
C̄AWGN([−A, A], 1)

= 1, (58)

lim
A→∞

C([−A, A], 1)
C̄McK([−A, A], 1)

= 1, (59)

and
lim

A→∞
C([−A, A], 1)− C̄AWGN([−A, A], 1) =

1
2

log2

(πe
2

)
≈ 1.044. (60)

Proof. The capacity of an amplitude-constrained SISO channel in the regime of low amplitudes
(i.e., for amplitudes smaller than A ≈ 1.655) was given by Guo et al. [41]

C([−A, A], 1) =
1

loge(2)

A2 −
∫ ∞

−∞

e−
y2
2

√
2π

loge

(
cosh(A2 − Ay)

)
dy

 .

Now, observe that

lim
A→0

1
1
2 log2(1 + A2)

∫ ∞

−∞

e−
y2
2

√
2π

loge

(
cosh(A2 − Ay)

)
dy

=
2

log2(e)

∫ ∞

−∞

e−
y2
2

√
2π

loge
(
cosh(A2 − Ay)

)
loge(1 + A2)

dy

=
2

log2(e)

∫ ∞

−∞

e−
y2
2

√
2π

lim
A→0

loge
(
cosh(A2 − Ay)

)
loge(1 + A2)

dy

=
2

log2(e)

∫ ∞

−∞

e−
y2
2

√
2π

y2

2
dy

=
1

log2(e)
.

Therefore, the limit in Equation (58) is given by

lim
A→0

C([−A, A], 1)
C̄AWGN([−A, A], 1)

= lim
A→0

A2

loge(2)
1
2 log2(1 + A2)

− 1
loge(2) log2(e)

=
2 loge(2)
loge(2)

− 1
loge(2) log2(e)

= 2− 1 = 1.
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The limit in Equation (59) follows from comparing the EPI lower bound CEPI([−A, A], 1) =
1
2 log2

(
1 + 2A2

πe
)

in (52) with the McKellips upper bound C̄McK([−A, A], 1) = log2
(
1 + 2A√

2πe

)
given in

Equation (48).
Finally, to show Equation (60), observe that

lim
A→∞

C([−A, A], 1)− C̄AWGN([−A, A], 1) = lim
A→∞

C̄McK([−A, A], 1)− C̄AWGN([−A, A], 1)

= lim
A→∞

log2

(
1 +

2A√
2πe

)
− 1

2
log2(1 + A2)

=
1
2

log2

(πe
2

)
.

This concludes the proof.

8. Conclusions

In this work, we studied the capacity of MIMO channels with bounded input spaces. Several
new properties of input distributions that achieve the capacity of such channels have been provided.
In particular, it is shown that the support of a capacity-achieving channel input distribution is a set
that is small in a topological and measure theoretical sense. In addition to that, it is shown that, if the
radius of the underlying channel input space, X , is small enough, then the support of a corresponding
capacity-achieving input distribution must necessarily be a subset of the boundary of X . As the
considerations on the input distribution have demonstrated that determining the capacity is a very
challenging problem, we proposed several new upper and lower bounds that are shown to be tight in
the high amplitude regime. An interesting future direction would be to study generalizations of our
techniques to wireless optical MIMO channels [42] and other channels such as the wiretap channel [43].
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