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Abstract: Generalized expressions of the entropy and related concepts in non-Fourier heat conduction
have attracted increasing attention in recent years. Based on standard and fractional phonon
Boltzmann transport equations (BTEs), we study entropic functionals including entropy density,
entropy flux and entropy production rate. Using the relaxation time approximation and power series
expansion, macroscopic approximations are derived for these entropic concepts. For the standard
BTE, our results can recover the entropic frameworks of classical irreversible thermodynamics (CIT)
and extended irreversible thermodynamics (EIT) as if there exists a well-defined effective thermal
conductivity. For the fractional BTEs corresponding to the generalized Cattaneo equation (GCE) class,
the entropy flux and entropy production rate will deviate from the forms in CIT and EIT. In these
cases, the entropy flux and entropy production rate will contain fractional-order operators, which
reflect memory effects.

Keywords: entropy density; entropy flux; entropy production rate; classical irreversible thermodynamics
(CIT); extended irreversible thermodynamics (EIT); phonon heat transport; Boltzmann transport
equation (BTE)

1. Introduction

Entropic and thermodynamic frameworks in heat transport have attracted increasing attention in
recent years [1–3]. In equilibrium thermodynamics, the Clausius statement restricts the direction of
heat transfer, which guarantees the non-negativity of entropy generation. Further descriptions such as
the entropy production rate require irreversible and non-equilibrium thermodynamics. In classical
irreversible thermodynamics (CIT) [3–5], the entropy density sC = sC(x, t) is written as sC =

∫
T−1cdT

with T = T(x, t) the local temperature and c the specific volumetric heat capacity, while the entropy
flux JC = JC(x, t) is JC = T−1q with q = q(x, t) denoting the heat flux. Here, the subscript C means
that the entropy and entropy flux are expressed in the framework of CIT. According to the entropy
balance equation, the CIT entropy production rate σC = σC(x, t) is obtained as

σC = ∂tsC +∇·JC = q·∇
(

1
T

)
(1)

For classical Fourier’s law, q + λ∇T = 0 with λ the thermal conductivity, σC is non-negative
as if the thermal conductivity is positive. However, Fourier’s law indicates infinite speeds of heat
propagation for constant material properties. Non-Fourier heat conduction models therefore arise [6–13].
The Cattaneo-Vernotte (CV) model [8,9] is “the most obvious and simple generalization of Fourier’s
law that will give rise to finite speeds of propagation” [6]: q + τ∂tq = −λ∇T with τ standing for the
relaxation time. The CV model reflects relaxation in heat conduction, while there are other non-Fourier
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effects such as nonlocality and nonlinearity. Nonlocal heat conduction is widely observed in phonon
heat transport, i.e., the phonon hydrodynamic and Guyer-Krumhansl (GK) models [11]. Typical
examples for nonlinear heat conduction are the Lagrange multiplier [14], tempered diffusion [15]
and thermomass [16,17] models. These nonlinear models predict an interesting phenomenon termed
flux-limited behavior [18], namely that the heat flux tends to a finite upper bound as the temperature
gradient increases. The flux-limited behavior is sometimes paired with size effects that the macroscopic
expressions will not exist for small-scale heat conduction problems [19].

One inconsistency caused by some of these models is the negativity of σC [20,21]. In order to
overcome this inconsistency, generalized formulations for the entropic functionals were developed.
A commonly used approach is to introduce non-equilibrium macroscopic quantities such as q into
the entropy density. For instance, in extended irreversible thermodynamics (EIT) [3], the entropy
density is defined by sE = sC − τ

2λT2 q·q, which enables the CV model to satisfy a non-negative entropy
production. The subscript E means that the entropic framework is defined in EIT. Because the entropy
production rate depends on not only the entropy density but also the entropy flux, investigations on
the generalized entropy flux are likewise necessary. The nonlocal entropy flux J commonly takes a
form as J = JC + K [1], wherein K is the so-called entropy-density extra flux. Although these entropic
functionals were well-discussed for macroscopic heat conduction models and proved by Grad’s
method in the kinetic theory of gases, the entropic framework was not studied as much for phonon
heat transport based on the phonon Boltzmann transport equation (BTE). Moreover, the factional-order
heat conduction models and their corresponding factional BTEs have not been investigated.

In the present work, we mainly study the macroscopic estimations for the entropy density and
entropy flux based on the phonon BTE with the relaxation time approximation [22]:

∂t f + vg·∇ f =
f0 − f

τ
(2)

wherein vg is the phonon group velocity, f = f (x, t, k) is the distribution function, k denotes the
wave vector, f0 = 1

exp(}ω/kBT)−1 is the equilibrium distribution, } is the reduced Planck constant, ω

is the angular frequency, and kB is the Boltzmann constant. We consider the entropic concepts in
Boltzmann-Gibbs (BG) statistical mechanics. Using the power series expansion, the entropic concepts
in statistical mechanics are approximated by macroscopic quantities. Besides Equation (2), several
fractional BTEs are also discussed, which educes a class of fractional-order heat conduction models
termed generalized Cattaneo equation (GCE) [23].

2. Standard Boltzmann Transport Equation

We establish macroscopic quantities including the phonon energy density e = e(x, t), heat flux q
and flux of heat flux Q = Q(x, t):

e =
∫

f}ωdk, q =
∫

vg f}ωdk, Q =
∫

vgvg f}ωdk (3)

The conventional temperature is defined in the sense of equilibrium or local equilibrium. Here,
we use Chen’s definition of the local temperature in non-Fourier heat conduction [22], which is
a measure of the local energy density, namely, de = cdT. Upon multiplying Equation (2) by }ω

and integrating it over the wave vector space, we obtain the local energy conservation equation
∂te = −∇·q. Similarly, multiplying Equation (2) by vg}ω and integrating yields q + τ∂tq = −τ∇·Q.

With λ = 1
3

∣∣vg
∣∣2cτ, the CV model is immediately recovered.

The BG entropy density for the phonon distribution function s f = s f (x, t) is written as

s f = kB

∫
[( f + 1) ln( f + 1)− f ln f ]dk (4a)
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whose time derivative reads
∂ts f = kB

∫
∂t f [ln( f + 1)− ln f ]dk (4b)

The subscript f means that the entropic framework is defined in terms of the distribution function
and statistical mechanics. Upon substituting Equation (2) into Equation (4b), we arrive at

∂ts f = −∇·
{∫

vgkB[( f + 1) ln( f + 1)− f ln f ]dk
}
+ kB

∫ f0 − f
τ

ln
f + 1

f
dk (5)

From Equation (5), we can find that the BG entropy flux J f = J f (x, t) takes the following form

J f =
∫

vgkB[( f + 1) ln( f + 1)− f ln f ]dk (6)

while the BG entropy production rate σf = σf (x, t) is given by

σf = kB

∫ f0 − f
τ

ln
f + 1

f
dk (7)

One can acquire ∂Ts f= f0 = kB
∫

∂T f0 ln f0+1
f0

dk and noting that }ω
kBT = ln f0+1

f0
, ∂Ts f= f0 =

T−1
∫

∂T f0}ωdk = T−1c. Thus, we have s f= f0 ≡ sC and when f 6= f0 yet | f0 − f | � f0, s f can
be expanded as

s f = s f= f0 + kB

∫
( f − f0) ln

f0 + 1
f0

dk + kB

∫
− ( f − f0)

2

2 f0( f0 + 1)
dkk + kB

∫
O( f − f0)

3dk (8)

In Equation (8), s f= f0 ≡ sC is the zero-order term, and substituting }ω
kBT = ln f0+1

f0
into the second term

in Equation (8) yields

kB

∫
( f − f0)

}ω

kBT
dk =

1
T

∫
( f − f0)}ωdk = 0 (9)

Through combining with Equation (2), the third term in Equation (8) becomes

kB

∫
− ( f − f0)

2

2 f0( f0 + 1)
dk =

kBτ

2

∫
( f − f0)

f0( f0 + 1)
∂t f dk +

kBτ

2

∫ ( f − f0)vg∇ f
f0( f0 + 1)

dk (10)

In the right-hand side of Equation (10), the first term can be simplified as follows

kBτ
2

∫ ( f− f0)
f0( f0+1)∂t f dk = kBτ

2

[∫ ( f− f0)
f0( f0+1)∂t f0dk +

∫ ( f− f0)
f0( f0+1)∂t( f − f0)dk

]
= − τ

2 ∂t

(
1
T

)∫
( f − f0)}ωdk + kBτ

2

∫
O
[
∂t( f − f0)

2
]
dk

= kBτ
2

∫
O
[
∂t( f − f0)

2
]
dk

(11)

while the second term in the right-hand side of Equation (10) is rewritten as

kBτ
2

∫ ( f− f0)vg∇ f
f0( f0+1) dk = kBτ

2

∫ ( f− f0)vg [∇ f0+∇( f− f0)]
f0( f0+1) dk

= kBτ
2 ∇

(
1
T

)
·
∫
( f − f0)dk + kBτ

2

∫
vgO

[
∇( f − f0)

2
]
dk

= − τ
2 q·∇

(
1
T

)
+ kBτ

2

∫
vgO

[
∇( f − f0)

2
]
dk

(12)

Accordingly, the second-order estimation of s f is given by

s f = sC −
τ

2
q·∇

(
1
T

)
+ kBτ

∫
O

[
∂t( f − f0)

2 + vg∇( f − f0)
2 +

( f − f0)
3

τ

]
dk (13)
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When τ
∣∣∣∂t( f − f0)

2
∣∣∣ � ( f − f0)

2 and l
∣∣∣∇( f − f0)

2
∣∣∣ � ( f − f0)

2 with l =
∣∣vg
∣∣τ denoting the mean

free path (MFP), one can obtain a macroscopic approximation as follows

s f
∼= sC −

τ

2
q·∇

(
1
T

)
(14a)

If there exists a well-defined effective thermal conductivity λe f f , namely, ∇T = −
(

λe f f

)−1
q, the EIT

entropy is formally recovered:

s f
∼= sC −

τ

2λe f f T2 q·q (14b)

In the anisotropic cases, λe f f should be replaced by the thermal conductivity tensor
[
λij
]
,

and thereupon,

s f
∼= sC −

τ

2T2 q·
[
λij
]−1·q (14c)

The remainder term kBτ
∫

O
[
∂t( f − f0)

2 + vg∇( f − f0)
2
]
dk indicates that Equation (14) is restricted

to the case with small temporal and spatial derivatives of ( f − f0)
2. It should be pointed out that

despite ( f − f0)
2 � | f − f0| � f0, the derivatives of ( f − f0)

2 can be comparable to or even much
larger than the derivative of f .

We now consider J f , which is expanded as

J f = kB

∫
vg( f − f0) ln

f0 + 1
f0

dk + kB

∫
−

vg( f − f0)
2

2 f0( f0 + 1)
dk + kB

∫
vgo( f − f0)

2dk (15)

The first-order term in the former equation coincides with JC exactly:

kB

∫
vg( f − f0) ln

f0 + 1
f0

dk = kB

∫
vg( f − f0)

}ω

kBT
dk =

q
T

= JC (16)

Using the method stated above, the second-order term in Equation (15) can be expressed as

kB

∫ vg( f − f0)
2

2 f0( f0 + 1)
dk = −τ

2
Q·∇

(
1
T

)
+ kBτ

∫
vgO

[
∂t( f − f0)

2 + vg∇( f − f0)
2
]
dk (17)

Hence, the entropy-density extra flux is expressed by

K = −τ

2
Q·∇

(
1
T

)
+ kBτ

∫
vgO

[
∂t( f − f0)

2 + vg∇( f − f0)
2 +

( f − f0)
3

τ

]
dk (18)

When τ
∣∣∣∂t( f − f0)

2
∣∣∣ � ( f − f0)

2 and l
∣∣∣∇( f − f0)

2
∣∣∣ � ( f − f0)

2, a second-order approximation

emerges: K ∼= − τ
2 Q·∇

(
1
T

)
. With well-defined λe f f , this approximation fulfills the form by

Sellitto et al. [1]: K = αQ·q = αQT ·q (Q is symmetrical in phonon heat transport). Besides s f
and J f , σf can also be expanded:

σf =
kB
τ

∫
( f0 − f ) ln

f0 + 1
f0

dk +
kB
τ

∫
( f − f0)

2

f0( f0 + 1)
dk +

kB
τ

∫
O( f − f0)

3dk (19)

Equation (19) implies that σf is a second-order quantity, and combining it with Equation (8) leads to

s f = s f= f0 −
τσf

2
+ kB

∫
O( f − f0)

3dk (20)
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Consequently, the extra entropic functional
(

s f − s f= f0

)
should be non-positive at least in the

near-equilibrium region. Because the remainder term kB
∫

O( f − f0)
3dk does not contain any temporal

or spatial derivatives, the approximation s f
∼= sC −

τσf
2 is more universal than Equation (14). Similar

connection between the entropy generation and non-equilibrium contribution to the entropic functional
has been derived in Reference [3]. This derivation is based on the decay to equilibrium in the isolated
volume element, which does not rely on any specific transport equation. Through this approximation,
the entropy balance equation is rewritten as

σf = ∂ts f +∇·J f
∼= ∂t

(
s f= f0 −

τσf
2

)
+∇·(JC + K)

⇒ σf +
τ
2 ∂tσf = σC +∇·K

(21)

Equation (21) exhibits a memory behavior between σf and (σC +∇·K), namely,

σf (x, t) = σf (x, 0) +
2
τ

∫ t

0
(σC +∇K)(x, t− ξ) exp

(
−2ξ

τ

)
dξ (22)

Equation (22) does not require small temporal or spatial derivatives, which may be valid in
super-transient and large-gradient heat conduction.

3. Fractional Models

In the previous section, we discuss entropic functionals based on the standard BTE, which gives
rise to integer-order heat conduction models such as the CV model. There are also fractional-order
heat conduction models, i.e., the GCE class [23], whose entropic frameworks have not been studied
based on the fractional BTE approach. In the following, the entropic frameworks of the GCE class
will be investigated based on fractional BTEs. The first model is q + τγDγ

t q = −λ∇T, which can be
derived from a fractional BTE as follows:

τγ−1Dγ
t f + vg·∇ f =

f0 − f
τ

(23)

where 0 < γ ≤ 1 and Dγ
t is the Riemann-Liouville (RL) operator [24]. With the initial value terms

neglected, D1−γ
t Dγ

t equals ∂t, and Equation (23) is reformed as

∂t f + τ1−γD1−γ
t
(
vg·∇ f

)
= τ1−γD1−γ

t

(
f0 − f

τ

)
(24)

Combining Equations (24) and (4) yields

∂ts f = kB

∫ [
D1−γ

t

(
f0 − f

τγ

)
− τ1−γD1−γ

t
(
vg∇ f

)]
ln

f + 1
f

dk (25)

Accordingly, the entropy flux and entropy production rate take the following forms, respectively,

∇·J f = kB

∫
ln

f + 1
f

τ1−γD1−γ
t
(
vg∇ f

)
dk (26)

σf = kB

∫
ln

f + 1
f

D1−γ
t

(
f0 − f

τγ

)
dk (27)

As the form of s f does not change, the second-order estimation in Equation (13) still holds. Unlike the
above case, Equation (26) is an implicit form whose first-order term deviates from JC. Due to the
existence of fractional operator, J f cannot be expanded directly. Hence, we use ln f+1

f = ln f0+1
f0

+

O( f − f0), and Equation (26) becomes
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∇·J f = kB
∫ [

ln f0+1
f0

+ O( f − f0)
]
τ1−γD1−γ

t
(
vg∇ f

)
dk

= ∇·
[

τ1−γD1−γ
t q

T

]
+∇·

∫
kBvgO( f − f0)τ

1−γD1−γ
t f dk

⇒ J f =
τ1−γD1−γ

t q
T +

∫
kBvgO( f − f0)τ

1−γD1−γ
t f dk.

(28)

If f fulfills the condition ln f0+1
f0

= }ω
kBT � | f − f0|, which may be valid in low-temperature situations,

a macroscopic approximation arises: J f
∼= T−1τ1−γD1−γ

t q. This macroscopic approximation can also
be derived from the energy conservation equation. By multiplying Equation (23) by }ω and integrating
it over the wave vector space, we deduce a fractional-order energy balance equation as follows

∂te = −τ1−γD1−γ
t (∇·q) (29)

In the presence of near-equilibrium, ∂ts f
∼= ∂ts f= f0 and the entropy balance equation is

approximated as

∂ts f
∼= ∂ts f= f0 =

1
T

∂te = −∇·Jγ + σγ (30)

where Jγ = Jγ(x, t) and σγ = σγ(x, t) denote the approximate entropy flux and entropy production
rate respectively. Substituting Equation (29) into Equation (30) leads to

∂ts f= f0 =
1
T

∂te = −∇·
(

τ1−γD1−γ
t q

T

)
+
(

τ1−γD1−γ
t q

)
·∇
(

1
T

)
= −∇·Jγ + σγ (31)

When γ = 1, Jγ and σγ should reduce to the CIT formalism, and therefore, we can derive

Jγ =
τ1−γD1−γ

t q
T

(32)

σγ =
(

τ1−γD1−γ
t q

)
·∇
(

1
T

)
(33)

Jγ(x, t) and σγ(x, t) are fundamentally different from the CIT or EIT formalism, which are not
determined by instantaneous q but depend on the integrated history of q in [0, t].

The temporal fractional operator can occur in the temperature gradient as well [23]: q+ τγDγ
t q =

−τ1−γD1−γ
t (λ∇T), which can be derived from the fractional BTE as follows

τγ−1Dγ
t f + τ1−γD1−γ

t
(
vg·∇ f

)
=

f0 − f
τ

(34)

With the initial value terms neglected, Equation (36) becomes

∂t f + τ2−2γD2−2γ
t

(
vg·∇ f

)
= τ1−γD1−γ

t

(
f0 − f

τ

)
(35)

The corresponding entropy balance equation is given by

s f = kB

∫ [
D1−γ

t

(
f0 − f

τγ

)
− τ2−2γD2−2γ

t
(
vg∇ f

)]
ln

f + 1
f

dk (36)

σf remains Equation (27), while J f fulfills:

∇·J f = kB

∫
ln

f + 1
f

τ2−2γD2−2γ
t

(
vg∇ f

)
dk (37)
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Similar to Equation (28), Equation (37) can be expanded as:

J f =
τ2−2γD2−2γ

t q
T

+
∫

kBvgO( f − f0)τ
2−2γD2−2γ

t f dk. (38)

The energy conservation equation from Equation (34) is given by

∂te = −τ2−2γD2−2γ
t (∇·q) (39)

and substituting it into the entropy balance equation leads to

∂ts f= f0 = −∇·
(

τ2−2γD2−2γ
t q

T

)
+
(

τ2−2γD2−2γ
t q

)
·∇
(

1
T

)
= −∇·Jγ + σγ

⇒ Jγ =
τ2−2γD2−2γ

t q
T , σγ =

(
τ2−2γD2−2γ

t q
)
·∇
(

1
T

) (40)

Another model is q + τ∂tq = −τ1−γD1−γ
t (λ∇T) [23], which emerges from:

∂t f + τ1−γD1−γ
t
(
vg·∇ f

)
=

f0 − f
τ

(41)

The corresponding entropy balance equation is given by

∂ts f = kB

∫ [ f0 − f
τ
− τ1−γD1−γ

t
(
vg∇ f

)]
ln

f + 1
f

dk (42)

σf remains Equation (6), while J f is still Equation (25). The last one is a fractional single-phase-lagging

(SPL) model [23,25], namely, q(x, t + τ) = −τ1−γD1−γ
t [λ∇T(x, t)]. Discussion on entropic problems

for the integer-order SPL model can be found in References [26,27]. The fractional SPL model can
emerge from the following BTE

D1−γ
t
[
vg·∇ f (x, t)

]
=

f0(x, t)− f (x, t + τ)

τ
(43)

If a Taylor expansion f (x, t + τ) = f + τ∂t f + O
(
τ2) is applied to Equation (43), we arrive at

∂t f + τ1−γD1−γ
t
(
vg·∇ f

)
= f0− f

τ +O(τ). The fractional operator occurs in the gradient term and there
exists a remainder term O(τ), which is different from Equation (23). When ∇ f = 0, Equation (23)
corresponds to Mittag-Leffler decay to the equilibrium distribution function, which becomes power-law
in the long-time limit. For Equation (43), the distribution function must equal to the equilibrium
distribution function for any t > τ. Thus, Equation (43) possesses much larger decaying rate than
Equation (23). J f remains Equation (25), while σf is given by

σf (x, t) = kB

∫ f0(x, t)− f (x, t + τ) + ∂t f (x, t)
τ

ln
f (x, t) + 1

f (x, t)
dk (44)

Unlike the above case, the zero-order term of Equation (44) is not zero:∫ f0(x,t)− f0(x,t+τ)+τ∂t f0(x,t)
τ ln f0(x,t)+1

f0(x,t) dk

= 1
Tτ [e(x, t) + τ∂te(x, t)− e(x, t + τ)]

(45)

Therefore, there is only zero-order approximation for σf , namely,

σf (x, t) ∼=
1

Tτ
[e(x, t) + τ∂te(x, t)− e(x, t + τ)] (46)
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Equation (46) is very different from the above forms, which rely only on the energy density and is
independent of the heat flux.

Compte and Metzler have also mentioned entropy framework for fractional transport equations,
which will be compared with our results in the following. In the study by Compte and Metzler,
the conservation and constitutive equations are independent of each other. A given constitutive
equation can be combined with an arbitrary conservation equation. In this work, both conservation
and constitutive equations are obtained by the BTE, and their relation is restricted by the BTE as well.
A given constitutive equation corresponds to a unique BTE, and hence the conservation equation is not
arbitrary. In contrast with the result by Compte and Metzler, the entropic framework of the present
paper cannot be separated from the conservation law. Besides the GCE class, there are also more
complicated fractional and phonon heat transport equations [28–31], which deserve further discussion.

4. Conclusions

1. For the BG entropy in phonon heat transport, we provide a second-order approximation, namely,

s f
∼= sC − τ

2 q·∇
(

1
T

)
, which is valid for both integer-order and fractional-order BTEs. If there

exists a well-defined effective thermal conductivity, this approximation will coincide with the
EIT entropy. This approximation requires small temporal and spatial derivatives of ( f − f0)

2.
We also provide an approximation which does not rely on small temporal and spatial derivatives:
s f
∼= sC −

τσf
2 .

2. There are different forms of the entropy flux for different BTEs. For the standard BTE, we obtain
the entropy-density extra flux in coincidence with EIT, which is a second-order approximation.
In contrast with the standard BTE, the entropy flux for the fractional BTE deviates from the CIT
formalism even in the near-equilibrium region. Thus, the form J = JC + K is not applicable for
the fractional heat conduction models. Based on the energy conservation equation, we propose
a macroscopic form for the entropy flux, namely, Jγ = T−1τF(γ)DF(γ)

t q, where function F(γ) is
determined by the fractional BTE.

3. For the standard BTE, we deduce a convolution form for the entropy production rate,

σf (x, t) = σf (x, 0) + 2
τ

∫ t
0 (σC +∇K)(x, t− ξ) exp

(
− 2ξ

τ

)
dξ, which reflects memory or relaxation

between σf and (σC +∇·K). Like the entropy flux, the entropy production rate of the
fractional BTE can deviate from the CIT formalism in the presence of near-equilibrium.
The macroscopic approximation of the entropy production rate usually takes the form σγ =[

τF(γ)DF(γ)
t q

]
·∇
(
T−1), while the fractional SPL model corresponds a different expression,

σf (x, t) ∼= 1
Tτ [e(x, t) + τ∂te(x, t)− e(x, t + τ)].

4. For fractional models, the entropic functionals perform a history-dependence, which has not
been involved in existing phenomenological thermodynamics of irreversible processes [32–35].
Although our results agree with the framework of EIT in specific cases, Equation (13) indicates
possible deviation induced by large temporal and spatial derivatives. In a recent work,
Guo et al. [36] investigated the entropic framework for the phonon hydrodynamic model. They
observed a deviation from the EIT entropy, which depends on (∇q)S

o = 1
2

[
(∇q) + (∇q)T

]
−

1
3 (∇·q)I. Noting that ∇·q = −c∂tT, the deviation term is then associated with the temporal and
spatial derivatives.

5. One possible application scenario in which the non-classical entropic expressions can be important
for nanoscale heat transfer is information processing. In essence, it is the entropy transport needed
by information erasure that entails heat transfer. Based on conceptual connections between
information theory and thermodynamics [37], information erasure can directly correspond to
entropy transport, which is commonly achieved through heat transfer. Accordingly, it is necessary
to establish the relation between entropy transport and heat transfer, especially when information
processing is performed in non-classical cases such as nanoscale.
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