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Abstract: In this work, pumped currents of the adiabatically-driven double-barrier structure based
on the pseudospin-1 Dirac–Weyl fermions are studied. As a result of the three-band dispersion
and hence the unique properties of pseudospin-1 Dirac–Weyl quasiparticles, sharp current-direction
reversal is found at certain parameter settings especially at the Dirac point of the band structure,
where apexes of the two cones touch at the flat band. Such a behavior can be interpreted consistently
by the Berry phase of the scattering matrix and the classical turnstile mechanism.

Keywords: quantum transport

1. Introduction

After quantized particle transport driven by adiabatic cyclic potential variation was proposed by
D. J. Thouless in 1983 [1], such a concept has attracted unceasing interest among researchers concerning
its theoretical meaning and potential applications in various fields such as a precision current standard
and neural networks [2–4]. Mechanism of the quantum pump can be interpreted consistently by the
Berry phase of the scattering matrix in the parameter space within the modulation cycle [2] and the
classic turnstile picture [5,6]. Usually, the pumped current is unidirectional when the phase difference
between the two driving parameters is fixed. In the turnstile picture, the opening order of the two
gates is defined by the driving phase. The first-opened gate let in the particle and the second-opened
gate let it out forming a direct current (DC) current after a cycle is completed. However, reversed
DC current direction has been discovered in various systems even when the driving phase is fixed
such as in monolayer graphene [6] and carbon nanotube-superconductor hybrid systems [7]. This is
because that conventionally a “gate” is defined by a potential barrier and higher barriers allow smaller
transmission probabilities. However, as a result of the Klein tunneling effect, the potential barrier
becomes transparent regardless of its height at certain parameter settings. When higher barrier allows
even stronger transmission, the opening and closing of a “gate” in the quantum pump is reversed and
so the driven current is reversed with the driving phase difference unchanged. The same phenomenon
is also discovered in the superconductive carbon nanotube when Andreev reflection again violates
the higher-barrier-lower-transmission convention and reversed the pumped current under the same
driving forces. This turnstile interpretation of the reversed pumped current coincides with the Berry
phase of the scattering matrix in the parameter space within the modulation cycle. However, a clear
comparison between the two mechanisms is lacking, which is one of the motivations of this work.

About the significance of the comparison between the Berry phase picture and the classic
turnstile mechanism of the adiabatic quantum pumping, we would like to make some further
background remarks.
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The classic turnstile mechanism and the Berry-phase-of-scattering-matrix picture of adiabatic
quantum pumping are proposed based on different physical origin. The former is from classic
mechanics and the latter is from quantum mechanics. General agreement between them is certainly a
surprising result because they have at least the following differences on the conceptual level.

(1) In quantum mechanics, the leftward and rightward transmission probabilities of both the
symmetric and asymmetric double-barrier structure (The former means the height and width of the
two barriers are exactly the same. The latter means the height and width of the two barriers are
different.) are exactly the same if a typical two-lead device is considered. The difference between the
leftward and rightward transmission is in the phase factor of the transmission amplitudes. Such a
phase difference gives rise to a nontrivial Berry phase formed by cyclic modulation of the two barriers
with V1 = V1ωcos(ωt + ϕ) and V2 = V2ωcos(ωt) when time-reversal symmetry is not conserved such
as excluding ϕ = 0 or π. In the turnstile picture, the two barriers are treated separately like two
gates. The opening and closing of the two gates is determined by the transmission probability of
the corresponding barrier potential. When higher barrier generates smaller transmission probability,
the opening and closing of the gate is defined conventionally: lifting the barrier means closing the
gate and lowering the barrier means opening the gate. Because the charge carrier density in a typical
semiconductor can be up to 1010 ∼ 1015/cm3 at room temperature, only a small change in the barrier
height and hence in the transmission probability can justify the definition of the “opening” and
“closing” of the gate for charge carriers. While the same gate-modulation is applied, charge carriers
are driven unidirectionally to one of the reservoirs like the turnstile in daily life. No phase factor is
involved in the picture at all.

(2) In the quantum interpretation of parametric pump, time-reversal symmetry is a vital factor.
The most prominent case is when the driving phase difference ϕ = π. In this case, time-reversal
symmetry is conserved as the two parameters vary periodically. Because of this, a DC current is
forbidden even when the classic turnstile gives rise to the largest mass flow when the phase lag is
the largest. At this point, the classic and quantum models become incomparable, which is out of our
present discussion.

Therefore, we feel a confirmation of the agreement between the two mechanisms is a significant
step forward to understand the underlying physics of adiabatic quantum pumping. In preparation of
this work, we have proved it in various parameter settings in different systems such as two-dimensional
electron gas and graphene besides the present pseudospin-1 Dirac–Weyl system by calculating term
by term Equation (10). Although we could not provide a general proof, up to now, no numerical
evaluation violates such a conclusion.

After the idea of the adiabatic quantum pump (also called Thouless pump and parametric pump)
is proposed, such a mechanism has been investigated in various transport devices such as a single spin
in diamond [8], quantum-dot structures [9], Rashba nanowires [10], Mach–Zehnder interferometers [11],
the magnetic nanowire with double domain walls [12], magnetic-barrier-modulated two dimensional
electron gas [13], mesoscopic rings with Aharonov–Casher and Aharonov–Bohm effect [14], magnetic
tunnel junctions [15], and monolayer graphene [6,16,17]. Correspondingly, theoretical techniques have
been put forward for the treatment of the quantum pumps such as the scattering matrix formalism [18],
non-equilibrium Green’s function [19–22], and the quantum master equation approach [9]. In this work,
we use the scattering matrix approach for alternating current (AC) transport, which defines the Berry
phase formed within the looped trajectory of the two varying parameters [2,18,23].

Recently, after realization of the monolayer graphene, which is characterized as a pseudospin-1/2
Dirac–Weyl fermionic material, a family of general pseudospin-s (s = 1/2, 1, 3/2, · · · ) Dirac–Weyl
fermionic materials has been proposed by sharing similar band structure with one or several pairs of
Dirac cones. Pseudospin-1 materials with a band structure of two Dirac cones and a flat band through
where the cones intersect have attracted intense interest in the physical society currently. Numerical or
experimental studies have proposed various host materials of such band structure such as conventional
crystal with special space group symmetries [24,25], in the electronic, photonic, and phononic Lieb
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lattice [26–33], kagome lattice [31,34], dice or T3 lattice [31,35–45], and K4 crystal [46]. Along with
these progress in material building, various transport properties of the pseudospin-1 Dirac–Weyl
fermions have been investigated such as super Klein tunneling effect [47–49], magneto-optics [50],
Hall quantization [51], and Hofstadter butterfly [52] in a magnetic field. While the adiabatic quantum
pumping process serves as an important platform to detect various properties of novel quantum
states, it is worthwhile to apply the idea on newly-emerged pseudospin-1 Dirac–Weyl materials.
To understand how their particular transport properties modify the adiabatically-driven pumped
current is the other motivation of this work.

The plan of the present work is as follows. In Section 2, the model is introduced and the key
formulas for the scattering matrix, Berry phase, and pumped current are given. In Section 3, we present
numerical results of the pumped current and discussions of the underlying mechanisms. In Section 4,
a rigorous proof of the consistency between the quantum Berry phase picture and the classic turnstile
mechanism for adiabatic quantum pumping is provided. A brief summary is given in Section 5.
Detailed derivation of the boundary condition and the scattering matrix are provided in Appendices A
and B, respectively.

2. Model and Formalism

We consider a two-dimensional (2D) non-interacting pseudospin-1 Dirac–Weyl system modulated
by two time-dependent electric potential barriers illustrated in Figure 1. The pseudospin-1 Dirac–Weyl
fermions are charged quasiparticles originating from free electrons moving in the three-band
structure consisting of gapless tip-to-tip two cones intersected by a flat band, which is shown
in Figure 1c. Their dynamics are governed by the dot product of the spin-1 operator and the
momentum. Matrices of the spin-1 operator Ŝ =

(
Ŝx, Ŝy, Ŝz

)
in the Ŝz-representation (the representation

that Ŝz is diagonalized) can be deduced from spin-lifting/lowering operators Ŝ± = Ŝx ± Ŝy by
Ŝ± |S, Sz〉 =

√
(S∓ Sz) (S± Sz + 1) |S, Sz ± 1〉 [53]. Simple algebra leads to the results that

Ŝx = 1√
2

 0 1 0
1 0 1
0 1 0

 , Ŝy = 1√
2

 0 −i 0
i 0 −i
0 i 0

 , Ŝz =

 1 0 0
0 0 0
0 0 −1

 . (1)

By applying AC gate voltages, Hamiltonian of the pseudospin-1 Dirac–Weyl fermions has the form

Ĥ = −ih̄vgŜ · ∇+ V (x, t) , (2)

where Ŝ is the spin-1 operator defined in Equation (1), vg ≈ 106 m/s is the group velocity associated
with the slope of the Dirac cone. As shown in Figure 1a, the potential function has the form

V (x, t) =


V0 + V1 (t) , 0 < x < L1,
V0 + V2 (t) , L2 < x < L3,
0, others,

(3)

with V1(t) = V1ωcos(ωt + ϕ) and V2(t) = V2ωcos(ωt). The Fermi energy of the two reservoirs to
the two sides of the double-barrier structure are equalized to eliminate the external bias and secure
energy-conserved tunneling. While the frequency of the potential modulation ω is small compared
to the carrier interaction time (Wigner delay time) with the conductor, the quantum pump can be
considered “adiabatic” [1,18,23]. In this case, one can employ an instant scattering matrix approach,
which depends only parametrically on the time t. The Wigner–Smith delay time can be evaluated
by τ = Tr(− ih̄s† ∂s

∂EF
), with s the scattering matrix defined in Equation (5). Calculations below show

τ ≈ 10−14 s for all the parameter values. Thus, the adiabatic condition can be well justified when ω is
in the order of MHz [3].
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Figure 1. (a) schematics of the adiabatic quantum pump. Two time-dependent gate voltages with
identical width d and equilibrium strength V0 are applied to the conductor. Time variation of the two
potentials V1 and and V2 is shown in panel (b). V1 and V2 have a phase difference giving rise to a looped
trajectory after one driving period; (c) two-dimensional band structure of the pseudospin-1 Dirac–Weyl
fermions with a flat band intersected two Dirac cones at the apexes; (d) conductivity of the pseudospin-1
Dirac–Weyl fermions measured by [54] σ = e2kFd

πh
∫ π/2
−π/2 |t(EF, θ)|2 cos θdθ in single-barrier tunneling

junction as a function of the Fermi energy for three different values of barrier height V0. kF = EF/h̄vg

is the Fermi wavevector and t is the transmission amplitude defined in Equation (5). It can be seen that
higher barrier allowing larger conductivity occurs at the Dirac point EF = V0 and around EF = V0/2
(see the text).

For studying the transport properties, the flux normalized scattering modes in different regions
can be expressed in terms of the eigenspinors as

Ψ =

 ψ1

ψ2

ψ3

 =



alΨ→ + blΨ←, x < 0,
a1Ψ1→ + b1Ψ1←, 0 < x < L1,
a2Ψ→ + b2Ψ←, L1 < x < L2,
a3Ψ2→ + b3Ψ2←, L2 < x < L3,
arΨ← + brΨ→, x > L3,

(4)

where kx =
√

E2
F/(h̄vg)

2 − k2
y with EF the quasiparticle energy at the Fermi level of the reservoirs.

Ψ→ = 1
2
√

cos θ

(
e−iθ ,

√
2s, eiθ

)T
eikx x for EF 6= 0 (quasiparticles on the two cone bands) and

1√
2

(
−e−iθ , 0, eiθ)T (we also identify it as Ψ0 for discussions in the next section) for EF = 0 (quasiparticles

on the flat band). θ = arctan(ky/kx), and s = sgn(EF). Ψ← can be obtained by replacing kx with −kx

in Ψ→; Ψi→/Ψi← (i = 1, 2) can be obtained by replacing kx with qxi =
√
(EF −V0 −Vi)2/(h̄vg)

2 − k2
y

and s with s′i = sgn(EF −V0 −Vi) in Ψ→/Ψ←. The flux normalization factor 2
√

cos θ is obtained [55]
by letting Ψ†(∂Ĥ/∂kx)Ψ = 1. ψi (i = 1, 2, 3) picks up the i-th row of the spinor wave function in all the
five regions. Note that quasiparticles on the flat band contribute no flux in the x-direction. However, it
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must be taken into account in the pumping mechanisms while the Fermi energy lies close to the Dirac
point. We will go to this point again in the next section.

The boundary conditions are that ψ1 +ψ3 and ψ2 are continuous at the interfaces, respectively [48].
The derivation of the boundary condition is provided in Appendix A. After some algebra, the instant
scattering matrix connecting the incident and outgoing modes can be expressed as(

bl
br

)
=

(
r t′

t r′

)(
al
ar

)
= s(V1, V2)

(
al
ar

)
, (5)

where s is parameter-dependent. Detailed derivation of the scattering matrix is provided in
Appendix B.

The DC pumped current flowing from the α reservoir at zero temperature could be expressed
in terms of the Berry phase of the scattering matrix formed within the looped trajectory of the two
varying parameters as [2,18,23]

Ipα =
ωe
2π

∫
A

Ω (α) dV1dV2, (6)

where

Ω (α) = ∑
β

Im
∂s∗αβ

∂V1

∂sαβ

∂V2
. (7)

A is the enclosed area in the V1-V2 parameter space. While the driving amplitude is small (Viω � V0),
the Berry curvature can be considered uniform within A and we have

Ipα =
ωe sin ϕV1ωV2ω

2π
Ω (α) . (8)

Conservation of current flux secures that the pumped currents flowing from the left and right reservoirs
are equal: Ipl = Ipr. The angle-averaged pumped current can be obtained as

IpαT =
∫ π/2

−π/2
Ipα cos θdθ. (9)

3. Results and Discussion

Previously, we know that transport properties of the pseudospin-1 Dirac–Weyl fermions differs
from free electrons in two ways. One is super Klein tunneling, which gives perfect transmission
through a potential barrier for all incident angles while the quasiparticle energy equals one half
the barrier height [48]. The other is particle-hole symmetry above and below the Dirac point of a
potential barrier, which is a shared property with pseudospin-1/2 Dirac–Weyl fermions on monolayer
graphene [56]. It gives that the transmission probability closely above and below the Dirac point is
mirror symmetric because hole states with identical dispersion to electrons exist within the potential
barrier unlike the potential barrier formed by the energy gap in semiconductor heterostructures. These
two properties are demonstrated in the conductivity through a single potential barrier shown in
Figure 1d. As a result of super Klein tunneling and because the conductivity also depends on the
velocity or Fermi wavevector of the charge carriers, the maximum is parabolically-shaped under the
present parameter settings and occurs at the Fermi energy larger than half the barrier height. For higher
potential barriers, the maximum can be a sharp Λ-shaped peak appearing at the Fermi energy equal
to half the barrier height [57]. Because of the existence of the local maximum peak and the V-shape
local minimum in the single-barrier transmission probability and hence in the conductivity, it occurs
that under certain conditions higher barrier allows larger quasiparticle transmission. The mechanisms
of an adiabatic quantum pump in a mesoscopic system can be illustrated consistently by a classic
turnstile picture and by the the Berry phase of the scattering matrix in the parameter space [2,5,6].
The turnstile picture can be illustrated within the framework of the single electron approximation and
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coherent tunneling constrained by the Pauli principle. The two oscillating potential barriers work like
two “gates" in a real turnstile. Usually, lower potential allows larger transmissivity and thus defines
the opening of one gate. When the two potentials oscillate with a phase difference, the two gates open
one by one. Constrained by the Pauli principle, only one electron can occupy the inner single-particle
state confined in the quantum well formed by the two potential barriers at one time, electrons flow in
a direction determined by the driving phase difference. However, in monolayer graphene and in the
pseudospin-1 Dirac–Weyl system, Klein tunneling, super Klein tunneling, and particle-hole symmetry
at the Dirac point give rise to a reversal of the transmissivity-barrier height relation. As a result, the
direction of the DC pumped current is reversed.

Numerical results of the pumped current are shown in Figure 2. It can be seen from Figure 1d
that when the value of EF is between 70 meV and 100 meV, conductivity through higher potential
barriers is larger than that through lower barriers. Angular dependence of the pumped current at
Fermi energies selected within this range is shown in Figure 2b. With ϕ fixed at π/2, potential barrier
V1 starts lowering first and then it rises and V2 starts lowering. Usually (like in a semiconductor
heterostructure), higher potential barriers give rise to smaller transmission probability. The process can
be interpreted as “gate” V1 “opens” first allowing one particle to enter the middle single-particle state
from the left reservoir and then it “closes” and “gate” V2 “opens” allowing the particle to leave the
device and enter the right reservoir. This completes a pump cycle and a DC current is generated. Such
is the classical turnstile picture of the pumping mechanism. However, for pseudospin-1 Dirac–Weyl
fermions, higher potential barriers give rise to larger transmission probability under certain parameter
settings as demonstrated in Figure 1d. In the classical turnstile picture, this means that the definition of
“opening” and “closing” of the "gate" is reversed. This is the reason for the negative (direction-reversed)
pumped current shown in Figure 2b.
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Figure 2. (a–c): angular dependence of the pumped for different Fermi energies with the driving phase
difference ϕ fixed; (d) angle-averaged pumped current as a function of the Fermi energy. Its inset is the
zoom-in close to the Dirac point to show that the large value of the pumped current does not diverge.
Other parameters are V0 = 100 meV, V1ω = V2ω = 0.1 meV, d = 5 nm, L2 − L1 = 10 nm, and ϕ = π/2.
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It can also be seen in Figure 2 that this turnstile picture of quantum pumping works for all
parameter settings by comparing with Figure 1d. As a result of particle-hole symmetry above and
below the Dirac point of a potential barrier, transmission probability of the pseudospin-1 Dirac–Weyl
fermions demonstrate a sharp V-shape local minimum at the Dirac point. It should be noted that, at
the Dirac point, eigenspinor wavefunction of the Hamiltonian is Ψ0 and the transmission probability
is exactly zero. We singled out this point in all of our calculations. Below the Dirac point, higher
potential barriers allow larger transmission probability. Above the Dirac point, higher potential barriers
allow smaller transmission probability. In addition, the difference is very sharp giving rise to a sharp
negative pumped current below the Dirac point and a sharp positive pumped current above the Dirac
point as shown in Figure 2d. In vast Fermi energy regime, the pumped DC current flows in the same
direction for all incident angles as shown in panels (a), (b), and (c) of Figure 2, giving rise to smooth
angle-averaged pumped current shown in Figure 2d. It should also be noted that the sharp current
peak close to the Dirac point does not diverge and the current has an exact zero value at the Dirac
point by taking into account quasiparticles on the flat band, which is a stationary state while the
wavevector in the pump–current direction (x-direction in Figure 1a) is imaginary. The finite value of
the pump–current peak is shown in the zoom-in inset of Figure 2d.

The previous discussion is based on the classical turnstile mechanism, while the pumped current
is evaluated by the Berry phase of the scattering matrix formed from the parameter variation with a
looped trajectory (Equation (8)). Such a consistency needs further looking into, which is elucidated in
the next section.

4. Consistency between the Turnstile Model and the Berry Phase Treatment

In previous literature, consistency between the turnstile model and the Berry phase treatment is
discovered while a clear interpretation is lacking.

Berry curvature Ω(α) of the scattering matrix s is defined by Equation (7) with s defined in
Equation (5). t/t′ and r/r′ are the transmission and reflection amplitudes generated by incidence from
the left/right reservoir with t′ = t and r′ = −r∗t/t∗.

Without losing generosity, we consider a conductor modulated by two oscillating potential
barriers X1 = V1 and X2 = V2 with the same width and equilibrium height. By defining the modulus
and argument of t and r as t = ρteiφt and r = ρreiφr , we have

Ω (l) = ∑
i=t,r

ρi
dρi
dV1

dφi
dV2
− ρi

dφi
dV1

dρi
dV2

. (10)

Analytic dependence of ρi and φi on the parameters V1 and V2 cannot be explicitly expressed. We show
numerical results of the Berry curvature Ω (l) and the eight partial derivatives on the right-hand side
of Equation (10) in Figure 3. For convenience of discussion, the parameter space in Figure 3a to (i) is
divided into four blocks. It can be seen from Figure 3a that Ω (l) is negative in block II, positive in
block III, and nearly zero in blocks I and IV. For the term ρt

dρt
dV1

dφt
dV2
− ρt

dφt
dV1

dρt
dV2

in Equation (10), ρt > 0,
dφt
dV2
≈ dφt

dV1
is negative throughout the four blocks and dρt

dV1
≈ dρt

dV2
is positive in block II and negative in

block III (see Figure 3b,g). As a result, this term approximates zero in blocks II and III. For the term
ρr

dρr
dV1

dφr
dV2
− ρr

dφr
dV1

dρr
dV2

in Equation (10), ρr > 0, dφr
dV2
− dφr

dV1
is positive throughout the four blocks (see

Figure 3h,i), dρr
dV1
≈ dρr

dV2
is positive in block III and negative in block II. It can also be seen from Figure 3

that in blocks I and IV the values of the two terms cancel out each other giving rise to nearly zero
Ω (l). Therefore, the combined result of the two terms is that Ω (l) > 0 when dρr

dV1
> 0 and Ω (l) < 0

when dρr
dV1

< 0. This means that the Berry phase is positive and hence the pumped current is positive
when higher potential barrier allows larger reflection probability in block III and that the Berry phase
is negative and hence the pump–current direction is reversed when higher potential barrier allows
smaller reflection probability in block II. Because ρ2

r + ρ2
t = 1, larger reflection probability means
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smaller transmission probability, and consistency between the Berry phase picture and the classical
turnstile model is numerically proved in the pseudospin-1 Dirac–Weyl system.
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Figure 3. Contours of the Berry curvature Ω (l) and the eight derivatives on the right-hand side of
Equation (10) in the V1-V2 parameter space. For all the subfigures, the horizonal and vertical axes are
V1 and V2 in the unit of meV, respectively. The magnitudes of the contours are in the scale of (a) 10−7;
(b) 10−4; (c) 10−4; (d) 10−5; (e) 10−5; (f) 10−2; (g) 10−2; (h) 10−2; (i) 10−2; and (j) 10−5, respectively.
Other parameters are V0 = 100 meV, d = 5 nm, L2− L1 = 10 nm, EF = 100 meV, and θ = 0.5 in radians.
For convenience of discussion, the parameter space in the nine panels is divided into four blocks: I
(−1 < V1 < 0 and 0 < V2 < 1), II (0 < V1 < 1 and 0 < V2 < 1), III (−1 < V1 < 0 and −1 < V2 < 0),
and IV (0 < V1 < 1 and −1 < V2 < 0). The four blocks are illustrated in (a).

If we consider normal incidence, consistency between the Berry phase picture and the classic
turnstile model becomes straightforward. For normal incidence, derivative of t/r with respect to V2 is
equal to derivative of t′/r′ with respect to V1. Hence, we have

Ω (l) = 2ρr
dρr

dV1

(
dφt

dV1
− dφr

dV1

)
. (11)

From Figure 3, we can see that dφt
dV1
− dφr

dV1
is positive throughout the parameter space. Therefore,

the Berry phase has the same sign with dρr
dV1

, which demonstrates consistency between the Berry phase
picture and the classic turnstile mechanism of the adiabatic quantum pumping.

Besides data shown in Figure 3, which are contours of the Berry curvature Ω (l) and the eight
derivatives on the right-hand side of Equation (10) in the parameter window of±1 meV for both V1 and
V2 with V0 = 100 meV, EF = 100 meV, and θ = 0.5 in radians, we have numerically targeted dozens
more parameter windows of ±1 meV for V1 and V2 at other values of V0, EF, and θ and no obtained
results violate consistency of the two mechanisms. Although the main focus of the present manuscript
is the pseudospin-1 Dirac–Weyl fermions, we numerically confirmed consistency between the two
mechanisms in various parameter settings in different systems such as two-dimensional electron
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gas, graphene, and the pseudospin-1 Dirac–Weyl system by calculating term by term Equation (10).
Although we could not provide a general proof, up to now, no numerical evaluation violates such
a conclusion.

We observe in this work and previously that the pump–current direction can be reversed in
systems with linear bands such as graphene and pseudospin-1 Dirac–Weyl system. Up to now, similar
behavior has not been observed in systems with parabolic band dispersion such as in the semiconductor
two-dimensional electron gas. We remark that a quantitative argument of the underlying reason for
the dependence of the adiabatic quantum pumping behavior on the band structure as observed
numerically is lacking, due to the topological difference of the band structure.

5. Conclusions

In summary, adiabatic quantum pumping in a periodically modulated pseudospin-1 Dirac–Weyl
system is studied. By using two AC electric gate-potentials as the driving parameters,
a direction-reversed pumped current is found by the Berry phase of the scattering matrix at certain
parameter regimes as a result of super Klein tunneling and particle-hole symmetry close to the Dirac
point of the band structure. Such a phenomenon originates from the abnormal transmission behavior
of the Dirac–Weyl quasiparticles that sometimes they transmit more through a higher electric potential
barrier. As a result, definition of the “opening" and “closing" of a gate is reversed in the classic turnstile
picture and hence direction of the pumped DC current is reversed. We also provide rigorous proof of
the consistency between the quantum Berry phase picture and the classic turnstile mechanism.
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Appendix A. Derivation of the Boundary Condition of the Spinor Wavefunction

In Equation (4), we have defined the spinor wavefunction Ψ of the double-barrier pseudospin-1
Dirac–Weyl system. Within the instant scattering matrix approach, we solve the static Schrödinger
equation

ĤΨ = EΨ, (A1)

where Ĥ is defined in Equation (2) and the time t is taken as a constant. Substituting the spin-1 operator
defined in Equation (1), this equation becomes

−ih̄vg


0 1√

2

(
∂

∂x − i ∂
∂y

)
0

1√
2

(
∂

∂x + i ∂
∂y

)
0 1√

2

(
∂

∂x − i ∂
∂y

)
0 1√

2

(
∂

∂x + i ∂
∂y

)
0


 ψ1

ψ2

ψ3



+V (x, t)

 ψ1

ψ2

ψ3

 = E

 ψ1

ψ2

ψ3

 ,

(A2)

which is

− ih̄vg


1√
2

(
∂

∂x − i ∂
∂y

)
ψ2

1√
2

(
∂

∂x + i ∂
∂y

)
ψ1 +

1√
2

(
∂

∂x − i ∂
∂y

)
ψ3

1√
2

(
∂

∂x + i ∂
∂y

)
ψ2

 = [E−V (x, t)]

 ψ1

ψ2

ψ3

 . (A3)
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This spinor equation equalizes to three scalar equations

− ih̄vg
1√
2

(
∂

∂x
− i

∂

∂y

)
ψ2 = [E−V (x, t)]ψ1, (A4)

− ih̄vg

[
1√
2

(
∂

∂x
+ i

∂

∂y

)
ψ1 +

1√
2

(
∂

∂x
− i

∂

∂y

)
ψ3

]
= [E−V (x, t)]ψ2, (A5)

and

− ih̄vg
1√
2

(
∂

∂x
+ i

∂

∂y

)
ψ2 = [E−V (x, t)]ψ3. (A6)

The boundary condition at x0 can be obtained from

∫ x0+ε

x0−ε
ĤΨdx =

∫ x0+ε

x0−ε
EΨdx. (A7)

By substituting Equations (A3) and (A4) into Equation (A7), we have

−ih̄vg√
2

{
[ψ2 (x0 + ε, y)− ψ2 (x0 − ε, y)]− i ∂

∂y ψ2 (x0, y) 2ε
}

= [E−V (x0, t)]ψ1 (x0, y) 2ε.
(A8)

Because the energy E, the electric potential V(x, t), and the spinor wavefunction Ψ(x, y) is finite, in the
limit of ε→ 0, we have the boundary condition

[ψ2 (x0 + ε, y)− ψ2 (x0 − ε, y)] = 0, (A9)

which is that ψ2 is continuous at x = x0. Similarly, by substituting Equations. (A3) and (A5) into
Equation (A7), we have

−ih̄vg√
2

{
[ψ1 (x0 + ε, y)− ψ1 (x0 − ε, y)] + i ∂

∂y ψ1 (x0, y) 2ε

+ [ψ3 (x0 + ε, y)− ψ3 (x0 − ε, y)]− i ∂
∂y ψ3 (x0, y) 2ε

}
= [E−V (x0, t)]ψ2 (x0, y) 2ε.

(A10)

In the limit of ε→ 0, we have the boundary condition

[ψ1 (x0 + ε, y) + ψ3 (x0 + ε, y)]− [ψ1 (x0 − ε, y) + ψ3 (x0 − ε, y)] = 0, (A11)

which is that ψ1 + ψ3 is continuous at x = x0. Reproducing the procedure in Equations (A3), (A6), and
(A7), we can reobtain the boundary condition of ψ2 in Equation (A9).

Therefore, in the case of pseudospin-1 Dirac–Weyl fermions, the boundary condition is that the
second component of the spinor wavefunction ψ2 is continuous and the first component plus the third
component of the spinor wavefunction ψ1 + ψ3 is continuous. No derivative of the wavefunction is
involved in the continuity condition.

Appendix B. Detailed Algebra for Obtaining the Scattering Matrix

We use the transfer-matrix method to obtain the instant scattering matrix s defined in Equation (5).
Using the obtained spinor wavefunction (4) and the continuity relation (A9) and (A11), we can have
the following matrix equations:

M1

(
al
bl

)
= M2

(
a1

b1

)
, (A12)

M3

(
a1

b1

)
= M4

(
a2

b2

)
, (A13)
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M5

(
a2

b2

)
= M6

(
a3

b3

)
, (A14)

M7

(
a3

b3

)
= M8

(
ar

br

)
, (A15)

with

M1 =

 kx−iky
kx+iky

+ 1 −kx−iky
−kx+iky

+ 1
√

2 kx−iky
EF/h̄vg

√
2−kx−iky

EF/h̄vg

 , (A16)

M2 =

 qx1−iky
qx1+iky

+ 1 −qx1−iky
−qx1+iky

+ 1
√

2 qx1−iky
(EF−V0−V1)/h̄vg

√
2 −qx1−iky
(EF−V0−V1)/h̄vg

 , (A17)

M3 =

 (
qx1−iky
qx1+iky

+ 1
)

eiqx1L1
(−qx1−iky
−qx1+iky

+ 1
)

e−iqx1L1

√
2 qx1−iky
(EF−V0−V1)/h̄vg

eiqx1L1
√

2 −qx1−iky
(EF−V0−V1)/h̄vg

e−iqx1L1

 , (A18)

M4 =

 (
kx−iky
kx+iky

+ 1
)

eikx L1
(−kx−iky
−kx+iky

+ 1
)

e−ikx L1

√
2 kx−iky

EF/h̄vg
eikx L1

√
2−kx−iky

EF/h̄vg
e−ikx L1

 , (A19)

M5 =

 (
kx−iky
kx+iky

+ 1
)

eikx L2
(−kx−iky
−kx+iky

+ 1
)

e−ikx L2

√
2 kx−iky

EF/h̄vg
eikx L2

√
2−kx−iky

EF/h̄vg
e−ikx L2

 , (A20)

M6 =

 (
qx2−iky
qx2+iky

+ 1
)

eiqx2L2
(−qx2−iky
−qx2+iky

+ 1
)

e−iqx2L2

√
2 qx2−iky
(EF−V0−V1)/h̄vg

eiqx2L2
√

2 −qx2−iky
(EF−V0−V1)/h̄vg

e−iqx2L2

 , (A21)

M7 =

 (
qx2−iky
qx2+iky

+ 1
)

eiqx2L3
(−qx2−iky
−qx2+iky

+ 1
)

e−iqx2L3

√
2 qx2−iky
(EF−V0−V1)/h̄vg

eiqx2L3
√

2 −qx2−iky
(EF−V0−V1)/h̄vg

e−iqx2L3

 , (A22)

M8 =

 −kx−iky
−kx+iky

+ 1 kx−iky
kx+iky

+ 1
√

2−kx−iky
EF/h̄vg

√
2 kx−iky

EF/h̄vg

 . (A23)

It should be noted that it is more convenient to use the kx/ky version of the eigenspinors than the
exp(iθ) version in the numerical treatment because when qxi becomes imaginary, θ becomes ill-defined.
In addition, the sign function is avoided in the eigenspinors accordingly. For the wavefunction in the
x > L3 region, we used the translated plane wave exp[±ikx(x− L3)]. From Equations (A12) to (A23),
we can have (

al
bl

)
= M

(
ar

br

)
, (A24)

with
M = M−1

1 M2M−1
3 M4M−1

5 M6M−1
7 M8. (A25)

Then, the scattering matrix s defined in Equation (5) can be obtained by

s =

(
0 −M12

1 −M22

)−1(
−1 M11

0 M21

)
. (A26)

Numerical results of the transmission coefficients T = |t|2 are given in Figure A1, which
reproduced the results reported in Ref. [57]. From Figure A1, we could find the three characteristic
transport properties of the pseudospin-1 Dirac–Weyl fermions: Super Klein tunneling, Klein tunneling,
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and transmission minimum at the Dirac point. Super Klein tunneling means perfect transmission
regardless of the incident angle when the incident energy levels with one half of the electric potential
barrier, which is shown in the black solid line of Figure A1a. This is a unique property demonstrated in
the pseudospin-1 Dirac–Weyl system. Klein tunneling means perfect transmission at normal incidence
regardless of the quasiparticle energy, which is shown in the black solid line of Figure A1b and is also
visible in Figure A1a when the horizontal coordinate equates 0. This is a property shared between the
pseudospin-1 Dirac–Weyl system and the monolayer graphene, the latter of which also belongs to the
pseudospin-1/2 Dirac–Weyl system. Transmission minimum at the Dirac point is shown in the dashed
red and dotted blue curves of Figure A1b. This is also a property shared between the pseudospin-1
Dirac–Weyl system and the monolayer graphene. The transmission of normal incidence at the Dirac
point is not well-defined, which is overlooked in the numerical treatment.
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Figure A1. Static transmission probabilities T = |t|2 as a function of the incident angle (a) and the
Fermi energy (b), respectively [57]. Parameters V0, d, and L2 − L1 are the same as those in Figure 2.
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