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Abstract: The main aim of this study was to compare and evaluate the performance of fractal
dimension as input data in the landslide susceptibility mapping of the Baota District, Yan’an City,
China. First, a total of 632 points, including 316 landslide points and 316 non-landslide points,
were located in the landslide inventory map. All points were divided into two parts according to the
ratio of 70%:30%, with 70% (442) of the points used as the training dataset to train the models, and the
remaining, namely the validation dataset, applied for validation. Second, 13 predisposing factors,
including slope aspect, slope angle, altitude, lithology, mean annual precipitation (MAP), distance
to rivers, distance to faults, distance to roads, normalized differential vegetation index (NDVI),
topographic wetness index (TWI), plan curvature, profile curvature, and terrain roughness index
(TRI), were selected. Then, the original numerical data, box-counting dimension, and correlation
dimension corresponding to each predisposing factor were calculated to generate the input data
and build three classification models, namely the kernel logistic regression model (KLR), kernel
logistic regression based on box-counting dimension model (KLRbox-counting), and the kernel logistic
regression based on correlation dimension model (KLRcorrelation). Next, the statistical indexes and the
receiver operating characteristic (ROC) curve were employed to evaluate the models’ performance.
Finally, the KLRcorrelation model had the highest area under the curve (AUC) values of 0.8984 and
0.9224, obtained by the training and validation datasets, respectively, indicating that the fractal
dimension can be used as the input data for landslide susceptibility mapping with a better effect.

Keywords: GIS; landslide susceptibility; fractal dimension; classification model

1. Introduction

Landslides are regarded as one of the most destructive and frequently occurring natural disasters
in the world. Globally, landslides cause about 1200 deaths and 3.5 billion dollars of loss each year [1].
China is a high-incidence region for landslides. Every year, it is reported that around 8935 landslides
occur in China and about 350 people lose their lives due to landslides. Due to the diversity of
the geological environment, the vagaries of climate, and the uneven distribution of the population,
the spatial distribution of landslide risk in China is not uniform, which increases the obstructions in
landslide control [2].
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Landslide susceptibility mapping is one of the preliminary steps used to predict landslide
occurrence, the main purpose of which is to divide a specified region into multiple classes that range
from stable to unstable [3]. However, as the basic method to find landslide locations, field surveys
are time consuming and have no predictive ability. With the development of geographic information
systems (GISs), some statistical approaches, including bivariate and multivariate statistical methods,
such as frequency ratio [4–7], index of entropy [8,9], certainty factors [10–12], statistical index [13,14],
weights of evidence [15–17], analytic hierarchy process [18,19], fuzzy approaches [20,21], logistic
regression [22,23], and evidential belief function [24,25], have widely been used to produce landslide
susceptibility maps (LSMs) and can be seen in many studies. To obtain more accurate LSMs, various
data mining algorithms have been applied in landslide susceptibility assessment, for example, support
vector machine [26,27], decision trees [28,29], artificial neural network [30,31], adaptive neuro-fuzzy
inference systems [32], multivariate adaptive regression spline [33–35], random forest [36–38], naive
Bayes [39–41], naive Bayes trees [42], and kernel logistic regression [43].

In addition, the fractal theory for landslide susceptibility assessment can be seen in a few
studies [44,45], but most of these have concentrated on the correlation between landslide distribution
and fractal dimension. At present, there is basically no research on combining fractal dimension
and data mining. Therefore, the aim of this study was to integrate two different types of fractal
dimension to run the two-class kernel logistic regression to generate new hybrid models for
landslide susceptibility mapping, namely the kernel logistic regression based on box-counting
dimension model (KLRbox-counting) and the kernel logistic regression based on correlation dimension
model (KLRcorrelation), and compare these hybrid models with their archetypes in Baota District,
Yan’an City, China.

2. Description of the Study Area

Baota District was selected as the study area and is located in the middle of a loess area, in Yan’an
City, China. The geographical coordinates of the study area are between the 109◦14′–110◦07′ west–east
longitudes and the 36◦11′–37◦02′ north–south latitudes. The study area is 96 km long, from north to
south, and 76 km wide, from East to West, and covers an area of 3546 km2.

The overall topography of the district presents a state of high in the east and low in the west,
and a central uplift where the highest and lowest altitudes are 1464 and 860 m, respectively. The study
area is located on the west side of the Yellow River Basin, with two major tributaries of the Yellow
River, namely the Yan River and Fen Chuan River, and the annual average runoff of the Yan River
is 2.93 × 108 m3. The climate type of the study area belongs to a semi-humid semi-arid continental
monsoon climate, the annual average temperature ranges from 7.7~10.6 ◦C, the average annual rainfall
is approximately 540 mm, and most of the precipitation is concentrated in August.

The main lithologies are loess, sandstone, and mudstone. Around 17 geological units are
distributed in the study region (Table 1). In addition, the neotectonic movement in the study area
presents the intermittent uplifting movement of the crust and the undercut of the river, which generated
the typical loess plateau landform. The data records showed that the deformation rate of the crust
in the study area was 1 to 2 mm/a, and no earthquake with a magnitude 4 or above had occurred;
therefore, earthquake-induced landslides were excluded in this paper.
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Table 1. Lithological units of the study area.

Category Geological Age Code Main Lithology

A Holocene Qh Sand and gravel
Pleistocene Q4 Loess and gravel

Middle Pleistocene Q3 Loess
B Pliocene N2 Quartz sand, clay, and sandy clay
C Early Jurassic J3 Kerosene shale, clumpy conglomerate, glutenite, and silty mudstone
D Middle Jurassic J2 Arkose, mudstone, and silty mudstone
E Late Jurassic J1 Sandstone, siltstone, and coal seam
F Early Triassic T3 Mudstone, shale, and coal seam
G Middle Triassic T2 Medium-fine sandstone, siltstone, and mudstone
H Late Triassic T1 Arkose, packsand, siltstone, and sandy mudstone

3. Methodology

To build the landslide susceptibility model and obtain the LSM, there were four main steps in the
present research: (1) Data preparation, including landslide inventory and a description of landslide
predisposing factors; (2) landslide predisposing factor analysis, based on a series of indexes and
methods; (3) landslide modeling using the KLR model, the KLRbox-counting model, and the KLRcorrelation
model; and (4) the models’ performance evaluation.

3.1. Data Preparation

3.1.1. Landslide Inventory

The landslide inventory map, which reflects the relationship between predisposing factors
and landslide distribution, is considered as the most crucial and essential phase before landslide
susceptibility modeling [46]. Generally, it can obtain an inventory of the landslide location, category,
occurrence date, size, volume, and active state [47]. In this study, the landslide inventory map
was produced using existing literature and reports, field survey data, and the results from the
interpretation of aerial photographs (Figure 1). There were 316 landslides including four debris
flows, 295 rainfall-induced slides, and 17 falls in the landslide inventory map [48], and the largest
plane proportion of landslides was approximately 11.4 × 104 m2, the minimum area was about 295 m2,
and the average proportion was 61 m2. The centroid method was applied to convert these landslide
pattern spots into points to represent landslide locations. For subsequent landslide susceptibility
modeling, the same number of non-landslides locations were randomly generated on the landslide
inventory map. Then, a total of 632 points were divided into two parts according to the ratio of
70%:30%, with 70% (442) of the points used as the training dataset to train the models, and the
remaining, namely the validation dataset, were applied for validation.
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3.1.2. Landslide Predisposing Factors

The reasons behind the causes of landslide occurrence are complicated; so far, there have been no
consistent comments with regard to the determination of landslide predisposing factors. In this case
study, thirteen types of landslide predisposing factors, including slope aspect, slope angle, altitude,
lithology, mean annual precipitation (MAP), distance to rivers, distance to faults, distance to roads,
normalized differential vegetation index (NDVI), topographic wetness index (TWI), plan curvature,
profile curvature, and terrain roughness index (TRI), were employed according to observations in the
wild and previous studies on the study area [49]. In addition, a 30 m-resolution digital elevation model
(DEM) was used to extract the slope aspect, slope angle, altitude, TWI, TRI, and the plan curvature
and profile curvature layers using ArcGIS tools. The lithology and MAP layers were produced based
on 1:100,000 geological map and meteorological data collected from the local government. The GF-2
remote sensing image and the 1:50,000 topographical map were applied to construct the distance to
rivers, distance to faults, distance to roads, and NDVI layers.

Slope aspect is a significant factor for slope stability and landslide distribution [50]. Different
slope aspects receive different light radiation, which influences the water content of the soil. In this
study, slope aspect was classified into nine directions using the natural break method as follows: flat,
north, northeast, east, southeast, south, southwest, west, and northwest, respectively (Figure 2a).

In general, the probability of landslide occurrence increases with the increase of slope angle,
which may influence the slope shear stress, and is still considered as one of the essential landslide
predisposing factors by many scholars [51]. In this study, slope angle was classified into five
sections using the natural break method as follows: 0–10.4469◦; 10.4469–18.6711◦; 18.6711–25.7839◦;
25.7839–33.3412◦; and 33.3412–56.4579◦, respectively (Figure 2b).

Altitude is also an important predisposing factor for landslide occurrence [52]. The change of
altitude affects the magnitude of slope stress and affects the potential energy of the landslide. Using
the natural break method, the altitude value in the study area was classified into five ranges as follows:
848–1037.6823; 1037.6823–1128.4000; 1128.4000–1210.8706; 1210.8706–1298.8392; and 1298.8392–1549 m,
respectively (Figure 2c).

Lithology is considered as the material basis of landslide development and occurrence.
The weathering resistance and strength of rock and soil are determined by the types of lithology.
On the other hand, the type and feature of landslides differ depending on the combination of rock
mass with different properties, hardness, and structure [53]. According to geologic ages and lithofacies
(Table 1), all of the geological units were reclassified into eight categories (Figure 2d).

Tectonic movement is not only one of the important factors in evaluating the regional geological
stability, but is also a pivotal factor in landslide occurrence [54]. For this study, the value of distance to
faults was employed to quantify the impact of faults on landslide occurrence and was reclassified into
five ranges as follows: 0–2000; 2000–4000; 4000–6000; 6000–8000; and >8000 m, respectively (Figure 2e).

River erosion plays a key role in the development of landslides. Many scholars believe that the
effect of erosion on landslide stability is mainly reflected in the weakening of resistance of the landslide
front and the increase of the free surface [55]. Therefore, the value of distance to rivers was employed
to quantify the impact of river erosion on landslide development and was reclassified into five ranges
according to the field observations and local conditions as follows: 0–200; 200–400; 400–600; 600–800;
and >800 m, respectively (Figure 2f).

Human activity is a primary factor that triggers landslides, as road construction is mainly the
performance of human activities. The excavation of the slope and the earthwork accumulation during
the construction process changes the local geological environment, which will directly or indirectly
trigger a landslide [56]. In this study, the value of distance to roads was used as one of the condition
factors and reclassified into five ranges: 0–200, 200–400; 400–600; 600–800; and >800 m, respectively
(Figure 2g).

Rainfall is considered to be an important factor in landslides because the study area is covered by
a large area of loess and the structure will become loose after the loess is immersed in water [57]. In this
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study, the value of MAP was employed to represent the influence of rainfall on landslides. The MAP
was divided into six sections according to the intervals of 20 mm/yr as follows: <520; 520–540; 540–560;
560–580; 580–600; and >600 mm/yr, respectively (Figure 2h).

Vegetation plays a positive role in the stability of landslides and can improve the shear strength
of the soil, while increasing the stability of the slope [58]. According to the observations of extensive
field investigation, the more vegetation there is, the lower the number of landslides. In light of this,
the value of the NDVI, which reflects the degree of vegetation coverage, was reclassified into four
ranges based on the natural break method as follows: −0.9315–0.0776; 0.0776–0.4087; 0.4087–0.5742;
and 0.5742–2.8915, respectively (Figure 2i).

The slope stability can be influenced by the shape of the slope, which can be evaluated by its
profile curvature and plan curvature [59]. The profile curvature is defined as the curvature of a contour
line generated by the intersection of the vertical plane with the surface, whereas the plan curvature is
defined as that with the horizontal plane [60]. In this study, the profile curvature was classified into
five ranges using the natural break method: –15.1897 to –1.5337; –1.5337 to –0.4607; –0.4607–0.5146;
0.5146–1.8802; and 1.8802–9.6837, respectively (Figure 2j). Then, a similar method was applied to
divide the plan curvature into five ranges: –9.7777 to –1.8107; –1.8107 to –0.5629; –0.5629–0.3009;
0.3009–1.2608; and 1.2608–14.6991, respectively (Figure 2k).

TWI is commonly used to reflect the water condition in soil [61]. The value of TWI was
calculated through the DEM using Equation (1) and was classified into five sections based on the
natural break method as follows: 0.0447–2.7551; 2.7551–12.5128; 12.5128–15.0064; 15.0064–18.8011;
and 18.8011–27.6913, respectively (Figure 2l).

TWI = ln
(

A
tan B

)
(1)

where A denotes for the specific catchment’s region, and B is the value of slope angle in the study area.
TRI was applied to reflect the fluctuation in the surface and the extent of erosion [62]. In the

present research, TRI was calculated using Equation (2) and was classified into five ranges: –4508 to
–1874; –1874 to –176; –176–57; 57–2398; and 2398–10,418, based on the natural break method (Figure 2m).

TRI =
1

cos B
(2)
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Figure 2. Landslide predisposing factor maps involving: (a) Slope aspect; (b) Slope angle; (c) Altitude; 
(d) Lithology; (e) Distance to faults; (f) Distance to rivers; (g) Distance to roads; (h) Mean annual 

Figure 2. Landslide predisposing factor maps involving: (a) Slope aspect; (b) Slope angle; (c) Altitude;
(d) Lithology; (e) Distance to faults; (f) Distance to rivers; (g) Distance to roads; (h) Mean annual
precipitation (MAP); (i) Normalized differential vegetation index (NDVI); (j) Profile curvature; (k) plan
curvature; (l) Topographic wetness index (TWI); (m) Terrain roughness index (TRI).
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3.2. Preparation of Input Data

3.2.1. Frequency Ratio

The input data required for the classification model used in this study were of the numerical type;
however, the slope aspect and lithology are nominal variables, so it was necessary to use frequency
ratio (FR) data to assign values for these three predisposing factors. The frequency ratio is defined as
the ratio of the area where landslides have occurred to the total study region and is also the ratio of the
landslide occurrence probabilities to the non-landslide occurrence for a given attribute [63]. The FR
data can be calculated according to the following formula:

FR =
X
X′
Y
Y′

(3)

where X and Y are the number of landslides in a domain for each class and the number of pixels in
a domain for each class, respectively. X′ and Y′ stand for the number of total landslides and pixels in
the study area, respectively.

In the current research, the slope aspect and lithology factors assigned by the FR values and
the remaining 11 predisposing factors, with the original numerical data, were defined as dataset1,
which was used to run the KLR model.

3.2.2. Box-Counting Dimension

The spatial distribution of landslides is commonly considered to be not uniform, but is instead
clustered at different scales. The fractal dimension originating from Mandelbrot’s fractal theory is
the value that quantitatively measures the degree of spatial clustering of the landslides. There are
many techniques to calculate the fractal dimension, such as the slit island method, box-counting
method, and the semi-variance method [64]. The first technique applied in the current research was
the box-counting method, and it was employed to calculate the box-counting dimension, which could
be used as the input data for landslide susceptibility modeling.

The box-counting method is applicable to both point datasets and can also be used for the
calculation of fractal dimension in the two-dimensional and three-dimensional space. The principle
of this method is to use a square segmentation plane with side length ε to calculate the number of
grids containing landslide points N(ε), then change the value of ε to re-divide the plane and calculate
the number of grids corresponding to the distribution of landslide points to obtain the sequence
of landslide point pair (ε, N(ε)). In the case where the value ε is reasonable, if the aforementioned
sequences satisfy or approximately satisfy Equation (4), the box-counting dimension (D1) is considered
to exist.

N(ε) ∝ ε−D1 (4)

Through the python circumstance, the values of the box-counting dimension for each predisposing
factor were measured and are shown in Table 4. In addition, 13 predisposing factors assigned
by the box-counting dimension values were named as dataset2, which was used to run the
KLRbox-counting model.

3.2.3. Correlation Dimension

The second fractal dimension used as input data for landslide susceptibility modeling was the
correlation dimension. The correlation dimension reveals the spatial fractal characteristics and regional
differences of landslides from the perspective of the distance between the landslide points, and also
reflects the degree of fragmentation of the geomorphological types in the study area. The calculation
principle of the correlation dimension is to assume that the number of landslide points is N, then set
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a critical value r, determine the landslide point pair where the distance is less than r, and calculate its
proportion in all landslide point pairs (N2), as shown in the following formula:

C(r) =
1

N2

N

∑
i,j=1

H(r−
∣∣Xi − Xj

∣∣) (5)

H(x) =

{
0, x > 0
1, x < 0

(6)

If r is set too large, then all points are less than r and C(r) = 1. Therefore, the value of r is gradually
increased and the corresponding C(r) is calculated to obtain a set of sequences. If the above sequences
satisfy or approximately satisfy Equation (7), the correlation dimension (D2) is considered to exist.

C(r) ∝ r−D2 (7)

Similarly, the values of box-counting dimension for each predisposing factor were measured based
on the python circumstance (Table 4). A total of 13 predisposing factors, assigned by the correlation
dimension values, were named as dataset3, which was used to run the KLRcorrelation model.

3.3. Multicollinearity Diagnosis

The premise of establishing a regression model is that each explanatory variable is independent
of each other. If there is a strong linear correlation between the explanatory variables, it is considered
that there is a multicollinearity problem among predisposing factors. The multicollinearity problem
may lead to instability in the calculation of regression parameters, which will cause a major error in the
results [65]. For these reasons, it is necessary to detect the potential multicollinearity problem between
factors. In this study, two indicators obtained from the linear regression analysis, namely variance
inflation factors (VIF) and tolerance (TOL), were employed to detect the potential multicollinearity
problem. The VIF > 4 or TOL < 0.25 indicates a multicollinearity problem [66].

3.4. Selection of Predisposing Factors

In the process of landslide susceptibility modeling, not all predisposing factors have a positive
influence on the accuracy of the classification modeling. In order to obtain a more accurate and
reliable classification result, all of the predisposing factors needed to be filtered by estimating their
contribution to the classification model [67]. For this reason, by calculating the information gain ratio
(IG) of each predisposing factor to complete the filter process in this study, and the factors whose
values of information gain ratio that are equal to or approximately equal to 0 must be excluded
before landslide susceptibility modeling. The information gain ratio can be calculated using the
following formulas:

Entropy(D) = −
|y|

∑
k=1

pk logpk
2 (8)

where D is the training dataset; Entropy(D) denotes the entropy of the training dataset; and y stands for
the number of species in D. pk represents the proportion of category k in D. Then, the training dataset
was divided into Dv (v = 1, 2, 3, . . . , m) using s, which represents one of the predisposing factors,
and we calculated the Gain(D, s) using Equation (9).

Gain(D, s) = Entropy(D)−
|m|

∑
v=1

|Dv|
D

Entropy(Dv) (9)
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The information gain ratio for predisposing factor s is computed as:

IG(D, s) = −Gain(D, s)
IV(s)

(10)

where IV(s) can be obtained by Equation (11).

IV(s) = −
m

∑
v=1

|Dm|
|D| log

|Dm |
|D|

2 (11)

3.5. Description of the KLR Model

The classification model selected in the current research to construct the landslide susceptibility
modeling was a kernel logistic regression model (KLR). KLR is considered as a kernel version of
logistic regression [68]. The main principle of the KLR model is to use a kernel function to perform
logistic regression operations in high-dimensional feature space on data that are difficult to divide in
the current dimensional space [69]. In this study, we took the landslide predisposing factors as input
vector x and used a kernel function ϕ to complete the non-linear transformation of x. Accordingly,
the non-linear form of logistic regression can be carried out as follows:

logit{p} = w · ϕ(x) + b (12)

where w and b are preferred by minimizing a cost function to represent the optimal parameters of
the model, and p is the probability of landslide occurrence. The logit form of Equation (12) can be
written as:

p =
1

1 + exp{w · ϕ(x) + b} (13)

The aforementioned kernel function is defined as the inner product between the images of vectors
in the feature space.

K(x, x′) = φ(x) · φ(x′) (14)

There are several kernel functions that have been suggested such as the polynomial kernel, the linear
kernel, the radial basis function (RBF), and the sigmoid kernel [70]. In the present research, the kernel
function used for modeling was the RBF kernel, which can be written as follows:

K(xi, xj) = exp((−‖xi − xj‖2)/2δ2) (15)

The kernel sensitivity is controlled by the turning parameter δ [71].

3.6. Model Evaluation and Comparison

3.6.1. Statistical Index

In this study, the cut-off values were used in the final landslide susceptibility mapping to reclassify
the landslide susceptibility index (LSI) into one of the response levels; however, the phenomenon of
misclassification always exists in the LSM [72]. In order to evaluate the performance of classification
models, six statistical indexes including the positive predictive rate (PPR), negative predictive rate
(NPR), sensitivity, specificity, accuracy (ACC), and kappa index were employed as the assessment
criteria, and these statistical indexes have frequently been used in many studies [39,73,74]. The PPR,
NPR, sensitivity, specificity, and ACC can be calculated based on four basic indexes: the true positive
(TP), true negative (TN), false positive (FP), and false negative (FN), as follows:

PPR =
TP

TP + FP
(16)
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NPR =
TN

TN + FN
(17)

Sensitivty =
TP

TP + FN
(18)

Specificity =
TN

TN + FP
(19)

Accuracy =
TP + TN

TP + TN + FP + FN
(20)

where TP and TN denote the number of pixels which are correctly classified and FN and FP represent
the number of pixels which are incorrectly classified.

The kappa index can express the reliability of the classification model, and its calculation process
is as follows:

Kappa index =
observed accuracy− chance agreement

1− chance agreement
(21)

observed accuracy =
TP + TN

n
(22)

chance agreement =
(TP + FN)(TP + FP) + (FP + TN)(FN + TN)

n2 (23)

where n represents the total pixels of the training datasets [75].

3.6.2. The Receiver Operating Characteristic (ROC) Curve

Model comparison is considered as a significant step in landslide susceptibility modeling. In this
study, the ROC curve, which is considered to be the most popular and widely used method of
comparison models in landslide susceptibility modeling, was applied for assessing the classification
model [76]. The x-axis and y-axis of the ROC curve are 1-specificity and sensitivity, respectively.
The model comparison was undertaken by measuring the value of the area under the ROC curve
(AUC), and the calculation formula of AUC is as follows:

AUC =
(∑ TP + ∑ TN)

P + N
(24)

where P and N denote for the total number of landslides and non-landslides in the study area,
respectively.

4. Results

4.1. Results of Predisposing Factors Analysis

4.1.1. Multicollinearity Diagnosis

In order to detect the potential multicollinearity problems between landslide predisposing
factors, the VIF and TOL of dataset1, dataset2, and dataset3 were obtained through linear regression
modeling [77]. For dataset1, it was observed from Table 2 that the maximum VIF value (1.7055) and
the minimum TOL value (0.5863) belonged to the distance to rivers. For dataset2, the maximum VIF
value (1.2358) and the minimum TOL value (0.8092) belonged to the distance to faults. For dataset3,
the slope angle had the maximum VIF value and the minimum TOL value, which were 1.2546 and
0.7971, respectively. As a result, the VIF and TOL values of 13 predisposing factors were not within the
range of VIF > 4 or TOL < 0.25, indicating that there were no potential multicollinearity problems in
dataset1, dataset2, and dataset3.
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Table 2. The variance inflation factors (VIF) and tolerance (TOL) values of the predisposing factors in
the three datasets.

Predisposing Factors
Dataset1 Dataset2 Dataset3

VIF TOL VIF TOL VIF TOL

Slope aspect 1.0743 0.9308 1.0541 0.9487 1.0784 0.9273
Slope angle 1.2756 0.7839 1.1889 0.8411 1.2546 0.7971

Altitude 1.4321 0.6983 1.1714 0.8537 1.1662 0.8575
Lithology 1.1962 0.8360 1.1842 0.8445 1.1851 0.8438

MAP 1.2652 0.7904 1.1817 0.8462 1.1627 0.8601
Distance to rivers 1.7055 0.5863 1.0322 0.9688 1.0345 0.9667
Distance to faults 1.1681 0.8561 1.2358 0.8092 1.2257 0.8159
Distance to roads 1.5557 0.6428 1.0342 0.9669 1.0433 0.9585

NDVI 1.4661 0.6821 1.0854 0.9213 1.1082 0.9024
TWI 1.0792 0.9266 1.1725 0.8529 1.2246 0.8166

Plan curvature 1.1434 0.8746 1.0552 0.9477 1.0923 0.9155
Profile curvature 1.1812 0.8466 1.0331 0.9680 1.0404 0.9612

TRI 1.0311 0.9698 1.0276 0.9731 1.0301 0.9708

4.1.2. Predisposing Factors Optimization

In this study, the contribution of predisposing factors for the classification model was quantified
by calculating the average merit (AM) as the average IG values using the 10-fold cross-validation.
As shown in Table 3, it was obvious that 13 predisposing factors in dataset2 and dataset3 had a positive
contribution to build the classification model (AM > 0). In contrast, the AM values of the TWI, profile
curvature, and TRI in dataset1 were equal to 0, which means that these three predisposing factors in
dataset1 had no predictive ability in landslide susceptibility modeling. For this reason, the TWI, profile
curvature, and TRI were abandoned from dataset1.

Table 3. The information gain ratio (IG) values of predisposing factors in the three datasets.

Predisposing Factors
Dataset1 Dataset2 Dataset3

Average
Merit

Standard
Deviation

Average
Merit

Standard
Deviation

Average
Merit

Standard
Deviation

NDVI 0.5111 ±0.0072 0.5111 ±0.0017 0.5211 ±0.0033
MAP 0.4974 ±0.0143 0.4731 ±0.0214 0.5002 ±0.0105

Altitude 0.3865 ±0.0111 0.3566 ±0.0095 0.3771 ±0.0086
Lithology 0.3811 ±0.0061 0.3868 ±0.0235 0.3588 ±0.0059

Distance to roads 0.3806 ±0.0047 0.3491 ±0.0081 0.3792 ±0.0036
Distance to rivers 0.3113 ±0.0069 0.3722 ±0.0042 0.3643 ±0.0024

Slope angle 0.2943 ±0.0017 0.3111 ±0.0049 0.1016 ±0.0075
Distance to faults 0.1295 ±0.0095 0.3031 ±0.0066 0.3003 ±0.0094

Slope aspect 0.1184 ±0.0013 0.1002 ±0.0054 0.1927 ±0.0112
Plan curvature 0.0339 ±0.0336 0.1785 ±0.0009 0.0922 ±0.0058

TWI 0 0 0.2698 ±0.0037 0.1047 ±0.0044
Profile curvature 0 0 0.0461 ±0.0022 0.0705 ±0.0021

TRI 0 0 0.0689 ±0.0079 0.0553 ±0.0083

4.2. Application of the Classification Models

4.2.1. The KLR Model

The FR values of slope aspect and lithology factors and the classification of all predisposing
factors are shown in Table 4. The FR value reveals the density of the landslide distribution, and the
higher the FR value, the greater the density of the landslide distribution. In the case of slope aspect,
the maximum value of FR (1.9024) appeared in the southeast, followed by the south (1.7262), and the
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east (1.1692), while the minimum FR value was north (0.5845). For lithology, category D had the
highest FR value (19.5595), followed by category F with the FR value of 5.0326.

Table 4. The frequency ratio (FR) values and fractal dimensions of each predisposing factor.

Predisposing Factors Classes No. of Pixels in
Domain

No. of
Landslides FR Box-Counting

Dimension
Correlation
Dimension

Slope aspect Flat 355,630 0 0.0000 0 0
North 510,563 24 0.5845 0.4408 0.6744

Northeast 525,473 33 0.7809 0.4056 0.6656
East 404,148 38 1.1692 0.3383 0.6208

Southeast 356,144 55 1.9204 0.3603 0.6251
South 410,618 57 1.7262 0.3762 0.6381

Southwest 505,082 39 0.9602 0.3738 0.6288
West 490,901 39 0.9879 0.4469 0.6761

Northwest 370,883 31 1.0394 0.3871 0.6469
Slope angle (◦) 0–10.4469 541,127 75 0.3696 0.6282

10.4469–18.6711 887,698 103 0.4301 0.6783
18.6711–25.7839 1,059,498 72 0.4924 0.6981
25.7839–33.3412 938,160 43 0.4045 0.6498
33.3412–56.4579 502,959 23 0.4143 0.6793

Altitude (m) 848–1037.6823 519,962 123 0.5758 0.7721
1037.6823–1128.4000 966,600 105 0.4813 0.7107
1128.4000–1,210.8706 1,044,874 55 0.3843 0.6338
1210.8706–1298.8392 902,154 27 0.3971 0.6544

1298.8392–1549 495,852 6 0.4189 0.6445
Lithology Category A 2,901,236 139 0.5958 0.8641 0.9942

Category B 320,975 67 2.5957 0.4914 0.7018
Category C 34,399 7 2.5304 0.4211 0.6486
Category D 2543 4 19.5595 0.6594 0.8121
Category E 25,967 1 0.4789 0.9799 1.0275
Category F 111,190 45 5.0326 0.4664 0.7044
Category G 171,799 4 0.2895 0.3386 0.6053
Category H 361,333 49 1.6863 0.4201 0.6651

MAP (mm/yr) <520 126,366 3 0.3297 0.6053
520–540 1,123,449 16 0.3113 0.6053
540–560 1,376,438 91 0.4277 0.6682
560–580 771,899 126 0.6395 0.8342
580–600 457,185 69 0.5926 0.7651

>600 74,105 11 0.4639 0.6776
Distance to rivers (m) 0–200 238,453 56 0.4583 0.6961

200–400 235,396 48 0.4044 0.6591
400–600 231,928 47 0.5472 0.7544
600–800 228,915 24 0.3627 0.6282

>800 2,994,750 141 0.4545 0.6942
Distance to roads (m) 0–200 316,529 86 0.4665 0.7005

200–400 280,765 54 0.4347 0.6894
400–600 262,675 33 0.4947 0.7175
600–800 249,049 17 0.3682 0.6235

>800 2,820,424 126 0.4478 0.6865
Distance to faults (m) 0–2000 689,926 104 0.7235 0.8867

2000–4000 650,668 68 0.4897 0.7151
4000–6000 612,815 29 0.4432 0.6797
6000–8000 510,596 25 0.3906 0.6452

>8000 1,465,437 90 0.4161 0.6628
NDVI –0.9315–0.0776 11,230 5 0.3073 0.6053

0.0776–0.4087 437,324 114 0.4609 0.7052
0.4087–0.5742 596,564 86 0.3868 0.6411
0.5742–2.8915 2,885,958 111 0.4694 0.6946

TWI 0.0447–2.7551 1,417,274 87 0.4363 0.6709
2.7551–12.5128 1,590,117 120 0.4563 0.6874

12.5128–15.0064 649,808 74 0.4344 0.6745
15.0064–18.8011 219,949 25 0.3911 0.6428
18.8011–27.6913 52,294 10 0.3412 0.6053

Plan curvature –9.7777 to –1.8107 166,235 5 0.4464 0.6584
−1.8107 to –0.5629 631,367 33 0.4195 0.6645

–0.5629–0.3009 1,723,931 195 0.4794 0.7002
0.3009–1.2608 1,087,848 61 0.4112 0.6618
1.2608–14.6991 320,061 22 0.4182 0.6529
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Table 4. Cont.

Predisposing Factors Classes No. of Pixels in
Domain

No. of
Landslides FR Box-Counting

Dimension
Correlation
Dimension

Profile curvature –15.1897 to –1.5337 293,436 14 0.3789 0.6279
−1.5337 to –0.4607 905,195 42 0.4409 0.6809

–0.4607–0.5146 1,650,969 161 0.4542 0.6857
0.5146–1.8802 827,418 91 0.4205 0.6561
1.8802–9.6837 252,424 8 0.3154 0.6053

TRI –4508 to –1874 1,417,271 88 0 0
–1874 to –176 1,132,853 102 0.4762 0.7059

–176–57 934,473 80 0.4859 0.7107
57–2398 361,886 33 0 0

2398–10,418 82,959 13 0 0

Dataset1 was used as the input data to run the KLR model. The LSI values ranged from 0.0001
to 0.9999. Then, ArcGIS software was applied to visualize the LSI, which should be divided into
different ranges to generate the LSM [78]. There are different types of classification schemes such as
natural break, quantile, interval, standard deviation, and geometrical interval in ArcGIS software.
In the current research, according to the geometrical interval method, the LSI of KLR model was
divided into five categories: very low (0.0015–0.2404); low (0.2405–0.3931); moderate (0.3932–0.5615);
high (0.5616–0.7494); and very high (0.7495–0.9674). The final LSM of the KLR model is shown in
Figure 3a.

4.2.2. Integration of the KLR Model and Fractal Dimension

The acquired box-counting dimensions of dataset2 and the correlation dimensions of dataset3

are listed in Table 4. For slope angle, the highest box-counting dimension (0.4924) appeared in the
section of 18.6711–25.7839◦, and the maximum correlation dimension (0.6981) also appeared in this
section. In terms of the slope aspect, the class of west had the highest box-counting dimension
(0.4469) and correlation dimension (0.6761). As there was no landslide distribution in the class of flat,
the two different fractal dimensions were equal to 0. For altitude, the class of 848–1037.6823 m had
the highest box-counting dimension and correlation dimension of 0.5758 and 0.7721, respectively.
In the case of lithology, the class of category E yielded the maximum box-counting dimension
and correlation dimension of 0.9799 and 1.0275, respectively. For distance to roads, the 400–600 m
class yielded the highest box-counting dimension and correlation dimension of 0.4974 and 0.7175,
followed by the 0–200 m class with a box-counting dimension and correlation dimension of 0.4665
and 0.7005, respectively. In the case of distance to rivers, the maximum box-counting dimension
(0.5472) and correlation dimension (0.7544) appeared in the 400–600 m class. For distance to faults,
the 0–2000 m class had the highest box-counting dimension and correlation dimension of 0.7235
and 0.8867, respectively. For MAP, the 560–580 mm class yielded the maximum box-counting
dimension and correlation dimension of 0.6395 and 0.8342, respectively. In terms of plan curvature,
the class of −0.5629–0.3009 had the highest box-counting dimension and correlation dimension of
0.4794 and 0.7002, respectively. For the profile curvature, the maximum box-counting dimension
(0.4542) and correlation dimension (0.6857) appeared in the −0.4607–0.5146 class. In the case of TWI,
the 2.7551–12.5128 class yielded the highest box-counting dimension and correlation dimension of
0.4653 and 0.6874, respectively. For the NDVI, the 0.5742–2.8915 class yielded the highest box-counting
dimension of 0.4694, while the class of 0.0776–0.4087 yielded the maximum correlation dimension of
0.7052. For TRI, the maximum box-counting dimension (0.4859) and correlation dimension (0.7107)
appeared in the −176–57 class.

Dataset2 was employed as the input data to run the KLRbox-counting model. The LSI values of
the KLRbox-counting model were in the range of 0.0001–0.9999. Then, the LSM of the KLRbox-counting
model was produced by dividing the LSI values into five categories using the geometrical interval
method (Figure 3b). The final threshold segmentation of LSI were as follows: very low (0.0088–0.0610);
low (0.0611–0.0765); moderate (0.0766–0.1286); high (0.1287–0.3043); and very high (0.3044–0.9766).
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Similarly, dataset3 was also employed as the input data to run the KLRcorrelation model. The LSI
values of KLRcorrelation model were in the range of 0.0001–0.9999. Then, the LSM of the KLRcorrelation
model was produced by dividing the LSI values into five categories using the geometrical interval
method (Figure 3c). The final threshold segmentations of LSI were as follows: very low (0.0866–0.3878);
low (0.3879–0.5159); moderate (0.5160–0.5704); high (0.5705–0.6986), and very high (0.6987–0.9998).
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4.3. Model Evaluation

4.3.1. Model Performance

In order to evaluate the performance of the classification models, six statistical indexes including
PPR, NPR, sensitivity, specificity, ACC, and kappa index were calculated using the training datasets
from dataset1, dataset2, and dataset3. As shown in Table 5, the KLRcorrelation model yielded the highest
PPR, NPR, and ACC of 87.84%, 80.09%, and 83.97%, respectively. For sensitivity, the KLRcorrelation
model showed the best performance for the classification of landslides (sensitivity = 81.59%), followed
by the KLRbox-counting model (sensitivity = 78.30%), and the KLR model (sensitivity = 66.03%).
In terms of specificity, the KLRbox-counting model showed the best performance for the classification
of non-landslides (specificity = 86.76%), followed by the KLRcorrelation model (specificity = 87.44%),
and the KLR model (sensitivity = 81.67%). Moreover, according to the criteria of the kappa index given
from [79]: poor (<0); slight (0–0.2); fair (0.2–0.4); moderate (0.4–0.6); substantial (0.6–0.8); and perfect
(0.8–1.0), the KLRbox-counting model (kappa index = 0.7657) and the KLRcorrelation model (kappa index =
0.7828) expressed a substantial reliability. Unfortunately, the KLR model (kappa index = 0.5966) only
showed a moderate reliability.

Table 5. Model performance using the training datasets.

Statistical Index
Models

KLR KLRbox-counting KLRcorrelation

True positive (TP) 173 184 195
True negative (TN) 147 181 177
False positive (FP) 33 26 27
False negative (FN) 89 51 44

Positive predictive rate (PPR) (%) 0.8398 0.8762 0.8784
Negative predictive rate NPR (%) 0.6229 0.7802 0.8009

Accuracy (ACC) (%) 0.7240 0.8258 0.8397
Sensitivity (%) 0.6603 0.7830 0.8159
Specificity (%) 0.8167 0.8744 0.8676
Kappa index 0.5966 0.7657 0.7828

4.3.2. Model Validation

In this study, the results of model validation using the validation datasets from dataset1,
dataset2, and dataset3 are shown in Table 6. The maximum PPR (86.67%), NPR (90.59%), and ACC
(88.42%) appeared in the KLRcorrelation model. For sensitivity, the KLRcorrelation model expressed
the best performance for the classification of landslide (sensitivity = 91.92%), followed by the
KLRbox-counting model (sensitivity = 83.67%), and the KLR model (sensitivity = 70.41%). For specificity,
the KLRbox-counting model showed the best performance for the classification of non-landslide
(specificity = 85.87%), followed by the KLRcorrelation model (specificity = 84.62%), and the KLR model
(specificity = 79.35%). Furthermore, the kappa indexes of the KLRbox-counting model, KLRcorrelation
model, and KLR model were 0.8400, 0.8785, and 0.7336, respectively, indicating a substantial reliability
between the reality and models.
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Table 6. Model validation using the validation datasets.

Statistical Index
Models

KLR KLRbox-counting KLRcorrelation

TP 69 82 91
TN 73 79 77
FP 19 13 14
FN 29 16 8

PPR (%) 0.7841 0.8632 0.8667
NPR (%) 0.7157 0.8316 0.9059
ACC (%) 0.7474 0.8474 0.8842

Sensitivity (%) 0.7041 0.8367 0.9192
Specificity (%) 0.7935 0.8587 0.8462
Kappa index 0.7336 0.8400 0.8785

4.4. Model Comparison

In this study, the model comparison was completed using the AUC value from the ROC
curve. Figure 4a shows the final ROC curves and AUC values produced by the training datasets.
The KLRcorrelation model expressed the maximum AUC value of 0.8984, followed by the KLRbox-counting
model with the AUC value of 0.8828, and the KLR model with the AUC value of 0.8352.

Additionally, the ROC curves and AUC values produced by the validation datasets are shown
in Figure 4b. The KLRcorrelation model showed the maximum AUC value of 0.9224, followed by the
KLRbox-counting model with the AUC value of 0.9203, and the KLR model with the AUC value of 0.8605.
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5. Discussion

The calculated box-counting dimensions and correlation dimensions in this study are listed in
Table 4. The value range of the box-counting dimensions was between 0.9261 and 4.6410, while the
correlation dimensions ranged from 1.4166 to 6.1590. Although the dimensions of the two fractal
methods were different, it can be observed from Figure 5 that the overall trend of variation in the
fractal was roughly the same. This indicates that the spatial distribution features of the landslide
measured by the two fractal methods were relatively stable and the results more reliable. On the other
hand, using the fractal dimension to optimize the predisposing factors may become a new approach
that needs to be explored in future research.
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Before building the classification models, the potential multicollinearity problems of dataset1,
dataset2, and dataset3 were detected. All predisposing factors in these three datasets were independent
of each other; however, the difference between dataset1, dataset2, and dataset3 can also be seen
from Table 2. In terms of dataset1, the TOL values of altitude, distance to roads, distance to rivers,
and NDVI were less than 0.7, which seems to indicate that these four factors had a tendency to
have multicollinearity problems [80]. Moreover, if these four factors are excluded, it may affect the
diversification of the input data. In contrast, the TOL values of all factors in dataset2 and dataset3 were
greater than 0.7, which means that each factor had strong independence as the input data. In addition,
from the results of the factor optimization shown in Table 3, three factors including TWI, profile
curvature, and TRI in dataset1 were excluded, but all predisposing factors in dataset2 and dataset3

were retained. In summary, dataset2 and dataset3, which were constructed by the fractal dimension,
can maintain a multiplicity of predisposing factors, while dataset1 cannot.

The basic classification model used in this study was the KLR model, which is considered as one of
the state-of-the art advanced machine learning algorithms [81,82]. Meanwhile the KLR model has been
used in landslide susceptibility mapping with high accuracy. However, an exploration of improving
the KLR model has seldom been carried out. We used the fractal dimension as the input data of the
KLR model for the first time, and the grid search method was applied to ensure that the parameters
in the RBF kernel function were optimal at the same time. For model evaluation and comparison,
the KLRcorrelation model constructed by dataset3 performed the best, and its AUC values generated by
the training dataset and validation dataset were the highest in the three models. Furthermore, the AUC
values generated by the KLR model were significantly smaller than the other two models, which may
be caused by the excessive difference in the dimension of the original data.

6. Conclusions

With the increasing threat of landslides to human beings, the prediction of landslide occurrence is
particularly important. Landslide susceptibility mapping is considered as one of the preliminary steps
to predict landslide occurrence, the main aim of which is to divide a specified region into multiple
classes that range from stable to unstable ones. In this study, to obtain the landslide susceptibility
map (LSM), thirteen predisposing factors (i.e., slope aspect, slope angle, altitude, lithology, mean
annual precipitation (MAP), distance to rivers, distance to faults, distance to roads, normalized
differential vegetation index (NDVI), topographic wetness index (TWI), plan curvature, profile
curvature, and terrain roughness index (TRI)) were selected. Then, the KLR model and two hybrid
models, namely the KLRbox-counting model and the KLRcorrelation model generated with box-counting
dimension and correlation dimension as input data, were used to perform landslide susceptibility
mapping in the Baota District, Yan’an City, China.
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From the final results, the classification results of all classification models were relatively reliable.
For statistical evaluation methods, the performances of the two hybrid models were better than the
KLR model. For the result of model comparison, the KLRcorrelation model had the highest values for
landslide susceptibility mapping.

As the final conclusion, the results in the present study proved that using the fractal dimension as
input data to build the hybrid model is feasible for landslide susceptibility mapping in the study area,
and could provide a reference for local landslide prevention and decision making.
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