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Abstract: A flexible single-server queueing system is considered in this paper. The server adapts to
the system size by using a strategy where the service provided can be either single or bulk depending
on some threshold level c. If the number of customers in the system is less than c, then the server
provides service to one customer at a time. If the number of customers in the system is greater
than or equal to c, then the server provides service to a group of c customers. The service times are
exponential and the service rates of single and bulk service are different. While providing service
to either a single or a group of customers, the server may break down and goes through a repair
phase. The breakdowns follow a Poisson distribution and the breakdown rates during single and
bulk service are different. Also, repair times are exponential and repair rates during single and bulk
service are different. The probability generating function and linear operator approaches are used to
derive the system size steady-state probabilities.
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1. Introduction

Markovian queueing models have Poisson arrivals and exponential service times. Because they
are (arguably) easy to analyze, they are often used as a first step in analyzing more difficult queueing
systems. They also yield practical results that present no difficulty in implementation. Early models
were Markovian and found application in the telephone industry. However, since then, they also
found other areas of application such as computer, transportation, and production systems.

The literature on Markovian queueing systems is huge. To cite a few of the latest, Wang et al. [1]
use a Markovian queue to model a passenger-taxi system. They design a social benefit function and
look for the system parameters that optimize the system operations.

Jain et al. [2] investigate a theoretical model of a Markovian system where the server takes
vacations. During a vacation, the server does not stop serving customers but reduces his service
rate. Also, customers can get discouraged and may not join the queue. Jain et al. study the transient
behavior of the system using probability generating functions.

While researchers use Shannon entropy to measure randomness in queueing systems,
Srivastava [3] uses Renyi’s measure of entropy to quantify uncertainty in Markovian queueing systems
with finite and infinite capacity.

Estimation of the parameters of Markovian queueing systems using statistical techniques and
simulation is also reported in numerous papers, see for example Refs. [4–6].
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Some adaptive queueing systems have been considered in the literature. For example,
Di Crescenzo et al. [7] provides an example of a queueing system working under two
alternating regimes. Also, in many queueing systems, the server is prone to failure, for example
Krishna Kumar et al. [8], Choudhury and Tadj [9], Kalidass et al. [10], Ammar [11],
and Di Crescenzo et al. [12,13] deal with queueing models subject to failures (breakdowns) and repairs.

Usually, the interest in studying queueing systems is in obtaining the steady-state system size
probabilities and, often, these are obtained in the form of a probability generating function (PGF).
However, to recover the individual probability, one needs to calculate successive derivatives of the PGF.
To avoid calculating such derivatives researchers resort to numerical methods. For example, Tadj and
Hamdi [14] employ the maximum entropy approach to a quorum queueing system. Various numerical
techniques were used by Lotfi Tadj and Chakib Tadj [15] to the same system. Also, Tadj [16,17] find
the steady-state system size probabilities in terms of the zeros of a characteristic equation inside and
outside the unit ball.

In this paper we consider a Markovian queueing system and utilize a numerical method using
operators to obtain the steady-state system size probabilities and the analytical approach to obtain
the PGF of these same probabilities. The system under study is quite versatile and is described in
Section 2. Analysis of the two methods are carried out in Section 3. Section 4 describes a case study
and the paper is concluded in Section 4.

2. Model Formulation

Oftentimes, a service or manufacturing firm can process its customers either singly or in batches,
see case study below. It may not be economical to process customers singly, and it may be impossible
to always process them in batches. In this case, a service discipline where the firm decides to process
customers singly at times and in batches at other times is more appropriate. We therefore consider in
this paper a single-server Markovian queueing system where the switch from one service discipline to
the other is triggered by some constant integer c ≥ 2. If the number of customers in this system is less
than c, then the server processes customers one at a time (single mode). If the number of customers in
greater than or equal to c, then the server provides service simultaneously to a group of c of customers
(batch mode).

To define the rest of the notation, we assume that customer arrivals follow a Poisson process
with positive rate λ. In single mode (i.e., when the number of customers in the system is less than
c), service follows an exponential distribution with positive rate µ1. In batch mode (i.e., when the
number of customers in the system is greater than c), service follows an exponential distribution
with positive rate µ2 > µ1. To mark the transition from single mode to batch mode, we assume that
when the number of customers in the system is equal to c, then service is batch but with rate µ2 − µ1.
We also assume that the server is unreliable and may break down, either in single mode or in batch
mode. Breakdowns occur according to a Poisson process with positive rate α1 in single mode and
α2 in batch mode. A breakdown is followed by a repair of the server and repair times follow an
exponential distribution with positive rate β1 in single mode and β2 in batch mode. When the server is
unavailable, customers are allowed to join the queue in single mode, but not in batch mode, to avoid
large queue lengths.

Let X(t) denote the number of customers in the system at time t and Pn(t), n = 0, 1, 2, · · · denote
the probability of n customers in the system at time t. The process {X(t); t ≥ 0} is a continuous-time
Markov chain, and the corresponding rate-transition diagram is depicted in Figure 1.

Since the server may be either working or down, we introduce Wn(t), n = 0, 1, 2, · · ·
the probability of n customers in the system at time t when the server is in a working state,
and Fn(t), n = 0, 1, 2, · · · the probability of n customers in the system at time t when the server is
in a failing state. Note that we readily have Pn(t) = Wn(t) + Fn(t), the probability of n customers in
the system at time t, regardless of the server state.
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Figure 1. Rate transition diagram.

Writing the Chapman–Kolmogorov equations in the case where the server is in a working state,
we have

d
dt

W0(t) = −(λ + α1)W0(t) + β1F0(t) + µ1W1(t) + (µ2 − µ1)Wc(t), (1)

d
dt Wn(t) = −(λ + α1 + µ1)Wn(t) + λWn−1(t) + µ1Wn+1(t) + µ2Wn+c(t),

+β1Fn(t), 1 ≤ n ≤ c− 1,
(2)

d
dt

Wn(t) = −(λ + α2 + µ2)Wn(t) + λWn−1(t) + µ2Wn+c(t) + β2Fn(t), n ≥ c. (3)

Similarly, writing the Chapman–Kolmogorov equations in the case where the server is in a failing
state, we have

d
dt

F0(t) = −β1F0(t) + α1W0(t), (4)

d
dt

Fn(t) = −β1Fn(t) + α1Wn(t), 1 ≤ n ≤ c− 1, (5)

d
dt

Fn(t) = −β2Fn(t) + α2Wn(t), n ≥ c. (6)

Taking the limit in both sets of difference-differential equations as t → ∞ yields the
balance equations

(λ + α1)W0 = β1F0 + µ1W1 + (µ2 − µ1)Wc, (7)

(λ + α1 + µ1)Wn = λWn−1 + µ1Wn+1 + µ2Wn+c + β1Fn, 1 ≤ n ≤ c− 1, (8)

(λ + α2 + µ2)Wn = λWn−1 + µ2Wn+c + β2Fn, n ≥ c, (9)

β1F0 = α1W0, (10)

β1Fn = α1Wn, 1 ≤ n ≤ c− 1, (11)

β2Fn = α2Wn, n ≥ c. (12)

By substitution of (10), (11), and (12) into (7), (8), and (9), respectively, we obtain

λW0 = µ1W1 + (µ2 − µ1)Wc, (13)

(λ + µ1)Wn = λWn−1 + µ1Wn+1 + µ2Wn+c, 1 ≤ n ≤ c− 1, (14)

(λ + µ2)Wn = λWn−1 + µ2Wn+c, n ≥ c. (15)

These difference equations are solved in the next section.
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3. Model Solution

We use two methods to solve the set of Equations (13)–(15). The first method involves probability
generating functions (PGF). The second one involves the concept of linear operators. Our aim is to
solve the considered problem using the above two different methods and then to compare the obtained
probabilities.

3.1. Analytical Method Using PGF

The procedure is to find a closed-form expression for the PGF. Then, if possible, expand it as a
power series. If not, the probabilities are obtained through successive differentiations.

3.1.1. Computations of the Probabilities Pn

In this method, to find the steady state probabilities Wn, Fn, and Pn, we introduce for |z| ≤ 1 the
probability generating functions:

W(z) =
∞

∑
n=0

Wnzn, F(z) =
∞

∑
n=0

Fnzn, P(z) =
∞

∑
n=0

Pnzn. (16)

To start, we define

S1(z) :=
c−1

∑
n=0

Wnzn and S2(z) :=
2c−1

∑
n=c

Wnzn.

We multiply, for 1 ≤ n ≤ c− 1, both sides of Equation (14) by zn+c:

zc(λ + µ1)Wnzn = λzc+1Wn−1zn−1 + µ1zc−1Wn+1zn+1 + µ2Wn+czn+c. (17)

Taking the summation of these equations over n from 1 to c− 1 yields:

zc(λ + µ1)∑c−1
n=1 Wnzn = λzc+1 ∑c−1

n=1 Wn−1zn−1 + µ1zc−1 ∑c−1
n=1 Wn+1zn+1

+µ2 ∑c−1
n=1 Wn+czn+c,

(18)

which can be rewritten

zc(λ + µ1)[S1(z)−W0] = λzc+1 [S1(z)−Wc−1zc−1]+ µ2 [S2(z)−Wczc]

+µ1zc−1 [S1(z)−W0 −W1z + Wczc] .
(19)

Now, we multiply, for n ≥ c, both sides of Equation (15) by zn+c:

zc(λ + µ2)Wnzn = λzc+1Wn−1zn−1 + µ2Wn+czn+c, n ≥ c. (20)

Similarly to the previous case, we take the summation of these equations over n from c to ∞ to
get the following:

zc(λ + µ2)
∞

∑
n=c

Wnzn = λzc+1
∞

∑
n=c

Wn−1zn−1 + µ2

∞

∑
n=c

Wn+czn+c, (21)

which is equivalent to

zc(λ + µ2) [W(z)− S1(z)] = λzc+1 [W(z)− S1(z) + Wc−1zc−1]
+µ2 [W(z)− S1(z)− S2(z)] .

(22)
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Rearranging terms, we have[
zc(λ + µ2)− λzc+1 − µ2

]
W(z) =

[
zc(λ + µ2)− λzc+1 − µ2

]
S1(z)

+λWc−1z2c − µ2S2(z).
(23)

From Equation (19) we have

µ2S2(z) =
[
−λz2 + (λ + µ1)z− µ1

]
zc−1S1(z)− [(λ + µ1)z− µ1] zc−1W0

+µ1zcW1 + λz2cWc−1 +
(
µ2 − µ1zc−1) zcWc.

(24)

Now replace µ2S2(z) with its expression in (23) to obtain:[
zc(λ + µ2)− λzc+1 − µ2

]
W(z) =

[
zc(λ + µ2)− λzc+1 − µ2

]
S1(z)

−
{
[−λz2 + (λ + µ1)z− µ1]zc−1S1(z)− [(λ + µ1)z− µ1]zc−1W0

+µ1zcW1 + λz2cWc−1 + (µ2 − µ1zc−1)zcWc

}
+ λWc−1z2c.

Simplifying the RHS of this expression then solving for W(z), we get the PGF of the working
steady-state probabilities

W(z) =
A1(z)∑n=c−1

n=0 Wnzn + [(λ + µ1)z− µ1]W0zc−1 − µ1zcW1 + (µ1zc−1 − µ2)zcWc

zc(λ + µ2)− λzc+1 − µ2
,

where A1(z) := (µ2 − µ1)zc + µ1zc−1 − µ2. Finally, using (7) we get the following

W(z) =
A1(z)∑n=c−1

n=0 Wnzn + A2(z)W0zc−1 + A3(z)zcW1

zc(λ + µ2)− λzc+1 − µ2
, (25)

where A2(z) := (λ + µ1)z− µ1 +
λz(µ1zc−1−µ2)

µ2−µ1
and A3(z) := µ2

1(z
c−1−1)

µ1−µ2
.

Using Equations (11) and (12), we obtain the PGF of the failing steady-state probabilities

F(z) =
α2

β2
W(z) +

(
α1

β1
− α2

β2

) n=c−1

∑
n=0

Wnzn.

Thus, the PGF of the system state probabilities in the steady-state

P(z) = W(z) + F(z) =
(

1 +
α2

β2

)
W(z) +

(
α1

β1
− α2

β2

) n=c−1

∑
n=0

Wnzn.

We need to determine Wn, n = 0, 1, ·, c− 1, before P(z) is fully determined. Observe that z = 1 is
a trivial root of the denominator of W(z). Using Rouché’s theorem we can prove that the denominator
has c− 1 other roots inside the open unit ball (i.e., |z| < 1) as shown in the following claim.

Claim 1. The denominator zc(λ + µ2)− λzc+1 − µ2 of W(z) in (25) has c− 1 roots inside the open unit ball.

Proof. Define the functions f (z) := zc+1 + µ2
λ and g(z) := (λ+µ2)

λ zc. Observe that f (1) = g(1) =

1 + µ2
λ and f ′(1) = c + 1 ≤ c(1 + µ2

λ ) = g(′1). So, we have, for sufficiently small ε > 0,

f (1 + ε) < g(1 + ε). (26)
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Consider all the values of z on the contour |z| = 1 + ε. Using the triangle inequality and (26)
we obtain

| f (z)| ≤ |z|c+1 +
µ2

λ
= f (|z|) = f (1 + ε) < g(1 + ε) = g(|z|) = |g(z)|, (27)

and hence | f (z)| < |g(z) on the contour. Now, since both functions f (z) and g(z) are analytic on
the closed disk |z| ≤ 1 + ε, Rouché’s theorem ensures that g(z) and g(z) − f (z) have the same
number of zeros in |z| ≤ 1 + ε, that is, the denominator zc(λ + µ2)− λzc+1 − µ2 and (λ+µ2)

λ zc have
the same number of zeros inside the closed disk |z| ≤ 1 + ε. Letting ε tend to zero yields the proof of
the claim.

These c− 1 roots, ensured by the previous claim, are also the roots of the numerator due to the fact
that W(z) is an analytic function on |z| ≤ 1. Replacing these c− 1 roots in the numerator, we obtain
c− 1 linear equations with variables Wi(i = 0, · · · , c− 1). The c-th linear equation is obtained using
the fact P(1) = 1. This equation is equivalent to

a0W0 + a1W1 + a
n=c−1

∑
n=2

Wnzn = 1,

where
a0 := (α2+β2)[A′1(1)+A′2(1)]

β2(cµ2−λ)
+ ( α1

β1
− α2

β2
), a1 := (α2+β2)[A′1(1)+A′3(1)]

β2(cµ2−λ)
+ ( α1

β1
− α2

β2
),

a := (α2+β2)A′1(1)
β2(cµ2−λ)

+ ( α1
β1
− α2

β2
),

with

A′1(1) = cµ2 − µ1, A′2(1) = (λ + µ1) +
λ(cµ1 − µ2)

µ2 − µ1
, A′3(1) =

(c− 1)µ2
1

µ1 − µ2
.

We now have c linear equations with c unknowns. The linear system of c equations and c variables
is solved numerically. Once we have the values of Wi, i = 0, · · · , c− 1, the value of Wc is obtained
from (7).

3.1.2. Measures of Effectiveness

We now calculate some performance measures of the system using the probabilities obtained
in this approach. Write W(z) = N(z)

D(z) . The expected number of customers in the system in the
steady-state is

L =
d
dz

P(z)
∣∣∣∣
z=1

=

(
1 +

α2

β2

)
W ′(1) +

(
α1

β1
− α2

β2

)
S′1(1), (28)

where

W ′(1) =
N′′(1)D′(1)− N′(1)D′′(1)

2D′(1)2 ,

with

D′(1) = cµ2 − λ,

D′′(1) = c [(c− 1)(µ2 + λ)− λ(c + 1)] ,

N′(1) = A′1(1)S1(1) + A′2(1)W0 + A′3(1)W1,

N′′(1) = A′′1 (1)S1(1) + 2A′1(1)S
′
1(1) +

[
A′′2 (1) + 2(c− 1)A′2(1)

]
W0

+
[
A′′3 (1) + 2cA′3(1)

]
W1,
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and

A′′1 (1) = (c− 1)(cµ2 − 2µ1), A′′2 (1) =
λµ1c(c− 1)

µ2 − µ1
, A′′3 (1) = (c− 1)A′3(1). (29)

We may now introduce a cost function to optimize the operations of the system. Let ch be the unit
holding cost for each customer in the system, co be the operating cost per unit of time, ca be the startup
cost per unit time for the setup of the server, and cs be the setup cost per busy cycle. Then, the total
expected cost per unit of time is

TC(c) = chL + co
E[B]
E[C]

+ ca
E[I]
E[C]

+ cs
1

E[C]
, (30)

where the expected idle period, the expected busy period, and the expected busy cycle are respectively
given by

E[I] =
1
λ

, E[B] =
1− P0

P0
E[I], E[C] = E[I] + E[B]. (31)

Thus,

TC(c) = chL + co + (λcs + ca − co)P0. (32)

3.1.3. Illustrative Example

Take for example c = 5, that is, the server adopts the single mode if four customers or less
are in the system and the batch mode if five customers or more are in the system. Assume that in
the single mode, the service rate is µ1 = 2, the breakdown rate is α1 = 0.05, and the repair rate is
β1 = 0.07. In the batch mode, the service rate is µ2 = 5.5, the breakdown rate is α2 = 0.08, and the
repair rate is β2 = 0.06. Arrivals at a rate λ = 0.5. The unit costs are ch = 10, co = 20, ca = 50,
and cs = 500. The system of linear equation yields P0 = 0.7522, P1 = 0.1875, P2 = 0.0464, P3 = 0.0111,
P4 = 0.0023, and P5 = 0.0002. Also, the average system size is L = 0.3032, and the cost function has
value TC = 233.6479.

3.2. Numerical Method Using Operators

In this section, we use a different approach to find the probabilities Pn. For the sequence of
probabilities Wn, we define the linear operator D by

Wn = DWn−1, ∀n ≥ 1.

Note that composing the operators yields Wn+m = DmWn, ∀n, m ≥ 1.

3.2.1. Computations of the Probabilities Pn

Applying this operator to Equation (8) for any 1 ≤ n ≤ c− 1, we get

ζ1DWn−1 = λWn−1 + µ1D2Wn−1 + µ2Dc+1Wn−1 + β1Fn, (33)

where ζ1 = (λ + α1 + µ1). Similarly, Equation (9) gives

ζ2DWn−1 = λWn−1 + µ2Dc+1Wn−1 + β2Fn, n ≥ c, (34)

where ζ2 = (λ + α2 + µ2). We derive from (11) and (12)

Fn = α1β−1
1 Wn, 1 ≤ n ≤ c− 1, (35)

and
Fn = α2β−1

2 Wn, n ≥ c. (36)
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Substitute (35) and (36) into (33) and (34), respectively, we obtain:[
−(λ + µ1)D + λ + µ1D2 + µ2Dc+1

]
Wn−1 = 0, 1 ≤ n ≤ c− 1, (37)

and [
−(λ + µ2)D + λ + µ2Dc+1

]
Wn−1 = 0, n ≥ c. (38)

The polynomial expressions in D in both cases give the following two characteristic equations for
these difference equations:

µ2rc+1 + µ1r2 − (λ + µ1)r + λ = 0, 1 ≤ n ≤ c− 1, (39)

and
µ2rc+1 − (λ + µ2)r + λ = 0, n ≥ c. (40)

• Case 1: 1 ≤ n ≤ c− 1.

In this case we define on the interval (0, 1) the function f (z) = µ2zc+1 + µ1z2 − (λ + µ1)z + λ.
A simple study of the variations and the sign of the values of f gives that there exists only two real
roots r1 and r2 of f (z) = 0 on (0, 1). So, for any n = 1, · · · , c− 1

Wn−1 = d1rn−1
1 + d2rn−1

2 and Fn−1 =
α1

β1

(
d1rn−1

1 + d2rn−1
2

)
, (41)

where d1 and d2 are arbitrary constants.

• Case 2: n ≥ c.

In this case we define, on the interval (0, 1), the function f (z) = µ2zc+1− (λ + µ2)z + λ. Similarly
to the previous case, the study of the variations and the sign of the values of f gives a unique real root
r3 of f (z) = 0 on (0, 1) which is given explicitly by r3 := [ λ+µ2

µ2(c+1) ]
1
c . So, for any n ≥ c

Wn−1 = d3rn−1
3 and Fn−1 =

α2

β2

(
d3rn−1

3

)
, (42)

where d3 is an arbitrary constant.

Calculation of d1, d2, and d3:

Given the values of the roots r1, r2, and r3 we are going to determine the values of the constants
d1, d2, and d3 using the Equation (7), the Equation (9) at n = c, and the summability-to-one condition
P(1) = 1. We obtain the following linear system:

(λ− µ1r1)d1 + (λ− µ1r2)d2 + (µ2 − µ1)rc
3d3 = 0

(λrc−1
1 )d1 + (λrc−1

2 )d2 + [µ2r2c
3 − (λ + µ2)rc

3]d3 = 0(
1−rc−1

1
1−r1

)
d1 +

(
1−rc−1

2
1−r2

)
d2 +

[
rc−1

3 + β1
β1+α1

(1 + α2
β2
)

rc
3

1−r3

]
d3 = β1

β1+α1
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Calculation of Pn:

Since Pn = Wn + Fn, we readily have

Pn =



(1 + α1
β1
)[d1rn

1 + d2rn
2 ], 0 ≤ n ≤ c− 2,

(1 + α1
β1
)d3rc−1

3 , n = c− 1,

(1 + α2
β2
)d3rn

3 , n ≥ c.

Note that the numerical method gives all the probabilities Pn, n ≥ 0, whereas with the analytical
method, we only obtain the first c + 1 probabilities Pn, 0 ≤ n ≤ c, and the rest of the probabilities
Pn, n > c, needs to be calculated by successive differentiation.

3.2.2. Measures of Effectiveness

As in the other approach, we calculate the expected number of customers in the system. It is
given by

L =
∞

∑
n=0

nPn

=

(
1 +

α1

β1

)[
d1

c−2

∑
n=1

nrn
1 + d2

c−2

∑
n=1

nrn
2

]
+ (c− 1)

(
1 +

α1

β1

)
d3rc−1

3

+

(
1 +

α2

β2

)
d3

∞

∑
n=c

nrn
3 .

The expected idle period is

E[I] =
1
λ

. (43)

Since we have the explicit form of P0, we can find explicitly the mean busy period

E[B] =
β1

λ(α1 + β1)(d1 + d2)
− 1

λ
, (44)

and the mean busy cycle

E[C] =
β1

λ(α1 + β1)(d1 + d2)
. (45)

These measures can be combined to obtain an expression for the total expected cost per unit
of time

TC(c) = chL + co + (λcs + ca − co)(d1 + d2)

(
1 +

α1

β1

)
. (46)

3.2.3. Illustrative Example

Taking the same parameter as in the previous approach, we find the probabilities P0 = 0.7496,
P1 = 0.1881, P2 = 0.0472, P3 = 0.0118, P4 = 0.0030, P5 = 0.0003. We note that the values are remarkably
close to the ones obtained in the previous example and the two methods are in total agreement. We also
obtain L = 0.3294 and TC = 233.66.

4. Case Study

The queueing system studied in this paper fits perfectly the following manufacturing situation.
Consider a guitar manufacturing factory where guitars can be either handmade or machine made.
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The two types of instruments target different market segments. Patrons select their product, basing
their choice on different criteria such as quality, value and price, sound, precision, durability, long
term repairability, etc. The factory operations manager has implemented a single and batch service
strategy as follows: when the number of guitar orders is below some threshold level c, guitars are
made by hand, and when it is larger than or equal to c, then guitars are machine made. Machine
made guitars are created using a machine to replicate the look and acoustics of an authentic handmade
guitar. Because there is minimal labor involved, machine made guitars can be produced quickly,
and at a fraction of the price of their handcrafted originals. In this application, guitar orders are the
customers. It is assumed that the time between guitar orders is exponential with parameter λ = 4.
The server is either the luthier or the machine. Let us assume that the service times and repair times
are exponentially distributed.

A handmade guitar will carry a price which reflects its real value in terms of labor and overhead
more truly than a factory made one which carries the same price. The former may take two units of
time of someone’s conscientiously invested time and skill; the latter may take four to seven units of
time of intensely repetitive and automated work. Assume the service rate of the luthier is µ−1

1 = 2 units
of time and the service rate of the machine is µ−1

2 = 5.5 units of time. Either the luthier or the machine
may be unavailable and this happens randomly with respective rates α1 = 8 and α2 = 3. Each server
becomes available again after a mean time β−1

1 = 1
9 and β−1

2 = 1
6 units of time. The operations manager

would like to know the best order level to switch from handmade to machine made guitars. The unit
costs of the system are ch = 10, co = 20, ca = 50, and cs = 500.

Applying the results obtained in the previous section, we calculate the expected total cost TC(c)
for successive values of c, starting from c = 1. The variations of the cost are represented in Figure 2.
The optimal value of c is found to be c∗ = 3 and the corresponding optimal cost is TC∗ = 48.3038.
In managerial terms for the operations manager, this means that the optimal policy is to have the
luthier make the guitars by hand as long as there are less than three orders in line. If this number is
grater than or equal to 3, then guitars should be made using the machine.
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Figure 2. Variations of total expected cost (TC) as a function of c.
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In case there is some uncertainty about some of the parameters, a sensitivity analysis can be
conducted to assess the effect of this uncertainty on the optimal policy. For example, suppose there
is an uncertainty about α1, the failure rate when the server is in the working state. Then optimal
measures can be calculated for various values of α1. A sample calculations is shown in Table 1 where
we calculate the probability of no orders P0, the average number of orders L, and the optimal expected
cost per unit of time TC∗.

Table 1. Sensitivity to the breakdown rate α1.

α1 1 2 3 4 5 6 7 8 9 10

P0 0.1646 0.1671 0.1693 0.1712 0.1728 0.1743 0.1756 0.1767 0.1778 0.1787
L 2.3822 2.3435 2.3103 2.2815 2.2563 2.2341 2.2143 2.1967 2.1807 2.1664

TC∗ 377.92 382.69 386.78 390.32 393.42 396.15 398.58 400.76 402.71 404.48

The effect of other parameters can be assessed in a similar way.

5. Conclusions

The Markovian queueing system considered in this paper is characterized by a flexible server that
adapts to the queue length by switching from a single service to a bulk service when the queue length
is too large and from bulk service to single service when the queue length is too small. The server
is unreliable and may break down while providing service. Different parameters depend on the
service discipline applied. We calculated the system size steady-state probabilities in terms of their
probability generating function and using linear operators. The two methods comply with each other.
An application to a case study is also provided.

There are various ways this work can be further developed. For example, bulk arrivals instead
of single arrivals could be examined. Also general distributions could be assumed for the various
processes considered. Server vacations, either working or not, and various threshold policies such as
N-, T-, or D-policies could also be taken into account.
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