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Abstract: This paper addresses the waveform design problem of cognitive radar for extended target
estimation in the presence of signal-dependent clutter, subject to a peak-to-average power ratio (PAR)
constraint. Owing to this kind of constraint and the convolution operation of the waveform in the
time domain, the formulated optimization problem for maximizing the mutual information (MI)
between the target and the received signal is a complex non-convex problem. To this end, an efficient
waveform design method based on minimization–maximization (MM) technique is proposed. First,
by using the MM approach, the original non-convex problem is converted to a convex problem
concerning the matrix variable. Then a trick is used for replacing the matrix variable with the vector
variable by utilizing the properties of the Toeplitz matrix. Based on this, the optimization problem
can be solved efficiently combined with the nearest neighbor method. Finally, an acceleration scheme
is used to improve the convergence speed of the proposed method. The simulation results illustrate
that the proposed method is superior to the existing methods in terms of estimation performance
when designing the constrained waveform.

Keywords: waveform design; mutual information (MI); peak-to-average power ratio;
minorization–maximization (MM) method; cognitive radar

1. Introduction

Cognitive radar (CR) is a new intelligent closed-loop radar system that can perceive the
surrounding complicated electromagnetism environment in real time and make reasoning decisions
on this basis [1,2]. In CR, adaptive transmitted waveform design based on the perceived prior knowledge
of environment and target is one of the key technologies which can significantly improve the performance
of target detection, parameter estimation, recognition, and tracking in complicated environments [3].

For each of these missions, there are corresponding valid waveform design methods [4].
When designing waveform for target estimation, minimum mean squared error (MMSE) criterion [5],
the minimum Cramer-Rao lower bound (CRLB) criterion [6,7] and maximum mutual information
(MI) [5,8,9] criterion are usually selected. However, the CRLB criterion is only suitable for situations in
which the target information is unknown. Meanwhile, maximization of MI and the minimization of
the MMSE lead to the same solution when the target information is known.

The authors in [10] proposed an estimation waveform design method based on MI in noise, in
which the original non-convex problem was converted to a convex problem by using the convex
optimization method. Considering the signal-dependent clutter, the waveform design methods for
target estimation based on MI and MMSE were proposed in [11,12], respectively. It is worth noting
that the envelope constraint on the transmitted waveform was not considered in any of those studies,
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which made it difficult to meet the hardware constraints and maximize the power efficiency [13].
For this reason, unimodular or low peak-to-average power ratio (PAR) waveform is always applied in
radar systems [13,14]. Nevertheless, unimodular waveform may lead to the degradation of waveform
performance [15]. To tackle this problem, some researchers had used a more general low-PAR constraint
to replace the unimodular constraint to further improve the waveform performance [6,7,14–18].

In [6], subject to the constraint, a frequency domain based PAR waveform design method with
the MI criterion was proposed. However, the algorithm in [6] can only find the envelope of optimal
waveform spectrum. Since the spectral phase cannot be determined, the number of time domain
signals that satisfy the unique waveform spectrum magnitude is infinite. Therefore, it may result in a
decline of the waveform performance when the frequency domain waveform spectrum is transformed
to the time domain waveform [19]. To solve this problem, an algorithm based on the sequence linear
programming (SLP) in time domain was proposed in [20], and the original non-convex problem was
converted a convex problem which could be solved efficiently. It is worth noting that the optimization
problem in [20] is the relaxation of the original problem so the synthesized waveform may be still the
suboptimal solution.

As is well known, the minorization–maximization (MM) method is a powerful optimization
technique to solve the hard problem that is difficult to tackle directly [21]. The core principle of MM
is to transform the original problem into a series of simple problems which can be tackled efficiently
and converge to the stationary optimal solution of the original problem [22]. Motivated by the ascent
property and superior convergence of MM, it has been applied in many fields [23–27].

In this paper, we propose an efficient low-PAR cognitive waveform design method based on the
MM approach for target estimation, which is directly studied in the time domain. Based on the MM
approach, the original non-convex problem is converted to a convex problem with respect to (w.r.t.) a
matrix variable. To reduce computation cost, the convex problem is further converted to quadratic
programming (QP) problem w.r.t. a vector variable by utilizing the properties of the Toeplitz matrix.
Based on this, the QP problem is converted to a simple convex problem which can be tackled efficiently
by using the nearest neighbor method. Finally, the squared iterative methods (SQUAREM) is used to
improve the convergence speed of the proposed method. The simulation results demonstrate that the
synthesized waveform can be obtained efficiently within the given low-PAR range and the proposed
method has better estimation performance than the existing methods.

The remainder of the paper is organized as follows: Section 2 gives the baseband radar signal
model. In Section 3, the optimal criterion based MI is formulated, and an efficient low-PAR waveform
design method based on MM is proposed. A detailed performance analysis of the proposed method is
provided in Section 4. Section 5 presents our simulation results. Finally, the conclusion is summarized
in Section 6.

Notation: Scalars are represented by italic letters, vectors and matrices are denoted by boldface
lowercase and uppercase letters, respectively. The superscripts in (·)T and (·)H represent the transpose
and Hermitian transpose operations, respectively. A(m, n) denotes the element located in the mth row
and nth column of A.F(·) denotes the Toeplitz matrix mapping function of a vector, <(·), =(·), | · | and
‖ · ‖ represent the real part, imaginary part, modulus and 2-norm of a complex scalar/vector/matrix,
respectively. C is the set of complex-valued number. The symbol ‘⊗’ and ‘*’ denote the Kronecker
product and the convolution operation, respectively. Finally, CN (0, A) denotes a circular symmetric
complex Gaussian distribution with zero mean and the covariance matrix A.

2. Signal Model

In this paper, we consider the waveform design of cognitive radar for target estimation in
the presence of signal-dependent clutter. The scattering characteristic of the target is represented
by the target impulse response (TIR) [28], and the signal-dependent clutter is represented by the
clutter impulse response (CIR) [29]. Generally, the prior knowledge of the target and environment
(noise and clutter) can be obtained by some cognitive methods [30,31] and is assumed to be known
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when designing waveform for simplicity. It is assumed that the influence of sidelobes has been
mitigated by sidelobe blanking technology in front of the receiver. Meanwhile, we focus on the
analysis of single-input single-output radar in this paper which can be straightforwardly extended
to multiple-input multiple-output radar case. Then, the discrete baseband signal model is shown
in Figure 1.
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Figure 1. Signal Model.

As illustrated in Figure 1, the target and clutter are modelled by the finite impulse response filter,
and the waveform is assumed to be energy-limited. s ∈ CNs×1 denotes a transmitted waveform with
length Ns t ∈ CNt×1 and c ∈ CNc×1 denote the TIR and CIR, respectively. According to the radar
signal model in [8], it is assumed that Nt = Nc to simplify the derivations. If Nc > Nt, it is necessary
to apply a zero-filling operation to the TIR to make the TIR and CIR sampling points equal. n ∈ CNn×1

denotes the sum of the noise and the interference, Nn = Ns + Nt − 1. Let N = Nn, and x is the echo
with length Nx = N. Then, the model can be described as:

x = t ∗ s + c ∗ s + n = Ts + Cs + n = St + Sc + n (1)

where St = Ts and Sc = Cs can be obtained due to the reciprocity of the convolution operation. The
convolution matrices S and T are Toeplitz matrices corresponding to s and t, respectively. We use the
function ‘F(·)’ represents their mapping relationship in this paper, i.e., T = F(t), S = F(s). Taking
transmitted waveform as an example, the convolution matrix S can be written as:

S =



s(1) 0 · · · 0
... s(1)

. . .
...

s(Ns)
...

. . . 0

0 s(Ns)
. . . s(1)

...
. . . . . .

...
0 · · · 0 s(Ns)


∈ C(Ns+Nt−1)×Nt . (2)

3. Waveform Design Method

In this section, we utilize the MM technique to solve the estimation waveform design problem
based on information theory.

3.1. MM Method

The MM method refers to the minorization–maximization method, which can transform the
original complex problem into a series of simple problems that can be tackled efficiently and converge
to the stationary optimal solution of the original problem [22]. Now we first give a brief description of
MM. Consider a general maximization problem
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max
x

f (x)

s.t.x ∈ Θ
(3)

where f (x) is a function which is difficult to solve directly. Then, the approximate function Y
(

x; xk
)

is
commonly used to replace the original function f (x). More precisely, MM can get the optimal solution
xk+1 of the (k + 1)th iteration based on the known xk according to the following criterion.

xk+1 ∈ arg max
x∈Θ

Y
(

x; xk
)

(4)

where Y
(

x; xk
)

is said to minorize the function f (x) at the point xk, which satisfies

f (x) ≥ Y
(

x; xk
)

for ∀x ∈ Θ, (5)

f
(

xk
)
= Y

(
xk; xk

)
(6)

Then, it can be seen that the objective value is increased monotonically at every iteration, i.e.,

f
(

xk+1
)
≥ Y

(
xk+1; xk

)
≥ Y

(
xk; xk

)
= f

(
xk
)

(7)

The first inequality and the third equality hold due to the properties of (5) and (6), respectively.
The second inequality holds according to (4). Next, MM is utilized to solve the estimation waveform
based on information theory.

3.2. Problem Formulation

In this paper, the maximization of MI between the received signal and target is used as the
optimization criterion for waveform design. According to [28], supposing t, c and n are mutually
independent and t ∼ CN (0, Rt), c ∼ CN (0, Rc), and n ∼ CN (0, Rn). Then, the MI of received signal
x and target t can be formulated as [32]:

I(x; t|S) = h(x|S)− h(x|t, S ) (8)

where h(x|S) denotes the entropy of received signal x when the Toeplitz matrix of transmit waveform
S is known, and h(x|t, S ) denotes the entropy of x when S and TIR are known.

For the given S, t and x obey the joint Gaussian distribution which can be expressed as:(
t
x

)
∼ CN

[(
0Nt

0Nx

)
,

(
Rt RtSH

SRt SRtSH + SRcSH + Rn

)]
(9)

Let Rx = SRtSH + SRcSH + Rn, we can get

p(x|S) = 1
πNxdet(Rx)

exp
[
−xHR−1

x x
]

(10)

Then the entropy h(x|S) and h(x|t, S ) can be expressed as:

h(x|S) = −
∫

p(x|S ) ln p(x|S )dx

= ln det
(

SRtSH + SRcSH + Rn

)
+ Nx ln π + Nx

(11)

h(x|t, S ) = −
∫

p(x|t, S ) ln p(x|t, S )dx

= ln det
(

SRcSH + Rn

)
+ Nx ln π + Nx

(12)
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Bring (11) and (12) into (8), the objective function can be written as:

I(x,t|s) = ln det
[

INx + SRtSH
(

SRcSH + Rn

)−1
]

(13)

To meet the hardware constraints and maximize the power efficiency, the PAR constraint must be
considered. Let the total energy of the transmitted waveform be Es. Without any loss of generality, it
can be assumed that Es = Ns. Then, PAR can be defined as:

PAR(s) ,
maxj|s(j)|2

1
Ns

∑Ns
n=1|s(j)|2

= max
j
|s(j)|2 ≤ η, η ∈ [1, Ns] (14)

where s(j) is the jth element of s, and η is a predefined parameter that denotes the maximum allowed
PAR. Note that the PAR constraint is equivalent to a unimodular constraint when η = 1, while it
becomes a redundant constraint when η = Ns.

Then, the optimization problem can be formulated as:

P


max

S
ln det

[
INx + SRtSH

(
SRcSH + Rn

)−1
]

s.t. sHs ≤ Es

|s(j)|2 ≤ η, j = 1, 2, · · · , Ns

S = F(s).

(15)

It can be seen that the objective function in problem P is non-convex, the two quadratic inequality
constraints are nonhomogeneous [33]. So P is a non-convex problem which is difficult to solve.
Therefore, we need to transform P into a convex problem.

3.3. Waveform Design

The key to solving P is to convert the non-convex objective function into a convex function. First,
the objective function in (13) can be reformulated as:

ln det
[

INx + SRtSH
(

SRcSH + Rn

)−1
]
= ln det

[
INt + R1/2

t SH
(

SRcSH + Rn

)−1
SR1/2

t

]
(16)

According to the Woodbury identity [34], we can have

ln det
[

INt + R1/2
t SH

(
SRcSH + Rn

)−1
SR1/2

t

]
= − ln det

[
INt −R1/2

t SH
[(

SRcSH + Rn

)
+ SRtSH

]−1
SR1/2

t

]
= − ln det

[
INt −R1/2

t SH
(

SRtcSH + Rn

)−1
SR1/2

t

] (17)

where Rtc = Rt + Rc. Let J =

[
INt

0N×Nt

]
∈ C(Nt+N)×Nt and

V =

[
INt R1/2

t SH

SR1/2
t SR1/2

tc SH + Rn

]
∈ C(Nt+N)×(Nt+N) (18)

According to the inversion identity of block matrix [34], the expression in (17) can be
reformulated as:

INt −R1/2
t SH

(
SRtcSH + Rn

)−1
SR1/2

t =
(

JHV−1J
)−1

(19)
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So, we can recast the objective function of P as follows:

ln det
[

INt + R1/2
t SH

(
SRcSH + Rn

)−1
SR1/2

t

]
= ln det

[
JHV−1J

]
(20)

The following lemma provides a way to solve the non-convex design problem by utilizing the
MM approach.

Lemma 1: For any full-column rank matrix J ∈ Cn×m(m ≤ n), if V ∈ Cn×n is a positive definite matrix, then
ln det

[
JHV−1J

]
is convex w.r.t. V.

Then the proof of Lemma 1 can be found in [35]. Based on Lemma 1, we can find that J is a
full-column rank matrix and V is a positive definite matrix, so we can know that ln det

[
JHV−1J

]
is

convex w.r.t. V. Therefore, by using its tangent plane [33] with a given V, this term can be minorized as:

ln det
[
JHV−1J

]
≥ ln det

[
JH
(

Vk
)−1

J
]
+ tr

[
Q(k)

(
V− Vk

)]
(21)

where Qk = −
(

Vk
)−1

J
[

JH
(

Vk
)−1

J
]

JH
(

Vk
)−1

, the right-hand side of (21) is the first-order

approximation of ln det
[
JHV−1J

]
for a given Vk at kth iteration. Let Qk =

 Qk
11 Qk

12(
Qk

12

)H
Qk

22

 with the

same partitioning as that of V in (18), where Qk
11 ∈ CNt×Nt , Qk

12 ∈ CNt×N , and Qk
22 ∈ CN×N . Now the

MM is applied to minorize the function of the left side in (21). Then, the right-hand side of (21) can be
rewritten as:

Qk
0+tr

[
Qk

12SR1/2
t

]
+ tr

[(
Qk

12

)H
R1/2

t SH
]
+ tr

[
Qk

22SRtcSH
]

(22)

where Qk
0 = ln det

[
JH
(

Vk
)−1

J
]
+ tr

[
Qk

11 + Qk
22Rn

]
is the constant term.

Ignoring the constant term, and using the identity that tr[AB] = tr[BA] [34], the problem P can be
recast as:

P1


max

S
tr
[

SR1/2
t Qk

12 +
(

Qk
12

)H
R1/2

t SH + Qk
22SRtcSH

]
s.t. sHs ≤ Es

|s(j)|2 ≤ η, j = 1, 2, · · · , Ns

S = F(s).

(23)

It can be seen that the objective function of (23) is still non-convex [33]. Then, let λmin denotes the
smallest eigenvalue of SR1/2

t Qk
12 + Qk

21R1/2
t SH + Qk

22SRtcSH, so the problem P1 can be rewritten as:

P2



max
S,λmin

λmin

s.t. SR1/2
t Qk

12 +
(

Qk
12

)H
R1/2

t SH + Qk
22SRtcSH < λminIN

sHs ≤ Es

|s(j)|2 ≤ η, j = 1, 2, · · · , Ns

S = F(s).

(24)

Then, the first constraint can be converted to a convex set by utilizing the Schur complement
theorem [36] which is defined as follows:

Lemma 2. (Schur complement theorem): Let A =

[
A11 A12

AH
12 A22

]
, then we can get A � 0 if and only if

A22 � 0 and A11 −A12A−1
22 AH

12 � 0.
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According to the Schur complement theorem, the first constraint of this problem is equivalent to −λminIN + SR1/2
t Qk

12 +
(

Qk
12

)H
R1/2

t SH
(

Qk
22

)1/2
S

SH
(

Qk
22

)1/2
−R−1

tc

 < 0 (25)

To make the optimization problem more intuitional, P2 can be recast as:

P3



max
S, λmin

λmin

s.t.

 −λminIN + SR1/2
t Qk

12 +
(

Qk
12

)H
R1/2

t SH
(

Qk
22

)1/2
S

SH
(

Qk
22

)1/2
−R−1

tc

 < 0

[S(m : m + Ns − 1, m)]HS(m : m + Ns − 1, m) ≤ Es, m = 1, 2, · · · , Nt

|S(i, j)|2 ≤ η, i = 1, 2, · · · , N, j = 1, 2, · · · , Nt.

(26)

where ‘S(m : m+ Ns− 1, m)’ represents the elements in the mth column, and the mth to (m + Ns − 1)th
rows of S. We can see that the first inequality constraint is the linear inequality with regard to matrix
variable S. According to [33], any line is affine, so the first inequality constraint is a convex set. Then the
second constraint belongs to a Euclidean ball, and the third constraint belongs to a norm ball, and both
of them are convex set [33]. Therefore, the constraints of P3 are convex sets with regard to matrix S.

In addition, it is obvious that the objective function of P3 is an auxiliary variable which is also
convex. Hence, P3 is a convex problem with regard to matrix variable S and it can be solved by
applying the interior point method [33] with CVX toolbox [37]. However, it has an approximate
computational complexity of O

(
N3.5

s
)

[38] at each iteration, which may bring a high computation cost
especially when Ns is large. Therefore, a fast optimization method is needed.

3.4. A Fast Optimization Method

To reduce the cost of computation, we should convert the original problem P1 to a form that is
easier to solve. First, we can convert the matrix variable S to the form of vector. Then, the identities
that tr(AB) = vecT(BT)vec(A) and tr(ABCD) = vecT(DT)(CT ⊗A

)
vec(B) [39] can be used to recast

the objective function in (23), which can be rewritten as:

tr
[

SR1/2
t Qk

12 +
(

Qk
12

)H
R1/2

t SH + Qk
22SRtcSH

]
= vecT

((
R1/2

t Qk
12

)T
)

vec(S) + vecT
((

SH
)T
)

vec
((

Qk
12

)H
R1/2

t

)
+ vecT

((
SH
)T
)(

RT
tc ⊗Qk

22

)
vec(S)

=
(

uk
)T

vec(S) + vecT
((

SH
)T
)

vk+vecT
((

SH
)T
)

Gkvec(S)

(27)

where

uk = vec
((

R1/2
t Qk

12

)T
)
∈ CNt N×1,

vk = vec
((

Qk
12

)H
R1/2

t

)
∈ CNt N×1,

Gk =
(

RT
tc ⊗Qk

22

)
∈ CNt N×Nt N

(28)

For further simplification, considering that S is a convolution matrix with Toeplitz structure
(shown in (2)) which consists of s, we can recast the right hand side of (27) as:(

ũk
)T

s + sH ~
v

k
+ sHG̃

k
s (29)
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where

ũk = ∑Nt
i=1 ũk

i ∈ CNs×1,

ũk
i =

[
uk((i− 1) ∗ N + i), uk((i− 1) ∗ N + i + 1), · · · , uk((i− 1) ∗ N + i + Ns − 1)

] (30)

ṽk = ∑Nt
i=1 ṽk

i ∈ CNs×1,

ṽk
i =

[
vk((i− 1) ∗ N + i), vk((i− 1) ∗ N + i + 1), · · · , vk((i− 1) ∗ N + i + Ns − 1)

] (31)

and G̃
(k)

= ∑Nt
i=1 ∑Nt

j=1 Bk
i,j, where Bk

i,j ∈ CNs×Ns can be expressed as:

Bk
i, j =

 Gk[(i− 1)N + j , ( i− 1)N + j] · · · Gk[(i− 1)N + j , ( i− 1)N + j+Ns − 1]
...

. . .
...

Gk[(i− 1)N + j+Ns − 1 , ( i− 1)N + j] · · · Gk[(i− 1)N + j+Ns − 1 , ( i− 1)N + j+Ns − 1]

 (32)

Then the optimization problem P1 can be further rewritten as:

P4


max

s
Re
(

sHrk
)
+ sHG̃

k
s

s.t. sHs ≤ Es

|s(j)|2 ≤ η, j = 1, 2, · · · , Ns.

(33)

where rk = ũk + ṽk. It can be seen that P4 is a quadratically constrained quadratic program
(QCQP) problem, which can be solved by the power method-like in [26]. More precisely, P4 can
be reformulated as:

P5


min

s
‖s− ak‖2

2

s.t. sHs ≤ Es

|s(j)|2 ≤ η, j = 1, 2, · · · , Ns

(34)

where ak consists of the first Ns entries of W̃
k
s̃k, s̃k =

[(
sk
)T

, 1
]T

, let

Wk =

 G̃
k

rk(
rk
)H

0

 (35)

Then W̃
k
= µkINs+1 −Wk, where µk is a constant that is larger than the maximum eigenvalue

of Wk to make sure that W̃
k

is positive definite. It can be seen that P5 is a convex problem which
can be solved by using the interior point method. However, we can find that the form of objective
function and constraints of P5 are the same as the nearest neighbor method with a lower complexity of
O
(

N2
s
)

[40]. Hence, P5 can be solved efficiently.
Then, let Ik denote the value of MI at kth iteration, τ the termination tolerance and γ the maximum

iterative number. According to the above steps, the proposed MM-based method is summarized
in Box 1.
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Box 1. The proposed minimization–maximization (MM)-based method for low-PAR estimation
waveform design.

Step 0: Set k = 0, generate a random waveform sk, initialize the τ and γ.

Step 1: Use (28) to update uk, vk and Gk;

Step 2: Use (30) and (31) to update ũk and ṽk;

Step 3: Use (32) to update Bk
i,j, G̃

k
= ∑Nt

i=1 ∑Nt
i=1 Bk

i,j;

Step 4: rk = ũk + ṽk, use (35) to update Wk, W̃
k
= µkINs+1 −Wk;

Step 5: Get ak from the first Ns entries of W̃
k
s̃k;

Step 6: Solve P5 to update sk+1, set k = k + 1;

Step 7: Go back to step 1 until
∣∣∣Ik − Ik−1

∣∣∣/Ik ≤ τ or the iteration number is larger than γ.

3.5. Acceleration Scheme

For the MM method, the convergence speed depends mainly on the minorized function. It is
worth noting that the minorized function of the proposed method (as shown in the right-hand side
of (21)) may be relatively loose as a lower bound of the original function. Therefore, although the
computational cost of the proposed method is low at each iteration, the convergence speed may still be
slow. For the purpose of accelerating the convergence speed, the acceleration scheme (SQUAREM)
in [41] is adopted in this paper. Then, we give the modified version of SQUAREM according to the
optimization problem we meet.

Let LMM(·) denote the fixed-point map of the proposed MM-based method which can be
described as:

sk+1 = LMM

(
sk
)

(36)

However, SQUAREM is not applicable to the case of the limited-energy and PAR constraints, and
the monotonicity of the proposed method cannot be guaranteed by using SQUAREM. To this end, the
first problem can be solved by using the nearest neighbor method to deal with P5, and the second
problem can be tackled by utilizing a backtracking strategy. Then, the acceleration scheme based on
SQUAREM is summarized in Box 2.

Box 2. The Acceleration scheme based on squared iterative methods (SQUAREM).

Step 0: Set k = 0, generate a random waveform sk, initialize the τ and γ;

Step 1: s1 = LMM

(
sk
)

;

Step 2: s2 = LMM(s1);
Step 3: e = s1 − sk;
Step 4: q = s2 − s1 − e;
Step 5: α = −‖e‖/‖q‖;
Step 6: ak = sk − 2αe + α2q;
Step 7: Solve to P5 update sk+1;
Step 8: while Ik+1 < Ik do
Step 9: α = (α− 1)/2;
Step 10: ak = sk − 2αe + α2q;
Step 11: Solve P5 to update sk+1;
Step 12: end while
Step 13: Set k = k + 1;

Step 14: Go back to step 1 until
∣∣∣Ik − Ik−1

∣∣∣/Ik ≤ τ or the iteration number is larger than γ.
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4. Performance Analysis

4.1. Convergence

Let U
(

s; sk
)

represent the minorized function (i.e., the objective function of P4) which can be
written as:

U
(

s; sk
)
= Re

(
sHrk

)
+ sHG̃

k
s (37)

As is well known, P4 is a QCQP problem. According to [42], it had been proved that U
(

sk+1; sk
)
>

U
(

sk; sk
)

under the PAR and transmitted energy constraints. Then, we can have

I
(

sk
)
= U

(
sk; sk

)
≤ U

(
sk+1; sk

)
≤ I
(

sk+1
)

(38)

where I
(

sk
)

denotes MI value of the original function at kth iteration. The first equality and the third
inequality hold due to the properties of (6) and (5), respectively. Hence, we can know that the proposed
method is monotonically increasing.

In addition, the waveform
{

sk
}

is energy-limited and its every point bounded with
∣∣∣sk(j)

∣∣∣ ≤
√

η (j = 1, 2, · · · , Ns) . Therefore, according to the Theorem 2.17 in [42] and the fact that I(s) and

U
(

s; sk
)

have the same gradient value when s = sk, we can know that at least one limit point exists
and the MI of the synthesized waveform has its upper bound.

4.2. Computational Complexity

The proposed MM-based method converts the original problem into a simple problem which can
be solved efficiently. In every iteration, updating Qk, performing eigenvalue decomposition to obtain
µk, and solving P5 with the nearest neighbor method, which have complexities of O

(
N2

s
)
, O
(
N3

s
)

and O
(
N2

s
)
, respectively. Therefore, the total computation complexity of the proposed method is

O
(
N3

s+2N2
s
)

in every iteration.

5. Simulation Results

In this section, several numerical simulations are performed to demonstrate the performance
of the proposed method. Assuming that the length of the transmitted waveform is Ns = 20, the
initial waveform s0 is generated by a random phase-coded signal. The length of TIR and CIR are
Nt = Nc = 30. Meanwhile, both the target and clutter are mutually independent circular symmetric
complex Gaussian random vector, i.e., t ∼ CN (0, Rt), c ∼ CN (0, Rc) [28], where Rt = σ2

t Rt0 and
Rc = σ2

c Rc0. According to [5], Rt0 = UtΛtUH
t and Rc0 = UcΛcUH

c are normalized covariance matrix,
where Λt and Λc have the same structure. Hence, taking the Λt as an example, Λt ∈ CNt×Nt is a
diagonal matrix and Ut is the Nt × Nt unitary discrete Fourier transform (DFT) matrix with its (i, j)th
entry given by

1√
Nt

exp
[
−j2π(i− 1)(j− 1)

Nt

]
, ∀i, j ∈ [1, Nt] (39)

The noise is white Gaussian with zero mean and covariance matrix Rn = σ2
nIN , where σ2

n = 0.5
denotes the variance of noise. Then, we perform 300 Monte Carlo trials for each combination of
parameters and the termination tolerance τ = 10−6. The MATLAB 2013b version is used to perform
the simulations with a standard PC (CPU Core i5-3230M 2.6GHz and 4GB RAM).

5.1. Effectiveness Verification

In this subsection, we demonstrate the effectiveness of the proposed method. First, we give the
typical set of eigenvalues for the normalized matrices Rt0 and Rc0 as shown in Figure 2.
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Figure 2. Eigenvalues of the matrices Rt0 and Rc0.

Let the total energy of waveform Es = Ns, σ2
t = 1 and σ2

c = 1. Figure 3 shows the convergence of
the proposed MM-based method. In addition, the upper bound is obtained by using the Lagrange
multipliers method to solve P4 under only the energy constraint. From Figure 3a (η = Ns which is
equivalent to the energy constraint) and Figure 3b (η = 1 which is equivalent to the constant-modulus
constraint), it can be seen that the accelerated case is much faster than the case without acceleration.
Meanwhile, the MI of the synthesized waveform with η = Ns can get the upper bound and the case
with η = 1 is about 0.07 away from the upper bound, this is because the large PAR value (η = Ns) has
larger feasible set region than small PAR value (η = 1).
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Figure 3. The convergence of the proposed method, (a) η = Ns and (b) η = 1.

Let the transmitted energy Es range from 1 to 30, σ2
t = 1 and σ2

c = 1. Then, Figure 4a,b shows the
estimation performance comparison of the proposed method, the Sequence Linear Programming-based
Waveform Design algorithm (SLPWD) in [20] and the frequency domain-based Cognitive REceiver
and Waveform design algorithm (CREW(fre)) in [6] versus the transmitted energy with η = Es and
η = Es/Ns (i.e., constant-modulus constraint), respectively.

From Figure 4 we can see that the MI of proposed method is larger than that of other methods.
Meanwhile, the MI of SLPWD algorithm in [20] is larger than CREW(fre) algorithm in [6], this is
because CREW(fre) addresses the waveform design in frequency domain and the waveform spectrum
does not contain the phase information, which may result in a decline of the waveform performance
when the waveform spectrum is converted to time domain.
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Let Es = Ns, σ2
t = 1, the clutter-noise-ration (CNR) ranges from −10 dB to 10 dB. Figure 5a,b

shows the estimation performance of the proposed method, SLPWD in [20] and CREW(fre) in [6]
versus CNR with η = Es and η = 1, respectively. It can be seen that the MI of the proposed method is
better than the other methods. Hence, it demonstrates the effectiveness of the proposed method.
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(CNR), (a) η = Es, (b) η = 1.

Figure 6 shows the performance assessment for the estimation of target t with the proposed
method. For the optimal waveform based on maximizing MI, mean squared error (MSE) will be used
for performance assessment. In addition, we also compared with the CRLB. The MSE and CRLB
for transmitted waveform are derived in Appendix A. From Figure 6 we can see that the estimated
performance gets closer to the CRLB as the transmitted energy increases. So, it verifies that the
waveform generated by the proposed method has good estimation performance.
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5.2. Influence of PAR

In this subsection, we discuss the influence of the PAR on the synthesized waveform. Figure 7
shows the MI of the synthesized waveforms under different PAR values. We can see that the curves can
converge to their respective stationary values which become larger as η increases, and this is because
the feasible set region in P5 becomes larger as η increases. However, since the energy of the transmitted
waveform is limited, the waveform performance has its upper bound. Then, we can also see that the
curves can be monotonically convergent to the same stationary value and the curves almost overlap
when η ≥ 1.5. Figure 8 shows the real and imaginary parts of the waveforms under different PAR
constraints. When η = Ns, the distribution radii of the corresponding points are large, which is not
favorable for practical applications. In contrast, the results obtained with η = 1 are unimodular and lie
on the unit circle. Meanwhile, the distribution radii of the waveform with η = 2 are close to those of
the waveform with η = 1, and the performance is very close to that of the waveform with η = Ns, as
shown in Figure 7. This result indicates that the low-PAR waveform (for example η = 2) not only meet
the hardware constraints but also have better estimation performance than a unimodular waveform.
Hence, the low-PAR waveform is more suitable for practical applications.
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6. Conclusions

In this paper, we proposed an efficient low-PAR waveform design method of cognitive radar
for the extended target estimation in the presence of signal-dependent clutter. To tackle the original
non-convex problem in the time domain, an efficient method is proposed by using the MM technique.
Meanwhile, to improve the convergence speed, an acceleration approach is given based on the
SQUAREM. Numerical experiments demonstrate the effectiveness of the proposed method for the
given PAR. Compared with the existing method, the proposed method demonstrates the advantage
w.r.t. estimation performance. Moreover, the proposed method can be used in the waveform design
of cognitive radar systems since the high computational efficiency will enable real-time waveform
changes. Possible future research tracks include the extension to cases with low autocorrelation
sidelobes and spectral constraints with imprecise prior information.
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Appendix A

MSE and CRLB for the transmitted waveform. Let Rw = SRcSH + Rn. According to the
reference [43], (p. 156), for the given x and S, the estimation of t can be written as:

t̂ = RtSH
(

SRtSH + Rw

)−1
x (A1)

Then the estimation error for t can be written as:

MSE = E

{
‖t−RtSH

(
SRtSH + Rw

)−1
x‖

2

2

}
= tr(Rt)− 2tr

[
RtSH

(
SRtSH + Rw

)−1
SRt

]
+

tr
[

RtSH
(

SRtSH + Rw

)−1
SRt

]
= tr(Rt)− tr

[
RtSH

(
SRtSH + Rw

)−1
SRt

]
(A2)
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For the given S, the likelihood function of t can be written as:

f (x|t) = 1
πNxdet(Rw)

exp
[
−(x− St)HR−1

w (x− St)
]

(A3)

The logarithmic form of (42) can be expressed as:

ln f (x|t) = −Nx ln π − ln det(Rw)− (x− St)HR−1
w (x− St) (A4)

Differentiating objective function in (8) with respect to t, we can have

∂ ln f (x|t)
∂t

= 2SHR−1
w x− 2SHR−1

w St (A5)

Then the error matrix can be expressed as:

CCRLB =
1

−E
{

∂
∂t

[
∂ln f (x|t)

∂t

]T
} =

(
2SHR−1

w S
)−1

(A6)

So, the CRLB can be written as:

ErrCRLB = tr
[(

2SHR−1
w S

)−1
]

(A7)
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