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Abstract: To further improve the cycle performance of gas turbines, a gas turbine cycle model based on
interstage bleeding rotating detonation combustion was established using methane as fuel. Combined
with a series of two-dimensional numerical simulations of a rotating detonation combustor (RDC)
and calculations of cycle parameters, the pressure gain characteristics and cycle performance were
investigated at different compressor pressure ratios in the study. The results showed that pressure
gain characteristic of interstage bleeding RDC contributed to an obvious performance improvement
in the rotating detonation gas turbine cycle compared with the conventional gas turbine cycle. The
decrease of compressor pressure ratio had a positive influence on the performance improvement
in the rotating detonation gas turbine cycle. With the decrease of compressor pressure ratio, the
pressurization ratio of the RDC increased and finally made the power generation and cycle efficiency
enhancement rates display uptrends. Under the calculated conditions, the pressurization ratios of
RDC were all higher than 1.77, the decreases of turbine inlet total temperature were all more than 19
K, the power generation enhancements were all beyond 400 kW and the cycle efficiency enhancement
rates were all greater than 6.72%.

Keywords: rotating detonation; gas turbine; pressure gain; entropy change; cycle efficiency;
power generation

1. Introduction

As one of the most important types of power plants, gas turbines are widely used in the fields
of aviation, shipping, power stations, etc. Faced with a greater demand for high efficiency and low
pollution, higher level gas turbines have attracted more and more attention in recent years. However,
it is quite difficult to improve the cycle efficiency in conventional gas turbines due to the high entropy
change during the combustion process [1,2]. In order to break through the bottleneck of efficiency
improvement, various advanced combustion technologies, including detonation [3–5], wave rotors [6],
and shockless explosion [7,8] were studied in the past few decades.

Theoretical pure detonation combustion which has a lower entropy change and self-pressure
gain compared with iso-pressure combustion under similar conditions has already attracted wide
attention since the beginning of the 21st century [9,10]. Due to the difficulty of the high Mach
number environment in the standing oblique detonation combustion process [11] and the high
frequency ignition in the pulse detonation combustion process [12], rotating detonation with its
wide working range and self-sustaining propagation has been attracting increasing attention. The
evolution characteristics of rotating detonation wave [13,14], the thermodynamic characteristics of

Entropy 2019, 21, 265; doi:10.3390/e21030265 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/1099-4300/21/3/265?type=check_update&version=1
http://dx.doi.org/10.3390/e21030265
http://www.mdpi.com/journal/entropy


Entropy 2019, 21, 265 2 of 20

rotating detonation flow fields [15–19] and the propulsion performance of the rotating detonator
combustor (RDC) [20–22] have been investigated with a series of experiments and numerical studies.

In recent years, many studies on the application of rotating detonation combustion to gas turbine
cycles have been gradually developed. It has been found that rotating detonation combustion could
significantly improve the cycle performance of gas turbines. Wolański et al. applied RDC to a GT350
engine and found that stable continuous detonation was difficult to establish for pure Jet-A fuel. The
addition of hydrogen fuel could greatly improve the stability of RDC. With the dual fuel including
Jet-A and hydrogen, the thermal efficiency showed an increase of 5–7% compared with that of the
base engine [23,24]. After a series of studies on the flow field characteristics of a three-dimensional
RDC [25–27], Frolov et al. explored the feasibility of the application of RDC to gas turbines in 2016. An
isolator was designed to dampen the pressure disturbances towards the upstream compressor and a
total pressure gain of 15% was found during the combustion course [28]. Naples et al. improved the
export structure of the RDC by adding a trailing annular ejector, which reduced the static pressure
pulsation at the RDC outlet by 60–70% [29]. On this basis, a new T63 engine with a RDC using
hydrogen as fuel was tested in 2017 and the cycle efficiency was improved under some conditions [30].
Combined with the design of a RDC expansion outlet and a supersonic turbine, Sousa analyzed the
cycle performance of rotating detonation gas turbines using hydrogen as fuel and found the cycle
efficiency could be increased by about 5% at low pressure ratios, but it showed no increase at high
pressure ratios [31]. Qi et al. adopted a simplified model to analyze the cycle performance of the
rotating detonation gas turbine under different working conditions. The efficiency could be increased
by 5–9% compared with the base gas turbine, and equivalence ratio in RDC played an important role
in design of the new cycle [32]. In addition, there were also some studies on the connection between
RDCs and turbines from an experimental and numerical view, although with no analysis of the engine
cycles [33–35].

Up to now, plenty of research on gas turbines based on rotating detonation has used a fuel with a
small detonation cell size, such as hydrogen and ethylene, which cannot be applied in marine engines
and power stations. The little research using industrial fuel either ignored many of the characteristics
of rotating detonation flow fluid or brought in extra structures which were difficult to design. In our
previous studies, the ejector was simplified as a mixing model including a series of assumptions which
will cause many engineering design difficulties. In this paper, a new thermodynamic cycle model
of a gas turbine based on interstage bleeding rotating detonation combustion was established using
methane as fuel. The air from interstage bleeding participated in combustion and the higher pressure
air at the outlet of compressor sprayed into the outlet of RDC combustor for mixing, which will avoid
the need for a complex ejector design and makes better use of the air from interstage bleeding. An
investigation of the pressure gain characteristics and cycle performance were carried out with a series
of numerical simulations and cycle parameter calculations.

2. Methodology

2.1. Cycle Scheme

Figure 1 shows the cycle scheme of a gas turbine with two combustion modes. Above is the
gas turbine cycle based on interstage bleeding rotating detonation combustion, and below is the
conventional gas turbine cycle. Compared with the conventional gas turbine cycle, the bleeding air
from a 3/4 compressor entered into the RDC and participates in the pressure gain combustion, the
higher pressure air from the compressor outlet enters into a mixer and cools the gas from the RDC
outlet. The design complexity of the mixer could be effectively reduced as the air from the compressor
outlet had a pressure that is higher or close to that of the air from interstage bleeding. In terms of the
cycle scheme, the actual T-S diagrams which respectively represent the thermodynamic cycles of the
conventional gas turbine and rotating detonation gas turbine are studied in this section, as shown in
Figure 2.
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model, mixer model, turbine model and other necessary equations. Meanwhile, to visually 
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cycle based on approximate iso-pressure combustion (called reference gas turbine cycle, of which 
power parameters referred to a certain type of gas turbine in practical application) was brought in 
for reference. The difference of computing method only exists in the combustion progress to analyze 
the influence of combustion mode on the cycle performance. 
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2.2. Physical Model and Computing Method

In this section, the model information of gas turbine cycle based on interstage bleeding rotating
detonation combustion will be mainly described, including the compressor model, combustion model,
mixer model, turbine model and other necessary equations. Meanwhile, to visually investigate the
performance of the rotating detonation gas turbine cycle, a conventional gas turbine cycle based on
approximate iso-pressure combustion (called reference gas turbine cycle, of which power parameters
referred to a certain type of gas turbine in practical application) was brought in for reference. The
difference of computing method only exists in the combustion progress to analyze the influence of
combustion mode on the cycle performance.

• Compressor model (1→2)

As the mass flow rate of air ga, compressor inlet temperature T∗1 , compressor inlet pressure
P∗1 , compressor efficiency ηc, compressor pressure ratio πc, compressor temperature ratio τ were
known, compressor outlet temperature T∗2 and compressor outlet pressure P∗2 of compressor could be
obtained by:

ηc =
H∗2s − H∗1
H∗2 − H∗1

(1)
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T∗2 = T∗1 τ (2)

P∗2 = P∗1 πc (3)

where H∗1 and H∗2 are the enthalpies at state points of 1 and 2. H∗2s is the ideal enthalpy in
isentropic condition.

Compressor pressure ratio πc, compressor outlet temperature T∗2 , compressor outlet pressure P∗2 ,
interstage bleeding temperature T∗2m, interstage bleeding pressure P∗2m, mass flow rate of air ga were
calculated at the 100% load (design condition) ~50% load of the reference gas turbine, as shown in
Table 1. As the power generations of reference gas turbine LE,0 at different loads were known, the state
parameters of compressor outlet in different conditions could be obtained through cycle computations.

Table 1. Relative parameters of the compressor.

Load 100% 90% 80% 70% 60% 50%
LE,0 [kW] 7416.25 6674.63 5933.00 5191.38 4449.75 3708.13

πc 13.66 12.90 12.17 11.44 10.71 10.02
P*

2 [Mpa] 1.3573 1.2818 1.2091 1.1365 1.0641 0.9962
T*

2 [K] 688.32 677.44 665.22 652.89 639.65 627.18
P*

2m [Mpa] 0.7060 0.6763 0.6474 0.6180 0.5882 0.5598
T*

2m [K] 562.64 555.61 547.71 539.71 531.39 522.96
ga [kg/s] 26.8185 25.6773 24.6146 23.6218 22.6886 21.8212

• Combustion model (2m→3c/2→30)

In this paper, RDC(2m→3c) was simplified to a two-dimensional rectangular model, of which the
length and width were respectively 800 mm and 200 mm (these sizes were preliminarily determined
by referring to [19,36–38]). A more detailed simplified method and its reasonability can be found
in [39,40], where the effectiveness of this method has been verified. The density-based solver was chose
to solve the two-dimensional unstable Euler Equation. The laminar finite rate model was selected due
to the fact viscosity is neglected. In the previous studies such as [16,41–44], the rotating detonation
phenomenon could be effectively described by a laminar finite rate model. In addition, to effectively
capture the shock waves and detonation waves, the flux term was dispersed by the advection upstream
splitting method (AUSM) [45]. The convective term and time term were, respectively, dispersed in
the third-order upwind scheme and using the four-step Runge–Kutta method with the second-order
accuracy [46]:

∂Φ

∂t
+

∂U
∂x

+
∂V
∂y

= Ω (4)

where the dependent variable vector Φ, the convective flux vectors U and V, and the source vector Ω

are defined as:
Φ =

(
ρ, ρu, ρv, ρet, ρj

)T (5)

U =
(

ρu, ρu2 + P, ρuv, (ρet + P)u, ρju
)T

(6)

V =
(

ρv, ρuv, ρv2 + P, (ρet + P)v, ρjv
)T

(7)

Ω =
(
0, 0, 0, 0, ωj

)T (8)

where ρ is the density of the premixture, ρj is the density of species j, u and v are respectively the
velocity in X and Y direction, P is the pressure that can be given by the thermal equation of state for a
perfect gas. The total internal energy is defined as:

et = e +
1
2

(
u2 + v2

)
(9)
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where a caloric equation of state for the internal energy of a reacting mixture:

e = e
(
ρj, T

)
(10)

Figure 3 shows the temperature shadowgraph of the RDC at t = 6800 µs. The temperature
characteristics reflected in the temperature contour and extra important pressure characteristic can
both be reflected in the temperature shadowgraph.
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It could be seen that there were detonation wave A, oblique shock wave B, mixing region C,
discontinuity region D and premixed gas region E, which is in good agreement with the published
results [47–49]. The independence test and model validation have already been carried out in the
previous study [19,32], so the grid size and time step were respectively selected as 1 mm and 0.2 µs.
In this study, the propagation speed of detonation wave was 1800.4 m/s in the design condition and
the theoretical Chapman Jouguet (CJ) propagation velocity of detonation wave is 1808.0 m/s under the
same conditions, so the error is only 0.8%. With the parameters calculated in the numerical simulation,
the combustion thermal efficiency ηr pressurization ratio π3c, the nonuniformities of outlet static
pressure NUP and outlet static temperature NUT can be obtained using the following equations:

π3c = P∗3c/P∗2m (11)

ηr = (H∗3c − H∗2m)/Qin (12)

NUP =

√
n

∑
i=1

(
Pi − P

)2/(n− 1)/P (13)

NUT =

√
n

∑
i=1

(
Ti − T

)2/(n− 1)/T (14)

where P∗3c and H∗3c are the outlet total pressure and outlet total enthalpy at the state point of 3c, Qin
represents the heat release of fuel, and P, T are average static pressure and temperature of RDC outlet.

In the conventional approximate iso-pressure combustion progress (2→30) of the reference gas
turbine cycle, there was an important parameter—the total pressure recovery coefficient σ—which
was applied in the followed equation and defined as 0.934:

σ = P∗3,0/P∗2 (15)

• Mixer model (3c→3)

A mixing process happens in the mixer between the gas of the RDC outlet and the air of the
compressor outlet. Two assumptions were made in the mixer model, one was that the all mechanical
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losses were ignored, the other was that the development of an oblique shock wave stopped in the
mixer. Thus, the key parameters in this model can be calculated by:

ga = ga,m+ ga,c (16)(
ga,c + g f

)
P∗3c + ga,mP∗2 =

(
ga + g f

)
P∗3 (17)

where ga,c is the mass flow rate of the combustion air, ga,m is the mass flow rate of the mixing air, g f is
the mass flow rate of the fuel, and P∗3 , T∗3 , π3 respectively represent the total pressure, total temperature
and composite pressure ratio at the state point of 3.

• Turbine model (3→4/30→40)

As the loss coefficient of exhaust pressure ξout was known, and expansion ratio (πt) and efficiency
(ηt) of turbine were:

πt =
P∗3
P∗2

πcξout (18)

ηt =
H∗3 − H∗4
H∗3 − H∗4s

(19)

where H∗3 and H∗4 are the enthalpies at state points of 3 and 4. H∗4s is the ideal enthalpy in isentropic
condition (the equations were the same in the 30→40 case)

Based on the above models and the necessary iterative computations, the following
thermodynamic cycle performance parameters can be obtained:

Compressor input power LC:

LC = ga,c

∫ T∗2

T∗1
CP(T)dT + ga

∫ T∗2m

T∗1
CP(T)dT (20)

Turbine output power LT :

LT =
(

ga + g f

)∫ T∗3

T∗4
CP(T)dT (21)

Power generation LE:
LE = LT − LC (22)

Cycle efficiency η:
η = LE/Qin (23)

Cycle efficiency increasing rate w∆η :

w∆η =
η − η0

η0
× 100% (24)

In addition, as the fuel of the gas turbine can be completely combusted, the gas composition
mainly included N2, O2, CO2, and H2O. In view of the additivity of CP for the mixed gas, the following
equation was used:

CP(T) = 8.3145(A1 + A2T + A3T2 + A4T3 + A5T4) (25)

where A is coefficient related to composition, obtained in [50].
The enthalpy of each point was calculated by:

H =
∫ T

Tre f

CP(T)dT (26)
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Entropy of any point S:

S =
∫ T

Tre f

CP(T)
T

dT − Rg ln
P

Pre f
(27)

where Tre f is the reference temperature, 288.15 K, and Pre f is the reference pressure, 0.1013 MPa.
The efficiency characteristics of the compressor and turbine were referenced from universal

characteristic lines, obtained in [51,52].

3. Results and Discussion

3.1. Flow Field Characteristic Research of RDC

Figure 4 presents entropy shadowgraphs at t = 6800 µs. In the axial direction, the height of the
detonation wave was about 95 mm, the height of the oblique shock wave was about 90 mm, and
the height of the transition region was about 15 mm at different compressor pressure ratios. The
six path lines passed through the midpoint of detonation wave (type 1 of path lines) and oblique
shock wave (type 2 of path lines) in the axial direction, respectively. The path lines were obtained by
transformation of coordinates, which was explained in details in [19,41]. Path lines 1©, 3©, 5© passed
through detonation wave at about Y = 50 mm and a weak shock wave at about Y = 150 mm. Path
lines 2©, 4©, 6© passed through the detonation wave at about Y = 7.8 mm, weak shock waves at about
Y = 25 mm, 150 mm and the oblique shock wave at about Y = 155 mm.
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The changes of static temperature and static pressure along path lines 1©, 3©, 5© are shown in
Figure 5a. Path lines passed through the detonation wave at about Y = 47.5 mm, where the pressure
and temperature both displayed jumps and then gradually decreased. At Y = 150 mm, the pressure
and temperature shows a smaller jump due to the fact the path lines are passing through a weak
shock wave, where the pressure increased by 8.07%, 5.22%, 8.27% and the temperature increased by
1.66%, 1.16%, 1.75%. In all, the pressure decreased by 27.34%, 26.96% 30.44% from the beginning to the
end, respectively.
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Figure 5b presents the changes of static temperature and static pressure along path lines 2©, 4©, 6©.
Pressure and temperature had the first big jumps when the path lines passed through the detonation
wave at about Y = 7.8 mm. Then the two parameters dropped extremely. Path lines 2©, 4©, 6© passed
through the first weak shock wave at Y = 25 mm. Although the two parameters had no significant
change, the slope of downtrend slowed down obviously. Path lines 2©, 4©, 6© passed through the
second weak shock wave at Y = 150 mm, where the two parameters decreased less than 1%. Pressure
and temperature had their second big jumps when the path lines passed through the oblique shock
wave at Y = 155 mm. In all, the pressure increased by 96.05%, 99.45%, 96.30% from the beginning to
the end, respectively.

Figure 5c shows the change of the entropy along the six path lines. The same as the change trend
of temperature, big jumps happened when the path lines passed through the detonation wave. At
the moment, the entropy change reached about 1900 J/kg·K along path lines 1©, 3©, 5© and about
1850 J/kg·K along path lines 2©, 4©, 6©. Another jump happened when the path lines 2©, 4©, 6© passed
through the oblique shock wave. As for path lines 2©, 4©, 6©, the major entropy change was rooted
in the detonation region and the second entropy change led by the oblique shock wave was about
6.61% of the total. In all, the entropy change reached about 1900 J/kg·K and 2000 J/kg·K for the two
styles of path lines from the beginning to the end, respectively. In addition, although the weak shocks
caused sudden changes in the pressure and temperature diagram, it had no significant effect on the
entropy change.

As there was a significant difference in the pressure changes along the two types of path lines,
mass-weighted average parameters of the RDC cross-section in the axial direction were analyzed,
as shown in Figure 6a. Combined with the heights of the detonation wave, oblique shock wave
and transtion region as mentioned above, the total pressure P∗ and total temperature T∗ increased
significantly due to the existence of the detonation wave, and the total pressure reached the highest
value at the end point of the detonation wave at Y = 95 mm. Entering into the transtion region including
deflagration combustion, the total pressure started to decrease and the total temperature reached its
peak at the end of transtion region when the combustion was completed. In the region including
the oblique shock wave, the total pressure continued to decrease but the total temperature remain
unchanged. In general, there were significant pressurization characteristics in the RDC, of which
the instantaneous pressurization ratios respectively reached 1.7757, 1.8005, and 1.8150 at different
compressor ratios. Figure 6b presents the entropy of the RDC cross-section in the axial direction. The
entropy kept increasing from the inlet to the outlet of RDC. The slope was the largest in the detonation
combustion region, decreased in the transition region and reached a minimum in the oblique shock
wave region.

3.2. Variations of RDC Characteristic Parameters at Different Compressor Pressure Ratios

The mass flow rate of air was divided into two parts: the mass flow rate of bleeding air from the
3/4 compressor which will enter into the RDC was defined as ga,c, and the mass flow rate of the higher
pressure air from the compressor outlet was defined as ga,m. Table 2 presents the mass flow rates and
distribution proportions of the two parts of air when the equivalent ratio of the RDC is 1.

Figure 7 shows the variations of outlet total pressure P∗3c and outlet total temperature T∗3c of RDC
at different compressor pressure ratios. All the following data of the RDC outlet were calculated using
the mass-weighted and time average method [32]. The two parameters both had a downtrend with the
decrease of compressor pressure ratio. When the compressor pressure ratio decreased from 13.66 to
10.02, P∗3c and T∗3c decreased from 1.2561 MPa, 2513.3 K to 1.0383 MPa, 2482.95 K, respectively.
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Table 2. Related parameters of the mass flow rate at different compressor pressure ratios.

πc 13.66 12.90 12.17 11.44 10.71 10.03
gf [kg/s] 0.4863 0.4456 0.4055 0.3664 0.3284 0.2914

ga,c [kg/s] 8.3483 7.6492 6.9598 6.2897 5.6371 5.0013
ga,m [kg/s] 18.4702 18.0281 17.6549 17.3321 17.0515 16.8199
ga,m/ga,c 2.2124 2.2368 2.5367 2.7556 3.0249 3.3631



Entropy 2019, 21, 265 11 of 20
Entropy 2018, 20, x FOR PEER REVIEW  11 of 19 

 

10.02 10.71 11.44 12.17 12.91 13.66
1.0

1.1

1.2

1.3

πc

P* 3c
 (M

Pa
)

2460

2480

2500

2520

T* 3c
 (K

)

 P*
3c

 T*
3c

 
Figure 7. Variations of *

3cT  and *
3cP  at different compressor pressure ratios. 

10.02 10.71 11.44 12.17 12.91 13.66
1.75

1.80

1.85

1.90

π 3
c

πc

0.994

0.996

0.998

1.000

 η
r

 π3c

 ηr

 
Figure 8. Variations of 3cπ  and rη  at different compressor pressure ratios. 

10.02 10.71 11.44 12.17 12.91 13.66
11

12

13

14

 Type 1 of path lines
 Type 2 of path lines
 Type 1 of path lines
 Type 2 of path lines

Pr
es

su
re

 ju
m

p

πc

6.00

6.25

6.50

6.75

7.00

7.25

Te
m

pe
ra

tu
re

 ju
m

p
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Figure 7. Variations of T∗3c and P∗3c at different compressor pressure ratios.

In order to further investigate the performance of RDC, the pressurization ratio and combustion
thermal efficiency of the RDC were calculated under different working conditions according to the
Equations (11) and (12), as shown in Figure 8. It can be seen that as the compressor pressure ratio
decreased, ηr of the RDC did not change significantly, all being beyond 0.9971. Additionally, π3c
gradually increased with the decrease of compressor pressure ratio. At πc = 13.66, π3c reached 1.7791.
When πc decreased to 10.02, π3c increased by 4.3%, reaching 1.8545. From the view of variation of
flow field parameters, higher temperature jumps and pressure jumps in the detonation wave would
promote a higher pressure gain in the RDC [53]. Therefore, variations of temperature and pressure
jumps were calculated along each of the two types of path lines at different compressor pressure ratios,
as shown in Figure 9. Choices of the typical path lines were same as those in Section 3.1, respectively,
passing through the midpoint of the detonation wave (type 1 of path lines in Figure 9) and the midpoint
of the oblique shock wave (type 2 of path lines in Figure 9). With the decrease of compressor pressure
ratio, pressure and temperature jumps at the detonation wave both had an uptrend, which was in
accordance with the variation trend seen in Figure 8.
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Furthermore, the entropy change was analyzed to explain the reason for the variation of pressure
gain characteristics. As the pressure and temperature both had obvious influences on the entropy
change, the entropy change of iso-pressure combustion at the same compressor pressure ratio was
used for reference to eliminate the influence of temperature, so the entropy change will only be
reflected in the change of pressure. Figure 10 shows the related parameters of the entropy change.
As the compressor pressure ratio decreased, both the entropy change of RDC S3c and the entropy
change of iso-pressure combustion S3i increased. The difference between them ∆S3c (∆S3c = S3i −
S3c) also had the same uptrend, which meant that the available energy loss savings in the rotating
detonation combustion gradually increased with the decrease of compressor pressure ratio, and was
finally reflected in the higher and higher total pressure of the RDC outlet. The change of entropy
change increased from 176.14 J/kg·K to 188.83 J/kg·K when the compressor pressure ratio decreased
from 13.66 to 10.02.
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Figure 10. Variations of related parameters of the entropy change at different compressor pressure
ratios (∆S3c = S3i − S3c).

In addition, the non-uniformities of the outlet static pressure and outlet static temperature were
calculated at different compressor pressure ratios. As shown in Figure 11, the nonuniformities of
outlet static pressure NUP and outlet static temperature NUT both had uptrends with the decrease of
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compressor pressure ratio, but with a small variation range. However, the non-uniformity of outlet
static pressure has already reached to 0.46, which sets a quite high demand for the design of the mixer
and first stage blade of the turbine.
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3.3. Investigation of Cycle Performance in Gas Turbine Based on Interstage Bleeding Rotating
Detonation Combustion

Figure 12 shows the parameters related to the turbine inlet total temperature and turbine inlet total
pressure of the rotating detonation gas turbine and reference gas turbine at different pressure ratios.

It can be seen in Figure 12a that as the compressor pressure ratio decreased from 13.66 to 10.22,
the turbine inlet total temperature of the rotating detonation gas turbine decreased from 1382.90 K
to 1165.69 K. Moreover, there was a decreasing difference compared with those of the reference gas
turbine, but all beyond 19 K. As shown in Figure 12b, with the decrease of compressor pressure ratio,
the difference of turbine inlet total pressure between the reference gas turbine and rotating detonation
gas turbine gradually increased, but with a decreasing slope. The reason for this phenomenon was
that when the compressor pressure ratio was too low, the pressurization ratio of the RDC would be
greater than the pressure ratio of the last 1/4 compressor. At that moment, the pressure of air from the
compressor outlet is less than the pressure of gas from the RDC outlet, which could have a negative
effect on the pressure in the mixer. The occurrence of this phenomenon led to the uncertainty about
the change of cycle efficiency, which will be analyzed in details in the last part of this paper. Figure 13
shows the difference of entropy change between the reference gas turbine and the rotating detonation
gas turbine, including the differences in the whole working progress ∆SW, compressor ∆S2, combustor
with mixer ∆S3, and turbine ∆S4. With the decrease of compressor pressure ratio, ∆S2 gradually
decreased, ∆S4 increased, ∆S3 first increased and then decreased with a turning point at πc = 11.44.
The turbine played a decisive role in the entropy change of whole working progress, as the uptrend of
∆SW was similar to ∆S4. Although a turning point appeared in the variation trend of the combustor
with mixer, there was no indication that the slope of ∆SW was slowing down.
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Figure 14 shows compressor input power and turbine output power of the rotating detonation
gas turbine and the reference gas turbine at different compressor pressure ratios. It can be clearly
seen there is no significant difference of turbine output power between the two gas turbines, but the
compressor input power of the rotating detonation gas turbine was less than that of the reference
gas turbine, especially at high compressor pressure ratio. Figure 15 presents the variation of power
generation at different compressor pressure ratios. With the decrease of compressor pressure ratio,
the difference ∆LE between the power generation of the rotating detonation gas turbine LE and the
power generation of the reference gas turbine LE,0 gradually decreased, but the power generation
enhancement rate w∆LE had the opposite trend. ∆LE reached 498.95 kW at πc = 13.66, and the power
generation of the rotating detonation gas turbine reached 7915.20 kW at that moment. When the
compressor pressure ratio decreased to 10.02, a difference of power generation of about 441.18 kW
still can be obtained. Meanwhile, the power generation enhancement rate increased from 6.72% to
11.89%. Figure 16 shows the related parameters of cycle efficiency at different compressor pressure
ratios. At πc = 13.66, the cycle efficiency of the rotating detonation gas turbine η and reference gas
turbine η0 were respectively 0.3493 and 0.3273, with an efficiency enhancement rate (w∆η) of about
6.72%. The two cycle efficiencies decreased to 0.3073 and 0.2731 at πc = 10.02, but with an increasing
efficiency enhancement rate of about 11.89%. In all the calculated cases, the efficiency enhancement
rates of the rotating detonation gas turbine were all greater than 6.72% and increased with the decrease
of compressor pressure ratio. In addition, the slope of the efficiency increase rate was approximately
stable and had no downward trend with the decrease of compressor pressure ratio. In the previous
discussion, the air pressure from the compressor outlet was less than the pressure of gas from the
RDC outlet when the compressor pressure ratio was too low, which could have a negative effect on
the pressure in the mixer. However, the changes of efficiency enhancement rate showed that the high
pressure gain characteristic at low compressor pressure ratio still played a leading role in the variation
of cycle efficiency.
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The new style gas turbine cycle based on interstage bleeding rotating detonation combustion
finally brought an increase about 0.03 in the cycle efficiency of the gas turbine. There was still a gap
compared with that described in [32], but this does not mean the research was meaningless. Firstly,
from the viewpoint of structural design, enormous convenience was brought in the design of mixer as
the pressure of the mixing air (pressurizing in the last 1/4 compressor) was greater than or close to the
RDC outlet pressure.

Moreover, the air of interstage bleeding for anti-surge could be better utilized, reducing the loss
in the cycle. In summary, it was believed that interstage bleeding rotating detonation combustion
could play an important role as an auxiliary combustion system in the gas turbine cycle. Therefore, a
gas turbine cycle with combined combustion type (including conventional approximate iso-pressure
combustion and rotating detonation combustion) should be further investigated in the future.
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4. Conclusions

In this paper, a gas turbine cycle model based on interstage bleeding rotating detonation
combustion was established using methane as fuel. Combined with a series of two-dimensional
numerical simulations and calculations of cycle parameters, variations of pressure gain characteristic
and cycle performance were investigated at different compressor pressure ratios. The main conclusions
are as follows:

(1) There were significant differences of pressure variation along different types of path lines, but the
pressurization characteristics of the RDC were obvious in general.

(2) Compared with the conventional gas turbine cycle, the non-negligible pressure gain
characteristics acquired in the interstage bleeding rotating detonation combustor contributed to
an obvious performance improvement in the rotating detonation gas turbine cycle. The power
generation enhancements were all beyond 400 kW and the cycle efficiency enhancement rates
were all greater than 6.72%. Additionally, the turbine inlet total temperature showed a decrease
of over 19 K.

(3) Due to the differences of entropy change between iso-pressure combustion and rotating
detonation combustion, the pressurization ratio of the RDC increased with the decrease of
compressor ratio, which would have a leading influence on the performance improvement in
the rotating detonation gas turbine cycle. When the compressor pressure ratio decreased from
13.66 to 10.02, the pressurization ratio of the RDC increased from 1.7791 to 1.8545, then the
power generation enhancement rate and cycle efficiency enhancement rate increased from 6.72%
to 11.89%.

(4) Compared with the reference gas turbine cycle, the difference of turbine entropy change in the
rotating detonation gas turbine cycle played a decisive role in the entropy change of whole
working process.
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