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Abstract: We consider the problem of measuring the similarity between two graphs using
continuous-time quantum walks and comparing their time-evolution by means of the quantum
Jensen-Shannon divergence. Contrary to previous works that focused solely on undirected graphs,
here we consider the case of both directed and undirected graphs. We also consider the use of
alternative Hamiltonians as well as the possibility of integrating additional node-level topological
information into the proposed framework. We set up a graph classification task and we provide
empirical evidence that: (1) our similarity measure can effectively incorporate the edge directionality
information, leading to a significant improvement in classification accuracy; (2) the choice of the
quantum walk Hamiltonian does not have a significant effect on the classification accuracy; (3) the
addition of node-level topological information improves the classification accuracy in some but not
all cases. We also theoretically prove that under certain constraints, the proposed similarity measure
is positive definite and thus a valid kernel measure. Finally, we describe a fully quantum procedure
to compute the kernel.
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1. Introduction

In recent years, we have observed rapid advancements in the fields of machine learning and
quantum computation. An increasing number of researchers is looking at challenges emerging at
the intersection of these two fields, from quantum annealing as an alternative to classical simulated
annealing [1,2] to quantum parallelism as a source of algorithmic speedup [3,4]. Quantum walks [5,6],
the quantum mechanical analogue of classical random walks, have been shown to provide the potential
for exponential speedups over classical computation, in part thanks to an array of exotic properties
not exhibited by their classic counterpart, such as interference. The rising popularity of quantum
walks can be further understood by looking at the work of Childs [7], who showed that any quantum
computation can be efficiently simulated by a quantum walk on a sparse and unweighted graph,
thus elevating quantum walks to the status of universal computational primitives.

In machine learning and pattern recognition, graphs are used as convenient representations for
systems that are best described in terms of their structure and classical random walks have been
repeatedly and successfully used to analyse such structure [8–12]. Indeed, the rich expressiveness of
these representations comes with several issues when applying standard machine learning and pattern
recognition techniques to them. In fact, these techniques usually require graphs to be mapped to
corresponding vectorial representations, which in turn needs a canonical node order to be established
first. Graphs with different number of nodes and edges present yet another challenge, as the dimension
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of the embedding space depends on this information. In this context, classical random walks provide
an effective way to compute graph invariants that can be use to characterise their structure and embed
them into a vectorial space [13,14].

Classical random walks have also been used to successfully define graph kernels [9,12,15–18].
Graph kernels offer an elegant way to transform the problem from that of finding an explicit
permutation invariant embedding to that of defining a positive semi-definite pairwise kernel measure.
One can then choose between an array of different kernel methods, the best known example being
support vector machines (SVMs) [19], to solve the pattern analysis task at hand. This is based on the
well-known kernel trick. Given a set X and a positive semi-definite kernel k : X× X → R, there exists
a map φ : X → H into a Hilbert space H, such that k(x, y) = φ(x)>φ(y) for all x, y ∈ X. Thus,
any algorithm that can be formulated in terms of scalar products of the φ(x)’s can be applied to a set
of data (e.g., vectors, graphs) on which a kernel is defined. In the case of graphs, examples of kernels
include the shortest-path kernel [15], the graphlet kernel [20], and the Weisfeiler-Lehman subtree
kernel [16]. The common principle connecting these kernels is that of measuring the similarity between
two graphs in terms of the similarity between simpler substructures (e.g., paths, subgraphs, subtrees)
contained in the original graphs. When the substructures used to decompose the graphs are classical
random walks, we obtain kernels like the random walk kernel [9] or the Jensen-Shannon kernel [12].
The kernel of Gärtner et al. [9] counts the number of matching random walks between two graphs
while using a decay factor to downweigh the contribution of long walks to the kernel. The kernel
of Bai and Hancock [12], on the other hand, is based on the idea of using classical random walks to
associate a probability distribution to each graph and then use the Jensen-Shannon divergence [21,22]
between these distributions as a proxy for the similarity between the original graphs.

The quantum analogue of the Jensen-Shannon divergence (QJSD) [23] allows to extend the
Jensen-Shannon divergence kernel [12] to the quantum realm [17,18]. While the classical Jensen-Shannon
divergence is a pairwise measure on probability distributions, the QJSD is defined on quantum states.
As its classical counterparts, the QJSD is symmetric, bounded, always defined, and it has been proved
to be a metric for the special case of pure states [23,24]. Unfortunately, there is no theoretical proof yet
that the same holds for mixed states. Inspired by this quantum divergence measure, Rossi et al. [18]
and Bai et al. [17] have proposed two different graph kernels based on continuous-time quantum walks.
While the kernel of Bai et al. was proved to be positive semi-definite [17], it has several drawbacks
compared to [18] (for which the positive semi-definiteness has not been proved yet), most notably the
need to compute the optimal alignment between the input graphs before the quantum walk-based
analysis can commence. Rossi et al. [18], on the other hand, are able to avoid this by exploiting the
presence of interference effects. Given a pair of input graphs, their method establishes a complete
set of connections between them and defines the initial states of two walks on this structure so as
to highlight the presence of structural symmetries [18,25]. However the analysis of Rossi et al. [18]
is limited to the case of undirected graphs and, as mentioned, it falls short of proving the positive
semi-definiteness of the kernel.

In this paper, we address these issues in the following way:

• We define a novel kernel for directed graphs based on [18] and the work of Chung [26] on directed
Laplacians;

• We extend the work of [18] by incorporating additional node-level topological information using
two well-known structural signatures, the Heat Kernel Signature [27] and the Wave Kernel
Signature [28];

• We give a formal proof of the positive definiteness of the undirected kernel for the case where the
Hamiltonian is the graph Laplacian and the starting state satisfies several constraints;

• We propose a simple yet efficient quantum algorithm to compute the kernel;
• We perform an empirical comparison of the performance of the kernel for both directed and

undirected graphs and for different choices of the Hamiltonian.

We perform an extensive set of experimental evaluations and we find that:
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• Adding the edge directionality information allows to better discriminate between the different
classes, even when compared with other commonly used kernels for directed graphs;

• In most cases the incorporation of the node-level topological information results in a significant
improvement over the performance of the original kernel;

• The optimal Hamiltonian (in terms of classification accuracy) depends on the dataset, as already
suggested in [18];

• The constraints we enforce to ensure the positive definiteness of the kernel disrupt the phase of
the initial state, leading to a decrease in classification accuracy.

The remainder of this paper is organised as follows. Section 2 reviews the fundamental concepts
of graph theory and quantum mechanics needed to understand the present paper. Section 3 introduces
the quantum-walk based similarity measure, analyses it from a theoretical perspectives, and illustrates
how it can be adapted to work on both undirected and directed graphs. Finally, Section 4 discusses the
results of our experimental evaluation and Section 5 concludes the paper.

2. Graphs and Quantum Walks

In this section we introduce several fundamental graph-theoretical and quantum mechanical
notions. In particular, we show how to associate a density matrix to a graph using continuous-time
quantum walks. The density matrix representation of the graphs will be then used in Section 3 to
define the kernel for both directed and undirected graphs.

2.1. Elementary Graph-Theoretic Concepts

Let G(V, E) denote a directed graph, where V is a set of n vertices and E ⊆ V × V is a set of
edges such that each e = (u, v) ∈ E has a start-vertex u ∈ V and an end-vertex v ∈ V. Please note that
we sometimes omit (V, E) and simply write G when the vertex and edge sets are implicitely defined.
The adjacency matrix A of G has elements

Auv =

{
1 if (u, v) ∈ E
0 otherwise

(1)

If Auv = Avu = 1 we say that the edge e = (u, v) is bidirectional. If every edge of a graph G is
bidirectional, i.e., the associated adjacency matrix A is symmetric, we say that G is an undirected graph.

For a node u, the degree of u is the number of nodes connected to u by an edge. For undirected
graphs this is du = ∑v∈V A(u, v), while for directed graphs we distinguish between the in-degree
din

u = ∑v∈V A(v, u) and the out-degree dout
u = ∑v∈V A(u, v), which can be added up to give the total

degree dtot
u = din

u + dout
u .

For undirected graphs, we can define the degree matrix D as the matrix with the dus as the
diagonal elements and zero elsewhere. The graph Laplacian of G is then defined as L = D − A,
and it can be interpreted as a combinatorial analogue of the discrete Laplace-Beltrami operator [29].
Similarly, we can define the normalised Laplacian L = D−1/2LD1/2. For directed graphs, things
are less straightforward. In Section 3.1 we illustrate how to define both Laplacian and normalised
Laplacian on directed graphs based on the work of Chung [26].

2.2. Quantum Walks on Graphs

Using the Dirac notation to denote as |u〉 the basis state corresponding to the walk being at vertex
u ∈ V, the state of a continuous-time quantum walk on G at time is

|ψt〉 = ∑
u∈V

αu(t) |u〉 , (2)
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where the amplitude αu(t) ∈ C and |ψt〉 ∈ C|V| are both complex. Moreover, we have that αu(t)α∗u(t)
gives the probability that at time t the walker is at the vertex u, and thus ∑u∈V αu(t)α∗u(t) = 1 and
αu(t)α∗u(t) ∈ [0, 1], for all u ∈ V, t ∈ R+.

The state of the walk evolves through time according to the Schrödinger equation

∂

∂t
|ψt〉 = −iH |ψt〉 (3)

where H denotes the time-independent Hamiltonian. Given an initial state |ψ0〉, the solution of the
previous equation for time t is then

|ψt〉 = e−iHt |ψ0〉 . (4)

In the case of undirected graphs, the Laplacian matrix is usually chosen as the system Hamiltonian,
i.e., H = L. However in theory any Hermitian operator encoding the graph structure can be used
instead, e.g., the adjacency matrix or the normalised Laplacian matrix. Directed graphs pose an
additional challenge, as the asymmetricity of the adjacency matrix implies that it cannot be used as the
system Hamiltonian. However it is possible to define symmetric Laplacian and normalised Laplacian
matrix representations for directed graphs, as explained in Section 3.1.

Equation (4) can be also rewritten in terms of the spectral decomposition of the Hamiltonian
H = ΦΛΦ>, where Φ is the |V| × |V| matrix with the ordered eigenvectors ofH as columns and Λ is
the |V| × |V| diagonal matrix with the ordered eigenvalues λj ofH as elements. Since exp[−iHt] =
Φexp[−iΛt]Φ>, we can write the solution of the Schrödinger equation at time t as

|ψt〉 = Φe−iΛtΦ> |ψ0〉 . (5)

2.3. From Quantum Walks to Graph Density Matrices

The density matrix representation is introduced in quantum mechanics as a way describe a system
that is a statistical ensemble of pure states |ψi〉, each with probability pi, i.e.,

ρ = ∑
i

pi |ψi〉 〈ψi| . (6)

Please note that density matrices are positive unit trace matrices. Given a density matrix ρ with
eigenvalues λ1, . . . , λn , we can compute its von Neumann entropy [30] S(ρ) as

S(ρ) = −tr(ρ log ρ) = −∑
i

λi ln λi . (7)

Moreover, given two density matrices ρ and σ we can compute their quantum Jensen-Shannon
divergence (QJSD) [23,24] as

QJSD(ρ, σ) = S
(ρ + σ

2

)
− 1

2
S(ρ)− 1

2
S(σ) . (8)

The QJSD is always well defined, symmetric and positive definite [23,24]. It can also be shown
that QJSD(ρ, σ) is bounded, i.e., 0 ≤ QJSD(ρ, σ) ≤ 1, with the latter equality attained only if ρ and σ

have support on orthogonal subspaces [18].
The QJSD has been shown to have several interesting properties required for a good distinguishability

measure between quantum states [23,24]. In pattern recognition, it has been used to define several
graph kernels [17,18,31]. This in turn is achieved by associating quantum states to graphs and using
the QJSD between the states as a proxy of the similarity between the graphs.

More specifically, given a graph G and a continuous-time quantum walk with starting state
|ψ0〉, the idea is to associate a quantum state to G as follows. First, we let the quantum walk evolve
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according to Equation (4) until a time T is reached. Then, we define the quantum state with density
matrix representation

ρT =
1
T

∫ T

0
|ψt〉 〈ψt| dt . (9)

This state represents a uniform ensemble of pure states |ψt〉 each corresponding to a different stage
of the quantum walk evolution. Different versions of QJSD-based graph kernels are based on different
definitions of this density matrix [17,18]. In this paper we focus on the kernel of Rossi et al. [18],
which was shown to have several advantages compared to its alternatives. However, while the original
work of Rossi et al. [18] focused only on undirected graph, in the next sections we show how it can be
extended to directed graphs. We also study how the choice of the Hamiltonian influences the kernel
performance in a graph classification task and we investigate if the addition of structural information
at node level has any benefit. While Rossi et al. [18] were unable to prove the positive definiteness
of the kernel, we are able to provide a proof under the assumption that the Hamiltonian is the graph
Laplacian and the starting state satisfies certain conditions. Finally, we propose a fully quantum
procedure to compute the kernel.

3. Graph Similarity from Quantum Walks

Given two undirected graphs G1(V1, E1) and G2(V2, E2), we merge them into a larger structure by
establishing a complete set of connections between the two node sets. More specifically, we construct a
graph G = (V , E) where V = V1 ∪V2, E = E1 ∪ E2 ∪ E12, and (u, v) ∈ E12 only if u ∈ V1 and v ∈ V2.
Figure 1 shows an example pair of graphs and their union.

Figure 1. Given two graphs G1(V1, E1) and G2(V2, E2) we build a new graph G = (V , E) where
V = V1 ∪V2, E = E1 ∪ E2 and we add a new edge (u, v) between each pair of nodes u ∈ V1 and v ∈ V2.

The intuition of Rossi et al. [18] was to define two mixed quantum states on this new graph describing
the time-evolution of two quantum walks specifically designed to amplify constructive and destructive
interference effects. To this end, we define two independent quantum walks with starting states

∣∣ψ−0 〉 = ∑u∈V1
du |u〉 −∑v∈V2

dv |v〉
C

∣∣ψ+
0
〉
=

∑u∈V du |u〉
C

. (10)

We can then associate the following quantum states to the graph,

ρ−T =
1
T

∫ T

0

∣∣ψ−t 〉 〈ψ−t ∣∣ dt ρ+T =
1
T

∫ T

0

∣∣ψ+
t
〉 〈

ψ+
t
∣∣ dt . (11)

Given these two states, we finally make use of the QJSD to compute the similarity between the
input graphs in terms of the dissimilarity between the ρ−T and ρ+T , i.e.,

kT(G1, G2) = QJSD(ρ−T , ρ+T ) = S
(ρ−T + ρ+T

2

)
− 1

2

(
S(ρ−T ) + S(ρ+T )

)
. (12)

Since the quantum states ρ−T and ρ+T represent the evolution of two quantum walks that emphasize
destructive and constructive interference, respectively, we expect that the more similar the input graphs
are, the more dissimilar ρ−T and ρ+T are. In the extreme case where G1 and G2 and isomorphic, it can be
shown that kT(G1, G2) = 1 [18].
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In [18], the authors suggest to consider the limit of ρ+T for T → ∞, which in turn allows to rewrite
Equation (11) as

ρ+∞ = ∑
λ∈Λ̃(H)

Pλρ+0 P>λ , (13)

where Λ̃(H) is the set of distinct eigenvalues of the Hamiltonian (H), i.e., the eigenvalues λ with
multiplicity µ(λ) = 1, and Pλ = ∑

µ(λ)
k=1 φλ,kφ>λ,k is the projection operator on the subspace spanned by

the µ(λ) eigenvectors φλ,k associated with λ. Similarly, one can work out the limit of ρ−T for T → ∞.
This in turn has the effect of making the computation of the kernel easier in addition to allowing us to
drop the time parameter T, yielding

k∞(G1, G2) = QJSD(ρ−∞, ρ+∞) = S
(ρ−∞ + ρ+∞

2

)
− 1

2

(
S(ρ−∞) + S(ρ+∞)

)
. (14)

3.1. Extension to Directed Graphs

The kernel described in the previous subsection can only be computed for undirected graphs.
In order to cope with directed graphs, we propose using the directed graph Laplacian introduced by
Chung [26]. We first merge the two directed input graphs G1(V1, E1) and G2(V2, E2) as done in the
undirected case, i.e., we create a complete set of undirected edges connecting the nodes of V1 to the
nodes of V2. Note, however, that the resulting merge graph is directed, as a consequence of the edges
in E1 and E2 being directed (see Figure 2). Hence we define the starting states

∣∣ψ−0 〉 and
∣∣ψ+

0
〉

similarly
to Equation (10), but using the out degree instead:

∣∣ψ−0 〉 = ∑u∈V1
dout

u |u〉 −∑v∈V2
dout

v |v〉
C

∣∣ψ+
0
〉
=

∑u∈V dout
u |u〉

C
. (15)

To compute the Hamiltonian and thus ρ−T and ρ+T , we proceed as follows. Let us define the
classical random walk transition matrix M for the directed graph G as the matrix with elements
Muv = Auv/dout

u , where we use the convention that when the out-degree of u is zero, i.e., dout
u = 0,

we let Muv = 0.

Figure 2. The graph obtained by merging two directed graphs.

From the Perron-Frobenius theorem we know that for a strongly connected directed graph,
i.e., a directed graph where there exists a path between every pair of vertices and there are no sinks,
the transition matrix M has a unique non-negative left eigenvector π [32], i.e., πM = λπ, where λ is
the eigenvalue associated with π. According to the Perron-Frobenius theorem, if M is aperiodic we
also have that λ = 1, and thus πM = π, implying that the random walk on the directed graph G with
transition matrix M will converge to a stationary probability distribution.

Let Π be the diagonal matrix with the elements of π on the diagonal. Then Chung [26] defines
the Laplacian matrix of the directed graph G as

L = Π− 1
2

(
Π M + M>Π

)
. (16)

Similarly, the normalised Laplacian of G is defined as
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L̃ = I − 1
2

(
Π

1
2 M Π−

1
2 + Π−

1
2 M>Π

1
2

)
, (17)

where I denotes the identity matrix.
Please note that while the adjacency matrix of a directed graph is clearly not Hermitian, both the

normalised Laplacian and the Laplacian defined in Equations (16) and (17) are symmetric and thus
can used as the Hamiltonian governing the quantum walks evolution. An alternative to this would
have been to symmetrize the graph edges effectively making the graph undirected, however as we
will show in the experimental part this causes the loss of important structural information.

We would like to stress that the method of Chung [26] is not the only way to associate a
(normalised) Laplacian matrix to a directed graph. We are aware of at least one different method
proposed by Bauer [33]. However we decide to focus on the definition proposed by Chung [26] as this
has been successfully applied to the analysis of directed graphs in pattern recognition and network
science [34–36].

3.2. Integrating Local Topological Information

In [31] it was shown that for the case of undirected attributed graphs G1(V1, E1, f1) and
G2(V2, E2, f2), where fi is a function assigning attributes to the nodes of the graph Gi, it is possible to
effectively incorporate the information on the pairwise similarity between the attributes of the two
graphs by allowing the adjacency matrix of the merged graph to be weighted. More specifically, for
each u ∈ V1 and v ∈ V2, the authors proposed to label the edge (u, v) with a real value ω( f1(u), f2(v))
representing the similarity between f1(u) and f2(v).

While in this paper we only deal with unattributed graphs, we propose using a similar method to
incorporate additional node-level structural information into the kernel. More specifically, given an
undirected graph G(V, E) and a node v ∈ V, we capture the structure of the graph from the perspective
of v using two well known spectral signatures based on the graph Laplacian, the Heat Kernel Signature
(HKS) [27] and the Wave Kernel Signature (WKS) [28]. The signatures simulate a heat diffusion and
wave propagation process on the graph, respectively. The result is in both cases a series of vectors
characterising the graph topology centered at each node. In graph matching, particularly in computer
vision applications [27,28], this is used to match pairs of nodes with similar (in an Euclidean sense)
vectorial representations under the assumption that these describe structurally similar nodes in the
original graph.

Given two nodes u, v ∈ V , we compute their spectral signatures f1(u) and f1(v) using either HKS
or WKS and we label the edge (u, v) with the real value

ω( f1(u), f2(v)) = || f1(u)− f2(v)||2 . (18)

Please note that the signatures are computed on the original graphs, not on the merged one.
Then the adjacency matrix of the graph obtained by merging G1 and G2 becomes

Auv =

{
ω( f1(u), f2(v)) if u, v ∈ V and u 6= v
0 otherwise .

(19)

Figure 3 shows an example of two graphs with 2-dimensional signatures and their merged graph.
For ease of presentation, the weight of each edge is shown by varying its thickness, i.e., the thicker
the edge the higher the weight and the more similar the signatures of the connected nodes. Here we
decided to compute the similarity between each pair of nodes in V , effectively turning G1 and G2 into
two weighted cliques, i.e., complete weighted graphs, where the weights on the edges encode the
pairwise nodes similarity. While at first sight it may seem like we are discarding the original structure
of G1 and G2, note that this is actually encoded in the node signatures and thus the edge weights.
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In Section 4 we run an extensive set of experiments to determine if integrating node-level structural
information improves the ability of the kernel to distinguish between structurally similar graphs.

[0.5,0.5] [0.5,0.4]

[0.1,0.8] [0.1,0.7] [0.2,0.8]

Figure 3. The graph obtained by merging two undirected graphs with 2-dimensional node signatures.
The tickness of the edges is proportional to the similarity between the signatures of the nodes
being connected.

3.3. Kernel Properties

Consider a pair of graphs G1 and G2, with n and m nodes respectively. Here we consider the case
where we take the graph Laplacian to be the Hamiltonian of the system and we assume that the input
graphs are undirected. Let L1 and L2 be the Laplacian of G1 and G2 respectively. Then the Laplacian of
the merged graph is

L =

[
L1 + mIn −1n1m

>

−1m1n
> L2 + nIm

]
. (20)

We can provide a full characterization of the eigensystem of L. Let |v〉 and |w〉 be eigenvectors of
L1 and L2, respectively, with corresponding eigenvalues v and w. Further, assume that |v〉 and |w〉 are
not Fiedler vectors, i.e., 〈1n|v〉 = 0 and 〈1m|w〉 = 0. Then |v, 0m〉 is an eigenvector of L with eigenvalue
v + m and |0m, w〉 is an eigenvector of L with eigenvalue w + n. The remaining eigenvectors of L
are |1m+n〉 of eigenvalue 0 and |m1n,−n1m〉 of eigenvalue m + n. In the following, we will denote
with P1

λ the orthogonal projector on the eigenspace of L1 of eigenvalue λ, if λ is an eigenvalue of L1,
0 otherwise. For the special case of the 0 eigenspace, we eliminate the constant eigenvector |1n〉. P2

λ is
similarly defined for L2.

Under this eigendecomposition we can write ρ+∞ and ρ−∞ as the following sums of rank-1 matrices:

ρ+∞ = ∑λ∈(Λ̃(L1)+m)∪(Λ̃(L2)+n)
∣∣P1

λ−m |ξ0〉 , P2
λ−n |χ0〉

〉 〈
P1

λ−m |ξ0〉 , P2
λ−n |χ0〉

∣∣+
(〈1n |ξ0〉+〈1m |χ0〉)2

(m+n)2 |1m+n〉 〈1m+n|+
( 1

n 〈1n |ξ0〉− 1
m 〈1m |χ0〉)2

(m+n)2 |m1n,−n1m〉 〈m1n,−n1m|
= ∑µ∈(Λ̃(L1)−n)∪(Λ̃(L2)−m)

∣∣∣P1
µ+n |ξ0〉 , P2

µ+m |χ0〉
〉 〈

P1
µ+n |ξ0〉 , P2

µ+m |χ0〉
∣∣∣+

(〈1n |ξ0〉+〈1m |χ0〉)2

(m+n)2 |1m+n〉 〈1m+n|+
( 1

n 〈1n |ξ0〉− 1
m 〈1m |χ0〉)2

(m+n)2 |m1n,−n1m〉 〈m1n,−n1m| ,

(21)

with the eigenvalues of L being λ = µ + m + n. Similarly,

ρ−∞ = ∑µ∈(Λ̃(L1)−n)∪(Λ̃(L2)−m)

∣∣∣P1
µ+n |ξ0〉 ,−P2

µ+m |χ0〉
〉 〈

P1
µ+n |ξ0〉 ,−P2

µ+m |χ0〉
∣∣∣+

(〈1n |ξ0〉−〈1m |χ0〉)2

(m+n)2 |1m+n〉 〈1m+n|+
( 1

n 〈1n |ξ0〉+ 1
m 〈1m |χ0〉)2

(m+n)2 |m1n,−n1m〉 〈m1n,−n1m| .
(22)

Please note that each matrix in the summation is a rank-1 matrix and the matrices are orthogonal
to each other as a consequence of the projectors being orthogonal to each others. This in turn implies
that the size of the spectra of ρ+∞ and ρ−∞ is the same and it is equal to the number of distinct eigenvalues
in (Λ̃(L1)− n) ∪ (Λ̃(L2)− m). More precisely, for each µ ∈ (Λ̃(L1)− n) ∪ (Λ̃(L2)− m), excluding
those derived from the two Fiedler vectors of L1 and L2, there exists a non-zero eigenvalue of both ρ+∞
and ρ−∞ of the form

〈ξ0| P1
µ+n |ξ0〉+ 〈χ0| P2

µ+m |χ0〉 .
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In addition, we have two eigenvalues of the form

(〈1n|ξ0〉+ 〈1m|χ0〉)2

m + n
and mn

( 1
n 〈1n|ξ0〉 − 1

m 〈1m|χ0〉)2

m + n
,

for L1, and
(〈1n|ξ0〉 − 〈1m|χ0〉)2

m + n
and mn

( 1
n 〈1n|ξ0〉+ 1

m 〈1m|χ0〉)2

m + n
,

for L2.
In other words the two density matrices, despite having different eigenspaces, have identical

spectra induced from the eigenspaces orthogonal to the Fiedler vector and differ only in the values
due to the extremal eigenvalues of L.

Turning our attention to the arithmetic mean of the two density matrices in Equation (14), we have

ρ+∞+ρ−∞
2 = ∑µ∈(Λ̃(L1)−n)

∣∣∣P1
µ+n |ξ0〉 , 0m

〉 〈
P1

µ+n |ξ0〉 , 0m

∣∣∣+
∑µ∈(Λ̃(L2)−m)

∣∣∣0n,−P2
µ+m |χ0〉

〉 〈
0n,−P2

µ+m |χ0〉
∣∣∣+

〈1n |ξ0〉2+〈1m |χ0〉2
(m+n)2 |1m+n〉 〈1m+n|+

( 〈1n |ξ0〉
n

)2
+
( 〈1m |χ0〉

m

)2

(m+n)2 |m1n,−n1m〉 〈m1n,−n1m| .

(23)

Again, this is a summation of rank-1 matrices orthogonal to one-another, resulting in eigenvalues
of the form

〈ξ0| P1
µ+n |ξ0〉 and 〈χ0| P2

µ+m |χ0〉 ,

corresponding to the (distinct) eigenvalues of L1 and L2, respectively, excluding the eigenspace component
induced by the Fiedler vectors, as well as the two eigenvector from the extremal eigenvalues of L

〈1n|ξ0〉2 + 〈1m|χ0〉2

m + n
and

m
n 〈1n|ξ0〉2 + n

m 〈1m|χ0〉2

m + n
.

Let us define the function
xlog(x) = −x log(x) . (24)

We can now compute the QJSD kernel between the graphs G1 and G2 as

k∞(G1, G2) = QJSD(ρ−∞, ρ+∞) = S
(

ρ−∞+ρ+∞
2

)
− 1

2

(
S(ρ−∞) + S(ρ+∞)

)
= ∑µ∈(Λ̃(L1)−n) xlog

(
〈ξ0| P1

µ+n |ξ0〉
)
+ ∑µ∈(Λ̃(L2)−m) xlog

(
〈χ0| P2

µ+m |χ0〉
)

−∑µ∈(Λ̃(L1)−n)∪(Λ̃(L2)−m) xlog
(
〈ξ0| P1

µ+n |ξ0〉+ 〈χ0| P2
µ+m |χ0〉

)
+ xlog

(
〈1n |ξ0〉2+〈1m |χ0〉2

m+n

)
+ xlog

(
m
n 〈1n |ξ0〉2+ n

m 〈1m |χ0〉2
m+n

)
− 1

2 xlog
(
(〈1n |ξ0〉+〈1m |χ0〉)2

m+n

)
− 1

2 xlog
(

mn ( 1
n 〈1n |ξ0〉− 1

m 〈1m |χ0〉)2

m+n

)
− 1

2 xlog
(
(〈1n |ξ0〉−〈1m |χ0〉)2

m+n

)
− 1

2 xlog
(

mn ( 1
n 〈1n |ξ0〉+ 1

m 〈1m |χ0〉)2

m+n

)
.

(25)
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Assuming that the initial states are normalised in such a way that 〈1n|ξ0〉 = 〈1m|χ0〉 = 0 and
〈ξ0|ξ0〉 = 〈χ0|χ0〉 = 1

2 , the last terms disappear and we have

k∞(G1, G2) = ∑µ∈(Λ̃(L1)−n) xlog
(
〈ξ0| P1

µ+n |ξ0〉
)
+ ∑µ∈(Λ̃(L2)−m) xlog

(
〈χ0| P2

µ+m |χ0〉
)

−∑µ∈(Λ̃(L1)−n)∪(Λ̃(L2)−m) xlog
(
〈ξ0| P1

µ+n |ξ0〉+ 〈χ0| P2
µ+m |χ0〉

)
= 1

2∑µ∈(Λ̃(L1)−n)xlog
(

2 〈ξ0| P1
µ+n |ξ0〉

)
+ 1

2 log(2)+1
2∑µ∈(Λ̃(L2)−m)xlog

(
2 〈χ0| P2

µ+m |χ0〉
)

+ 1
2 log(2)−∑µ∈(Λ̃(L1)−n)∪(Λ̃(L2)−m) xlog

(
2〈ξ0|P1

µ+n |ξ0〉+2〈χ0|P2
µ+m |χ0〉

2

)
= log(2)−

[
∑µ∈(Λ̃(L1)−n)∪(Λ̃(L2)−m) xlog

(
2〈ξ0|P1

µ+n |ξ0〉+2〈χ0|P2
µ+m |χ0〉

2

)
− 1

2 ∑µ∈(Λ̃(L1)−n) xlog
(

2 〈ξ0| P1
µ+n |ξ0〉

)
− 1

2 ∑µ∈(Λ̃(L2)−m) xlog
(

2 〈χ0| P2
µ+m |χ0〉

)]
.

(26)

This leads us to the following final observation. Let f1 and f2 be two discrete distributions with
values in Λ̃(L1)− n and Λ̃(L2)−m, respectively, defined as

f1(x) = ∑
µ∈(Λ̃(L1)−n)

(
2 〈ξ0| P1

µ+n |ξ0〉
)

δ(x− µ) (27)

f2(x) = ∑
µ∈(Λ̃(L2)−m)

(
2 〈χ0| P2

µ+m |χ0〉
)

δ(x− µ) , (28)

where δ(x) is the Dirac delta function. Then we have

k∞(G1, G2) = QJSD(ρ−∞, ρ+∞) = 1− CJSD( f1, f2) , (29)

where CJSD denotes the classical Jensen-Shannon divergence. Now we can prove the following:

Theorem 1. Using the Laplacian as the Hamiltonian and normalizing |ξ0〉 and |χ0〉 such that 〈ξ0|ξ0〉 =
〈ξ0|ξ0〉 = 1

2 and 〈1n|ξ0〉 = 〈1m|ξ0〉 = 0, then the quantum Jensen-Shannon kernel k∞(G1, G2) =

QJSD(ρ−∞, ρ+∞) is positive definite.

Proof. The proof descends directly from the derivations above and from the fact that the classical
Jensen-Shannon divergence is conditionally negative-definite [37].

3.4. Kernel Computation

The issue of efficiently computing the QJSD kernel is that of computing the entropies of ρ−∞,
ρ+∞, and of their mean. Here we will discuss a general quantum approach to estimate the entropy
of an infinite-time average mixing matrix starting from a pure state. Following [18], we write the
infinite-time average mixing matrix as

ρ∞ = ∑
λ∈Λ̃(H)

Pλρ0Pλ , (30)

whereH is the Hamiltonian and Pλ is the projector onto its λ eigenspace. If ρ0 = |φ〉 〈φ| is a pure state,
then the eigenvectors corresponding to non-zero eigenvalues of ρ∞ are of the form

Pλ |φ〉 , (31)

for λ ∈ Λ̃(H), and the corresponding eigenvalues are

〈φ| Pλ |φ〉 . (32)
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We already used this property in the previous section for the special case of the graph Laplacian
as the Hamiltonian, but it holds in general.

It is important to note that the lambdas here are energy levels of the system, i.e., possible observed
values using the Hamiltonian as an observable, and the probability of observing an energy state λ

from the state ρ0 = |φ〉 〈φ| is 〈φ| Pλ |φ〉. This means that the von Neumann entropy of ρ∞ is equivalent
to the classic Shannon entropy of the energy levels of the (pure) initial state, i.e., the entropy of the
possible observations from the pure initial state using the Hamiltonian as the observable.

The quantum algorithm to estimate the von Neumann entropy of the infinite-time average mixing
matrix ρ∞ = |φ〉 〈φ| is as follows. First, we create several systems in the initial pure state |φ〉 and we
observe their energy usingH as the observable. Then we use any entropy estimator for finite (discrete)
distributions, using the energies as samples. Algorithms such as [38] or [39] are particularly interesting
because they work well in the under-sampled case.

In the special case considered in Theorem 1, we can make the estimation even more efficient
noting that we can observe independently from L1 − nIn and L2 − mIm, and in particular we can
perform a single set of observation for each graph and reuse them in every pairwise computation
for the kernel. In this case, the samples from the first graph are used to estimate the entropy S( f1),
the samples from the second graph are used to estimate S( f2), and the two sample-sets are merged to
estimate S

(
f1+ f2

2

)
.

4. Experiments

In this section, we evaluate the accuracy of the proposed kernel in several classification tasks.
Our aim is to investigate (1) the importance of the choice of the Hamiltonian; (2) the integration of
node-level structural signatures; and (3) the ability to incorporate edge directionality information
using the Laplacians proposed by Chung [26]. To this end, we make use of the following datasets of
undirected graphs (see Table 1):

MUTAG [40] is a dataset consisting originally of 230 chemical compounds tested for mutagenicity
in Salmonella typhimurium [41]. Among the 230 compounds, however, only 188 (125 positive, 63 negative)
are considered to be learnable and thus are used in our simulations. The 188 chemical compounds are
represented by graphs. The aim is predicting whether each compound possesses mutagenicity.

PPIs (Protein-Protein Interaction) is a dataset collecting protein-protein interaction networks
related to histidine kinase [42] (40 PPIs from Acidovorax avenae and 46 PPIs from Acidobacteria) [43].
The graphs describe the interaction relationships between histidine kinase in different species of
bacteria. Histidine kinase is a key protein in the development of signal transduction. If two
proteins have direct (physical) or indirect (functional) association, they are connected by an edge.
The original dataset comprises 219 PPIs from 5 different kinds of bacteria with the following evolution
order (from older to more recent): Aquifex 4 and Thermotoga 4 PPIs from Aquifex aelicus and
Thermotoga maritima, Gram-Positive 52 PPIs from Staphylococcus aureus, Cyanobacteria 73 PPIs
from Anabaena variabilis and Proteobacteria 40 PPIs from Acidovorax avenae. There is an additional
class (Acidobacteria 46 PPIs) which is more controversial in terms of the bacterial evolution since they
were discovered.

Table 1. Information on the graph datasets.

Datasets MUTAG PPI PTC COIL NCI1 SHOCK ALZ

Max # vertices 28 232 109 241 106 33 96
Min # vertices 10 3 2 72 3 4 96
Avg # vertices 17.93 109.60 25.56 144.97 29.27 13.16 96

# graphs 188 86 344 360 3530 150 149

# classes 2 2 2 5 2 10 4
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PTC (Predictive Toxicology Challenge) dataset records the carcinogenicity of several hundred
chemical compounds for Male Rats (MR), Female Rats (FR), Male Mice (MM) and Female Mice
(FM) [44]. These graphs are very small and sparse. We select the graphs of Male Rats (MR) for
evaluation. There are 344 test graphs in the MR class.

COIL Columbia Object Image Library consists of 3D objects images of 100 objects [45]. There are
72 images per object taken in order to obtain 72 views from equally spaced viewing directions. For each
view a graph was built by triangulating the extracted Harris corner points. In our experiments, we use
the gray-scale images of five objects.

NCI1 The anti-cancer activity prediction dataset consists of undirected graphs representing
chemical compounds screened for activity against non-small cell lung cancer lines [46]. Here we use
only the connected graphs in the dataset (3530 out of 4110).

We also make use of the following directed graphs datasets:
Shock The Shock dataset consists of graphs from a database of 2D shapes [47]. Each graph is a

medial axis-based representation of the differential structure of the boundary of a 2D shape. There are
150 graphs divided into 10 classes, each containing 15 graphs. The original version contains directed
trees each with a root node, the undirected version has been created by removing the directionality.

Alzheimer The dataset is obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [48] and concerns interregional connectivity structure for functional magnetic resonance
imaging (fMRI) activation networks for normal and Alzheimer subjects. Each image volume is
acquired every two seconds with blood oxygenation level dependent signals (BOLD). The fMRI voxels
here have been aggregated into larger regions of interest (ROIs). The different ROIs correspond to
different anatomical regions of the brain and are assigned anatomical labels to distinguish them.
There are 96 anatomical regions in each fMRI image. The correlation between the average time series
in different ROIs represents the degree of functional connectivity between regions which are driven by
neural activities [49]. Subjects fall into four categories according to their degree of disease severity:
AD—full Alzheimer’s (30 subjects), LMCI—Late Mild Cognitive Impairment (34 subjects), EMCI—Early
Mild Cognitive Impairment (47 subjects), HC—Normal Healthy Controls (38 subjects). The LMCI
subjects are more severely affected and close to full Alzheimerś, while the EMCI subjects are closer to
the healthy control group (Normal). A directed graph with 96 nodes is constructed for each patient
based on the magnitude of the correlation and the sign of the time-lag between the time-series for
different anatomical regions. To model causal interaction among ROIs, the directed graph uses the time
lagged cross-correlation coefficients for the average time series for pairs of ROIs. We detect directed
edges by finding the time-lag that results in the maximum value of the cross-correlation coefficient.
The direction of the edge depends on whether the time lag is positive or negative. We then apply a
threshold to the maximum values to retain directed edges with the top 40% of correlation coefficients.
This yields a binary directed adjacency matrix for each subject, where the diagonal elements are set to
zero. Those ROIs which have missing time series data are discarded. In order to fairly evaluate the
influence caused by edges directionality, an undirected copy has been created as well. In particular,
let Ad be the adjacency matrix of a directed graph. Then its projection over the symmetric matrices
space will be given by (Ad + A>d )/2.

4.1. Experimental Framework

With these datasets to hand, we aim to solve a graph classification task using as binary C-Support
Vector Machine (C-SVM) [19]. We perform 10-fold cross validation, where for each sample we
independently tune the value of C, the SVM regularizer constant, by considering the training data
from that sample. The process is averaged over 100 random partitions of the data, and the results are
reported in terms of average accuracy ± standard error. Recall that in classification tasks, the accuracy
is intended as the fraction of the data occurrences that are assigned the correct class label. In our
case, an occurrence is a graph. Moreover, we contrast the performance of the kernel with that of
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other well-established alternative graph kernels, namely the shortest-path kernel [15] (SP), the classic
random walk kernel [9] (RW) and the the Weisfeiler-Lehman subtree kernel [16] (WL).

We divide our experiments into two parts. We first evaluate the influence of the Hamiltonian
on the classification accuracy, where the Hamiltonian is chosen to be one between (1) the adjacency
matrix (QJSDA); (2) the Laplacian (QJSDL); or (3) the normalised Laplacian of the graph (QJSDNL).
Here we also consider the positive definite version of the kernel discussed in Section 3.3 (QJSD∗).
In the same experiment, we test if the addition of node signatures benefits the kernel performance,
where the signature is either the (1) HKS or the (2) WKS, denoted as hk and wk respectively. In the
second experiment we test the performance of our kernel for the classification of directed graphs.
Please note that all the alternative kernels we consider are also able to cope with directed graphs.
Here we test both our competitiveness against these kernels as well as the increase or decrease in
performance compared to the case where we remove the edge directionality information.

4.2. Undirected Graphs

Table 2 shows the results of the classification experiments on undirected graphs. The best and
second best performing kernels are highlighted in bold and italic, respectively. While the kernels
based on the quantum Jensen-Shannon divergence yield the highest accuracy in 4 out of 5 datasets,
it is clear that no specific combination of Hamiltonian and structural signatures is optimal in all cases.
However, we observe that with the exception of the PPI dataset, both the choice of the Hamiltonian
and the use or not of structural signatures has little or no impact on the performance of the kernel,
which remains highly competitive when compared to the shortest-path, random walks, graphlet,
and Weisfeiler-Lehman kernels. The performance gain is particularly evident when compared to the
kernel based on classical random walks, which is consistently outperformed by the kernels based on
quantum walks. This in turn is a confirmation of the increased ability of capturing subtle structural
similarities of quantum walks with respect to their classical counterpart, as well as a clear statement of
the robustness of the proposed kernel to the choice of its parameters. We do observe a tendency of the
Laplacian + WKS combination to perform better on datasets with average graph size >100 (PPI and
COIL), however this would need more extensive experiments to be validated.

Table 2. Classification accuracy (±standard error) on undirected graph datasets. The best and second
best performing kernels are highlighted in bold and italic, respectively.

Kernel MUTAG PPI PTC NCI1 COIL

QJSDA 86.72± 0.14 78.71± 0.30 56.09± 0.15 66.90± 0.03 69.90± 0.08
QJSDL 84.92± 0.18 73.79± 0.42 59.70± 0.16 69.48± 0.03 70.72± 0.07

QJSDNL 87.10± 0.14 74.63± 0.37 55.16± 0.18 66.36± 0.03 69.61± 0.10
QJSDhk

A 88.51± 0.13 81.56± 0.34 58.76± 0.14 63.88± 0.03 69.68± 0.06
QJSDhk

L 86.36± 0.16 77.08± 0.28 57.63± 0.13 64.96± 0.02 70.24± 0.06
QJSDhk

NL 87.79± 0.12 74.38± 0.37 58.45± 0.16 64.01± 0.04 70.55± 0.09
QJSDwk

A 85.97± 0.14 74.91± 0.32 58.91± 0.13 63.52± 0.05 70.48± 0.06
QJSDwk

L 85.81± 0.16 84.66± 0.26 58.01± 0.13 64.45± 0.03 71.34± 0.05
QJSDwk

NL 87.61± 0.16 74.74± 0.30 57.46± 0.16 63.34± 0.04 70.31± 0.06
QJSD∗ 75.47± 0.18 56.50± 0.41 58.15± 0.12 62.89± 0.02 13.51± 0.16
QJSDhk

∗ 70.99± 0.12 70.53± 0.31 55.29± 0.13 67.19± 0.01 34.24± 0.22
QJSDwk

∗ 79.44± 0.16 70.21± 0.40 57.65± 0.14 64.20± 0.02 58.63± 0.12
SP 84.98± 0.16 66.40± 0.31 56.89± 0.71 65.44± 0.04 70.50± 0.13

RW 78.02± 0.20 69.94± 0.27 55.59± 0.01 58.80± 0.04 21.03± 0.22
GR 81.93± 0.17 52.34± 0.42 56.20± 0.10 62.28± 0.02 67.22± 0.11
WL 84.62± 0.23 79.93± 0.35 55.64± 0.20 78.55± 0.04 31.33± 0.21

We would like to stress that there are indeed alternative strategies to the one proposed in
Section 3.2 to integrate the node signatures information. For example, instead of creating a pair
of weighted cliques, one could retain the original graphs structure and compute the similarity only
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between nodes connected by edges in E1, E2, and E12. Another approach could have been to restrict
the weighting only to the edges in E12, similarly to what done by Rossi et al. in [31]. However we
found little or no difference in terms of classification accuracy between these alternative solutions and
thus we decided to omit these results for ease of presentation.

Finally, the performance of the positive definite kernel QJSD∗ deserves a closer inspection.
In contrast to the other quantum-walk based kernels, in this case the performance is often significantly
lower and the dependency on the addition of the node-level structural signatures higher. Unlike the
other kernels, in this case we had to enforce several constraints on the initial state in order to guarantee
the positive definiteness of the resulting kernel (see Section 3.3). However one of this constraints,
i.e., the requirement that the two parts of the initial amplitude vector corresponding to G1 and G2 both
sum to zero, causes the phase of the initial state to differ from that of the other kernels. While the initial
states defined in Equation (10) are such that

∣∣ψ+
0
〉

has equal phase on both G1 and G2, while
∣∣ψ−0 〉 has

opposite phase on G1 and G2, enforcing the constraint of Section 3.3 leads to a change of sign (and thus
of phase) for the smallest (in absolute value) components of the initial state. This in turn invalidates
the assumption that ρ+∞ and ρ−∞ are designed to stress constructive and destructive interference,
respectively, and thus affects the ability of the kernel to distinguish between similar/dissimilar graphs.

4.3. Directed Graphs

Table 3 shows the results of the classification experiments on directed graphs. We compare the
kernels on the two directed graphs dataset, as well as their undirected versions, and we highlight
again the best performing kernel for each dataset. Please note that when the graphs are directed we
cannot choose the (potentially asymmetric) adjacency matrix as the Hamiltonian. We first observe that
preserving the edge directionality information leads to a higher or similar classification accuracy for
most kernels, with the exception of the shortest-path kernel on the Shock dataset. Please note that the
graphs in this dataset are trees, and as such in the directed version there may be pairs of nodes for
which a shortest-path does not exist, leading to the observed decrease in classification performance.
In general, we observe that both in the directed and undirected case our kernel is the best performing,
with the normalised Laplacian being the Hamiltonian that leads to the highest classification accuracy
in 3 out of 4 datasets.

Table 3. Classification accuracy (±standard error) on directed graph datasets, where d and u denote
the directed and undirected versions of the datasets, respectively. The best and second best performing
kernels are highlighted in bold and italic, respectively.

Kernel ALZd ALZu SHOCKd SHOCKu

QJSDA - 65.87± 0.25 - 41.48± 0.15
QJSDL 79.26± 0.24 60.42± 0.23 45.89± 0.23 35.77± 0.21

QJSDNL 82.07± 0.17 61.45± 0.22 46.05± 0.20 44.38± 0.21
SP 59.86± 0.25 58.00± 0.29 22.09± 0.29 40.16± 0.24

RW 79.06± 0.21 60.75± 0.25 30.45± 0.26 24.34± 0.28
GR 79.00± 0.20 64.34± 0.27 28.91± 0.30 29.39± 0.28
WL 70.87± 0.27 59.46± 0.35 38.74± 0.27 35.78± 0.26

5. Conclusions

We studied the use of continuous-time quantum walks and the quantum Jensen-Shannon
divergence for the purpose of measuring the similarity between two graphs. We performed a thorough
analysis of the similarity measure originally introduced in [18], showing that: (1) the kernel can be
extended to deal with directed graphs, allowing to better discriminate between the different classes,
even when compared with other commonly used kernels for directed graphs; (2) while it is possible to
incorporate additional node-level topological information in the kernel, this results in a significant
improvement over the performance of the original kernel; (3) the optimal Hamiltonian (in terms of
classification accuracy) depends on the dataset; (4) when appropriate conditions are met, the kernel
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is proved to be positive-definite, however (5) its performance suffers from a loss of structure in
the design of the initial state phase; (6) it is possible to efficiently compute the kernel using a fully
quantum procedure.

Despite having made important progress toward a better understanding of the quantum
Jensen-Shannon divergence kernel, several questions remain unanswered. As such, future work should
aim at understanding the role played by the initial state in the performance of the kernel, as well as
considering alternative divergence measures and different ways of encoding the edge directionality
information. Another idea could be to investigate if we can link the similarity between two graphs
to the quantumness [50] of a quantum walk on their merged graph, based on the observation that
isomorphic graphs result in a highly symmetric merged graph where strong interference effects can
lead the quantum walk to behave significantly differently from its classical counterpart.
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