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Abstract: Fatigued driving is one of the major causes of traffic accidents. Frequent repetition of
driving behavior for a long time may lead to driver fatigue, which is closely related to the central
nervous system. In the present work, we designed a fatigue driving simulation experiment and
collected the electroencephalogram (EEG) signals. Complex network theory was introduced to study
the evolution of brain dynamics under different rhythms of EEG signals during several periods of the
simulated driving. The results show that as the fatigue degree deepened, the functional connectivity
and the clustering coefficients increased while the average shortest path length decreased for the
delta rhythm. In addition, there was a significant increase of the degree centrality in partial channels
on the right side of the brain for the delta rhythm. Therefore, it can be concluded that driving fatigue
can cause brain complex network characteristics to change significantly for certain brain regions and
certain rhythms. This exploration may provide a theoretical basis for further finding objective and
effective indicators to evaluate the degree of driving fatigue and to help avoid fatigue driving.

Keywords: driving fatigue; EEG; complex network; functional connectivity; shortest path length;
clustering coefficient; degree centrality

1. Introduction

Fatigued driving is a frequent cause of fatal road accidents and is of great concern of the
public [1–3]. Fatigue is a complex physiological and psychological phenomenon, and driving fatigue is
the technical fatigue involved in both mental and physical exertion [4]. It is proved that mental fatigue
is a gradual process, and its effects will accumulate as time goes on [5]. Continuous repetitive driving
movements for a long time can lead to some physiological and psychological changes for drivers,
and then affect their driving ability and alertness [6]. It is considered that fatigue is dominated by
the central nervous system, characterized by the body’s reaction in the physiological and chemical
metabolism process. Along with the changes in the internal environment of the body and related
dysfunction, fatigue gradually affects other body tissues and even the whole body. Many researchers
show that mental fatigue induces low vigilance, slow response and drowsiness, which have strong
negative impacts on cognitive function [7]. Therefore, it is of great significance to study the evolution
process of mental fatigue during driving, which can help to find objective and effective evaluation
indicators for fatigue driving and provide a theoretical basis for studying prevention measures.

With the development of brain functional imaging technology, such as electroencephalogram
(EEG), functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy
(fNIRS), the brain dynamics can be recorded. EEG can directly measure the neural electrical activity
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from different places of the scalp with high time resolution, which is a kind of electrophysiological
signal. EEG signals can be divided into delta, theta, alpha and beta rhythms based on the frequency
range, which are related to the cognitive functions. EEG signals have obvious rhythmic changes with
different degrees of mental fatigue. For driving fatigue, traditional analysis methods such as energy
and complexity are most commonly used based on EEG rhythms. It is found that energy based on
the power spectrum increases mostly for delta and theta rhythms [8], while the complexity show a
downward trend for all rhythms [9]. However, these methods only describe the EEG signals of a single
channel in a local brain region, and do not involve the functional connection between brain regions,
resulting in great limitations. Therefore, the complex network theory [10–19] has been introduced into
the study of driving fatigue to reveal the functional connectivity of different brain regions and the
functional state transition of the whole brain.

Complex network originates from graph theory and consists of the coordination among various
elements in the system, which has been widely used in the urban transportation, financial economy,
biology, chemistry, power systems and other aspects [20–24]. The nervous system of the brain is
a complex network of neurons, which is the basis of various information processing and cognitive
expression of the brain. Different brain regions have their own specific functions, but they cannot
accomplish tasks alone without cooperating between different brain regions, thereby forming complex
networks of interactions. Therefore, driving fatigue may be a complex process involving multiple brain
regions. In view of the brain cooperation mechanism, functional connectivity was introduced, which
refers to any type of correlation between time series of brain activity [25–27]. To some extent, functional
connectivity can reflect functional interactions between different brain regions [28]. Accordingly, in
our study, the complex network based on functional connectivity from EEG signals is called the “brain
functional network”.

At present, there are many studies on driving fatigue based on the complex network [10–19], but
there is no consistent conclusion yet, which will be elaborated on in Discussion section. Therefore, this
paper used the complex network theory to further study the changes of brain dynamics from EEG
signals in different driving periods during simulated driving at different rhythms. We attempt
to provide reliable indicators and a theoretical basis for monitoring the practical application of
driving fatigue.

2. Materials and Methods

2.1. Subjects

The study included 16 subjects (12 males, 4 females; aged 23 ± 2.9 years), all of whom were college
students and graduate students. By the inquiry of experimenters, the subjects must be right-handed
and have no history of brain disease (such as pain, schizophrenia, concussion, brain trauma, etc.),
ocular disease, psychotropic medication and drug abuse. In addition, the subjects were asked not
to drink alcohol, tea, coffee or any other drinks, food or drugs that might excite the central nervous
system within 48 hours before the experiment.

2.2. Experimental Design

A simulated driving system was built in this experiment using the game development engine of
Unity3D, as shown in Figure 1. The system created a boring driving environment for the subjects to
make them more prone to fatigue by using the desert as the background environment. The system was
also equipped with the Logitech G29 steering wheel, which used dual-motor force feedback technology
to simulate the feedback effect. The entire system strived to maximize the simulation of the real driving
environment. This study designed a task of correcting auto-offset of vehicle. The subject should pay
attention during the simulated driving process. When the vehicle was automatically offset, the subject
needed to adjust the steering wheel in time to keep the vehicle in the middle of the left lane of the
driving direction.
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as shown in Figure 3. The sampling rate was 1 kHz. EEG channels were distributed in different brain 
regions, as shown in Table 1. Since the collected EEG signals usually contained interference signals 
(such as artifacts), the accuracy of the data analysis results would be greatly affected. Therefore, the 
acquired EEG signals needed to be pre-processed before further analysis. The main preprocessing 
steps were as follows. 

Step 1: Re-reference. The 62-channel EEG data were re-referenced in the experiment. Bilateral 
mastoids (M1, M2) were used as reference electrodes, so that there were 60 channels in the 
subsequent analysis. 

Step 2: Filtering. After re-reference, a high-pass filter of 0.5 Hz was performed. 
Step 3: Down-sampling rate. A 256 Hz sampling reduction process was carried out. 
Step 4: Artifact removal. Eye blink, eye drift and head movement artifacts were removed by 

independent component analysis [29]. 
Step 5: Dividing frequency band. The EEG rhythms selected in the study were the delta rhythm 
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which were obtained by Equiripple high-pass and low-pass filters. 

Figure 1. Simulated driving experiment interface.

The environment was comfortable during the experiment, and the light was soft and free of
external noise. The total duration of the experiment was 70 min, including the first 10 min to maintain
a quiet awake state (phase T0), and the last 60 min of simulated driving state (chose 10 min at the
beginning, the middle and the end of simulated driving state as phase T1, T2 and T3, respectively).
The detailed process of the experiment is shown in Figure 2. Before the experiment, the subject was
informed of the process and requirements of the experiment, clarified that the experiment caused no
harm to the body, and then signed the informed consent. The whole experiment process did not violate
morality and ethics, and the subjects had a good cooperation attitude. The experiment was carried out
following the rules of the Declaration of Helsinki.
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Figure 2. The illustration of the simulated driving experiment procedure.

2.3. EEG Collection and Preprocessing

The EEG signals of 62 channels were collected in the experiment using the Neuroscan acquisition
device, and the electrode position was placed in an international standard 10–20 system as shown
in Figure 3. The sampling rate was 1 kHz. EEG channels were distributed in different brain regions,
as shown in Table 1. Since the collected EEG signals usually contained interference signals (such as
artifacts), the accuracy of the data analysis results would be greatly affected. Therefore, the acquired
EEG signals needed to be pre-processed before further analysis. The main preprocessing steps were
as follows.

Step 1: Re-reference. The 62-channel EEG data were re-referenced in the experiment. Bilateral
mastoids (M1, M2) were used as reference electrodes, so that there were 60 channels in the
subsequent analysis.

Step 2: Filtering. After re-reference, a high-pass filter of 0.5 Hz was performed.
Step 3: Down-sampling rate. A 256 Hz sampling reduction process was carried out.
Step 4: Artifact removal. Eye blink, eye drift and head movement artifacts were removed by

independent component analysis [29].
Step 5: Dividing frequency band. The EEG rhythms selected in the study were the delta rhythm

(0.5–4 Hz), the theta rhythm (4–8 Hz), the alpha rhythm (8–13 Hz), the beta rhythm (13–30 Hz), which
were obtained by Equiripple high-pass and low-pass filters.
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Table 1. Brain regions vs. EEG channels.

Brain Regions Channels

Pre-frontal Fp1, Fpz, Fp2, AF3, AF4
Frontal F7, F5, F3, F1, Fz, F2, F4, F6, F8

Frontal-central FC5, FC3, FC1, FCz, FC2, FC4, FC6
Central C5, C3, C1, Cz, C2, C4, C6

Central-parietal CP5, CP3, CP1, CPz, CP2, CP4, CP6
Parietal P7, P5, P3, P1, Pz, P2, P4, P6, P8

Parietal-occipital PO7, PO5, PO3, POz, PO4, PO6, PO8
Occipital O1, Oz, O2
Temporal FT7, FT8, T7, T8, TP7, TP8

3. Analysis Method

3.1. Complex Network Construction

In a complex network, there are two basic elements: nodes and connecting edges. Whether there is
a connecting edge between any two nodes depends on the correlation between them. There are a lot of
ways to quantify the correlation, such as Pearson correlation, partial correlation, phase synchronization,
mutual coherence, and synchronous likelihood method [30,31]. To build a brain functional network
based on EEG signals, each channel can be considered as a node, and the functional connectivity is
regarded as the connecting edge. Here, we used a standardized sample Pearson correlation coefficient
to quantify the functional connectivity between any pair of EEG signals. The calculation formula is as
follows:

r =
1

n − 1

n

∑
i=1

(
Xi − X

sX

)(
Xi − Y

sY

)
(1)

where sX and sY are the standard deviations of the samples, respectively, then
(

Xi−X
sX

)
and

(
Xi−Y

sY

)
are the normalized variables, respectively.

In the process of the complex network construction, the adjacency matrix is established for a
given threshold T. If r > T, there is a connecting edge between the two nodes, then the corresponding
element in the matrix is set to 1; otherwise, there is no connecting edge between the two nodes, and
the corresponding element in the matrix is set to 0. Therefore, the adjacency matrix is a binary matrix,
and its corresponding network is uniquely determined.

3.2. Shortest Path Length

In a complex network, the path length is defined as the number of connecting edges on the path
between two nodes vi and vj. Although there is usually more than one path between two nodes, only
the shortest path is considered because it is the best path for information transmission between nodes.
Therefore, the corresponding path length is called the shortest path length [32]. In the brain functional



Entropy 2019, 21, 353 5 of 16

networks, the path length is used to assess the degree of functional integration of the brain regions.
The shorter the path length, the stronger the functional integration, that is, the more direct connections
between brain regions.

In a binary network, the average shortest path length is defined as:

L =
1

C2
N

∑
1≤i<j≤N

dij (2)

where dij represents the shortest path length between node vi and vj, and N is the number of nodes in
the network.

3.3. Clustering Coefficient

In a complex network, the clustering coefficient is an important parameter for measuring the
degree of internal grouping and connection, which reflects the possibility of all neighboring nodes of
a node being neighbors to each other. The clustering coefficient describes the speed of information
processing and transmission from the perspective of the network.

In a binary network, the clustering coefficient Ci of node vi is defined as the ratio of the actual
number of sides Ei and the total number of possible sides C2

ki
between vi’s adjacent nodes [32], as

follows:
Ci =

Ei

C2
ki

(3)

where ki is the number of vi’s all neighbor nodes, and Ei is the actual number of connecting edges
between the neighbor nodes of vi. The average clustering coefficients of all nodes in the network are
defined as follows:

C =
1
N

N

∑
i=1

Ci (4)

where N is the total number of nodes.

3.4. Degree Centrality

In a complex network, the degree centrality is the most direct index to measure the degree of
node centrality in the network. For a brain functional network, degree centrality reflects the cerebral
cortex regions that play a key role in the information transmission and processing of the brain [33].
The degree centrality of a node is large, which means that the node has more connected nodes in the
topology of the brain functional network, indicating that it has an important position in the network.
Therefore, the degree centrality can quantitatively analyze the importance of the node in the brain
functional network. The degree centrality can be defined as follows:

CD =
ki

N − 1
(5)

where ki is the degree of node vi, that is, the number of edges connected to the node vi; N is the total
number of nodes.

3.5. Statistical Method

In our study, what we were most concerned about was the difference between phase T1, T2 or
T3 compared to phase T0. In statistics, phase T0 was the baseline, i.e. the control group, while phase
T1, T2 and T3 were the test groups. One-way analysis of variance (ANOVA) was used to compare
the complex network index (the amount of functional connectivity, shortest path length, clustering
coefficient or degree centrality) extracted from EEG signals between phase T1, T2 or T3 and phase T0.
Then, Dunnett’s test followed to correct for multiple comparison under the significant level p < 0.05.
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3.6. Analysis Example

In this study, the above analysis methods were applied to calculate the variation of the
characteristic parameters in each subject with sliding window technique. The results of one subject at
a threshold of 0.74 in the delta rhythm are shown in Figure 4. It can be seen that the changes in the
structure of the brain functional network were obvious. At the beginning of the experiment, the brain
network of the subjects was sparse, and the elements with the adjacency matrix of 1 were relatively
few. With the increase of simulated driving time, the brain network of the subject gradually became
denser, and the elements with the adjacency matrix of 1 were relatively more abundant. Meanwhile,
the average shortest path length decreased, the average clustering coefficient increased, and the degree
centrality of almost the whole brain region increased gradually.

Figure 4. The evolution of the complex network characteristics in the delta rhythm for one subject
(T = 0.74). (a) The functional connectivity graph at several specific times; (b) The heatmap of binary
brain network at several specific times (The yellow point represents the element with the adjacency
matrix of 1.); (c) The topographic map of the degree centrality at several specific times; (d) and (e) are
the changes of the average shortest path length and clustering coefficient, respectively. (The red lines
are the results of first-order linear quasi-sum based on the mean point of each window.)

4. Results

4.1. Threshold Selection

EEG channels were used as nodes of the complex network, and the corresponding node connection
was established according to the Pearson correlation coefficient between the two channels. Thereby,
the brain functional network based on EEG signals for driving fatigue was constructed.
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The selection of the threshold T is directly related to the structure of the complex brain network.
Different thresholds may lead to different complex networks, so we traversed all possible thresholds
from 0 to 1 with a step of 0.01.

On the premise of ensuring that there were no isolated nodes or isolated parts in the constructed
brain functional network, threshold selection mainly depended on the statistical results of path length
and clustering coefficients between phase T1, T2, or T3 compared to phase T0. We tended to choose
the threshold interval with significant differences. The statistical analysis method we used here was
one-way ANOVA followed by Dunnett’s test (p < 0.05). It was found that there were significant
difference at the threshold of 0.65–0.77 between phase T2 (and T3) and phase T0 for the shortest path
length in the delta rhythm, and at the threshold of 0.56–0.80 between phase T3 and phase T0 for the
clustering coefficient in the delta rhythm, as is shown in Figure 5. It was concluded that when the
threshold T was in the range from 0.65 to 0.77, the difference between phases T1–T3 and the phase T0
was more obvious. From this, the threshold from 0.65 to 0.77 was finally selected to construct the brain
functional network.
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Figure 5. The relative changes of the average shortest path length and the average clustering coefficient
in phases T1, T2 and T3 compared to phase T0 in the brain functional network from all subjects in the
delta rhythm. (a) The relative change of the average shortest path length; (b) The relative change of the
average clustering coefficient. Vertical lines represent thresholds with significant differences compared
to phase T0 (p < 0.05).

4.2. Functional Connectivity Analysis

First, the amount of functional connectivity of the brain functional network and its relative change
between phase T1–T3 in the driving state and phase T0 in the awake state from all subjects in different
rhythms were studied statistically with a threshold T of 0.74, as is shown in Figure 6. The amount
of functional connectivity we were interested in were the ones in the whole brain (Total), in the left
hemisphere (LL), between the left and right brain regions (LR), and in the right hemisphere (RR). It is
found that for delta, theta and alpha rhythms, the amount of functional connectivity and the relative
change of Total, LR and RR were gradually increasing with the increase of simulated driving time, and
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reach the highest in phase T3. Particularly, the amount of functional connectivity of LR was relatively
smaller than LL, LR and RR, which was usually smaller than 50 under the threshold of 0.74 at phase
T0. As the driving fatigue deepened, a significant change two or three times the relative change of the
functional connectivity occurred.
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Figure 6. The amount of functional connectivity (line) and the relative change (histogram) of phases
T1–T3 compared to phase T0 from all subjects in (a) delta, (b) theta, (c) alpha and (d) beta rhythms.
Four different colored shaded columns represent different phases. The histogram corresponds to the
bottom and left axis, while the line corresponds to the bottom and right axis. Vertical lines represent
the amount of functional connectivity with significant differences compared to phase T0 (p < 0.05).

Furthermore, one-way ANOVA followed by Dunnett’s test (p < 0.05) was performed in phase
T1, T2 and T3 compared to phase T0. The relative change in the functional connectivity increased
significantly in LR at phase T3 for delta, theta and alpha rhythms, and in Total and RR at phase T3 for
the delta rhythm. There was no significant change in the beta rhythm. The above analysis shows that
the functional connectivity in LR was sensitive for analyzing driving fatigue.

4.3. Shortest Path Length Analysis

The average shortest path length results of the brain functional network from all subjects in
different rhythms are shown in Figure 7. With the increase in simulated driving time, the average path
length for delta, theta and alpha rhythms showed a trend of shortening except for the irregular change
of the beta rhythm and reached the shortest value in phase T3 for delta, theta and alpha rhythms.
In addition, the above changes were consistent under a series of selected thresholds.
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Furthermore, one-way ANOVA followed by Dunnett’s test (p < 0.05) was performed in phase
T0 of the awake state and phases T1–T3 in the driving state based on the selected thresholds. For the
delta rhythm, there were statistical differences at all selected thresholds in phase T2 and T3. For other
rhythms, there were no statistical differences in the selected thresholds for any of the phases. The above
analysis shows that the average shortest path length is suitable for analyzing driving fatigue, especially
for the delta rhythm.

4.4. Average Clustering Coefficient Analysis

In the brain functional network, the average clustering coefficient results from all subjects in
different rhythms are shown in Figure 8. The average clustering coefficient for delta, theta and alpha
rhythms increased gradually with the increase in simulated driving time, except for the irregularity of
the beta rhythm. The average clustering coefficient was highest in phase T3 for the delta, alpha and
theta rhythms. In addition, the above changes were consistent under a series of selected thresholds.

In addition, one-way ANOVA followed by Dunnett’s test (p < 0.05) was performed in phase T0
of the awake state and phases T1–T3 of the driving state based on the selected thresholds. Among
them, for the delta rhythm, there were statistical differences at all selected thresholds in phase T3. For
other rhythms, there were no statistical differences in the selected thresholds for any of the phases.
The above analysis results show that the average clustering coefficient feature was good for analyzing
brain fatigue, especially for the delta rhythm.
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4.5. Degree Centrality Analysis

The average degree centrality of the brain network was obtained under the threshold of 0.74 for
all subjects in phases T0–T3 as shown in Figure 9. It can be seen that, with the increase in simulated
driving time, the degree centrality of partial nodes tended to increase for delta, theta and alpha
rhythms. There was no obvious pattern of change for the beta rhythm.

Furthermore, the brain topographic maps of the average degree centrality were obtained at the
threshold 0.74 for all subjects in phases T0–T3 as shown in Figure 10. One-way ANOVA followed
by Dunnett’s test (p < 0.05) was performed in phase T0 of the awake state and phases T1–T3 of
the driving state on the selected thresholds. The red circles marked in Figure 10 are the nodes
with significant differences. With the increase in simulated driving time, the number of nodes with
significant differences gradually increased for delta and theta rhythms and reached the maximum
in phase T3. Especially for the delta rhythm, the degree centrality significantly increased for partial
channels in phase T3 in the right hemisphere, which were the frontal region, frontal-central region,
central region, central-parietal region, parietal region and parietal-occipital region. For the theta
rhythm, the degree centrality was significantly increased for individual channels in phases T1–T2 in
the right hemisphere, which were the frontal-central region, central region and central-parietal region
and in phase T3 in the right hemisphere, which were the frontal region, frontal-central region and
central-parietal region. For the alpha rhythm, the degree centrality was significantly increased for AF4
channel in phase T2 in the right hemisphere, which was the pre-frontal region, and for F8 channel in
phase T3 in the right hemisphere, which was frontal region. For the beta rhythm, the degree centrality
shows no significant change in phases T1–T3.
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5. Discussion

In this paper, we used the complex network theory to study the changes of EEG signals for
different rhythms in different periods of simulated driving. The functional connectivity between the
nodes in the brain functional network was established by calculating the Pearson correlation coefficient
between two nodes for each subject. A series of thresholds were selected, and then the corresponding
brain functional network was constructed. Finally, the changes of complex network characteristics
such as the amount of functional connectivity, shortest path length, clustering coefficient and degree
centrality in the constructed brain functional network during driving fatigue were analyzed.

The results show that there are fewer connecting edges between the channels in phase T0 at the
beginning of the simulated driving experiment. At phase T0, the subjects perform their respective
nerve activities in each brain region, which has low synchronization. With the increase in simulated
driving time, the synchronization increases and the fatigue degree deepens gradually. The research
has shown that mental fatigue occurs during a long-term cognitive task, when the brain must activate
important nerve circuits to maintain body performance and prevent attention loss [34]. In the state of
mental fatigue, the brain must activate more functional connectivity in order to maintain basic cognitive
functions and physiological activities [35]. This is consistent with the conclusions of some studies
on the brain functional connectivity in the process of driving mental fatigue [10–13]. Interestingly,
this study also finds that the relative change of functional connectivity in LR brain is more significant
at phase T3, taking the delta rhythm, for example, as shown in Figure 6. If the brain functional
network corresponding to phase T0 is regarded as the benchmark network, the functional connectivity
of the brain functional network in the process of mental fatigue is significantly enhanced in phase
T3. This indicates that the subjects have experienced mental fatigue after a long period of simulated
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driving, and the nerve activity in each brain region is inhibited, resulting in a synchronous increase
in the neural activity of the brain region compared with phase T0, while the level of attention and
awakening of the brain are declining [36].

In addition, there may be a decrease in alertness when people experience brain fatigue, and the
characteristic parameters of the brain network, such as path length, clustering coefficient and degree,
will change regularly compared with the awake state [37]. The results of brain network analysis
show that as the degree of fatigue deepens, the average clustering coefficient for the delta rhythm
increases, and the average path length becomes shorter. At the same time, the degree centrality
of each node has an upward trend. The coherence is significantly increased in the frontal, central,
parietal and the intermediate connections regions of the brain. The average path length and clustering
coefficient represent the ability of information processing and transmission in the brain from the
global and local perspectives, respectively [38]. The decrease of average path length means that the
overall information processing ability is improved, which is consistent with some recent research
reports. Kar et al. [14] showed a decreasing trend in the characteristic path length for delta, theta,
alpha and beta bands. Chua et al. [15] showed that the synchronous network had decreased path
length with the accumulation of mental fatigue for the alpha frequency band. Wang et al. [10]
showed a significant reduction of the global efficiency characteristic in the 36–44 Hz band, which is
a parameter corresponding to the average path length; Kong et al. [16] adopted the global efficiency
and path length and found that both decreased significantly in the delta and theta bands. Although
the increasing and decreasing rules of the path length characteristic parameter are the same, the
corresponding rhythms are different, and some even contain the beta rhythm, which is related to the
state of excitement. Nevertheless, there are also some contrasting reports. Zhao et al. [13] observed
a significant increase in the character path length for all EEG bands, which is the same as the result
of Dimitrakopoulos et al. [17] for the theta band in a driving task and Sun et al. [18] for the alpha1
band in weighted networks. The increase in the clustering coefficient means that the connectivity
between adjacent nodes is enhanced and the ability of local information processing is improved,
which is consistent with many studies on fatigued driving. Kar et al. [14] showed an increasing
trend in the clustering coefficient for delta, theta, alpha and beta bands, which is the same as the
result of Chua et al. [15] for the alpha frequency band, Zhao et al. [13] for delta, alpha and beta bands,
Wang et al. [10] in the 36–44 Hz band and Dimitrakopoulos et al. [17] for the theta band during the
driving task.

During the simulated driving task, the subjects gradually feel tired, but when the vehicle deviates,
the divers have to respond as quickly as possible, which indicates that the drivers have to make
more effort than normal to maintain their attention [39]. Therefore, in the fatigued state, the brain
must activate more or stronger functional connectivity to improve the efficiency of information
processing and transmission in the cerebral cortex, so that the brain can successfully complete the
simulated driving task. As more brain function regions are activated, the degree centrality of the
node corresponding to the brain region increases, which coincides with the study of Kar et al. [14] in
that the degree of connectivity and the corresponding brain region of the node are more important in
the network. The consequence is that the brain’s energy supply is insufficient and eventually leads
to fatigue.

It is indicated that frequency division is a powerful and effective method in vigilance and driving
tasks [40–42]. In fact, some characteristics based on the brain functional network for different frequency
bands of EEG signals have been used to analyze the features of fatigue driving [10,15,43–45]. We hope
that we can find a strong indicator for fatigue driving detection, so we have a rigorous statistical
analysis of the processed data. It is found that the characteristics, such as shortest path length,
clustering coefficient and degree centrality, are more sensitive, which show regular changes, especially
for the delta rhythm. To our knowledge, among the limited studies on the use of brain functional
network to analyze driving fatigue, most of them focus on the theta and alpha rhythms [14–18], because
related research shows that when a person fatigues, slow wave activity increases over the entire cortex,
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especially for theta and alpha rhythms [46], but there is also a study indicating that fatigue mainly
influences the lowest frequency band (1–3 Hz) [47].

In conclusion, the amount of functional connectivity, shortest path length, clustering coefficient
and degree centrality were relatively sensitive to fatigue detection. Especially for the delta rhythm,
there were regular changes in each characteristic. The above research can provide some effective
indicators and a theoretical basis for fatigue driving monitoring. In future work, we will continue
to increase the number of subjects to expand the sample size and further improve the accuracy of
statistical analysis.
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