
entropy

Article

A Mesoscopic Traffic Data Assimilation Framework
for Vehicle Density Estimation on Urban Traffic
Networks Based on Particle Filters

Song Wang *, Xu Xie and Rusheng Ju

College of Systems Engineering, National University of Defense Technology, Changsha 410073, China;
x2nudt@nudt.edu.cn (X.X.); w_ms1985@163.com (R.J.)
* Correspondence: wangsong08@nudt.edu.cn

Received: 11 January 2019; Accepted: 1 April 2019; Published: 3 April 2019
����������
�������

Abstract: Traffic conditions can be more accurately estimated using data assimilation techniques since
these methods incorporate an imperfect traffic simulation model with the (partial) noisy measurement
data. In this paper, we propose a data assimilation framework for vehicle density estimation on
urban traffic networks. To compromise between computational efficiency and estimation accuracy,
a mesoscopic traffic simulation model (we choose the platoon based model) is employed in this
framework. Vehicle passages from loop detectors are considered as the measurement data which
contain errors, such as missed and false detections. Due to the nonlinear and non-Gaussian nature of
the problem, particle filters are adopted to carry out the state estimation, since this method does not
have any restrictions on the model dynamics and error assumptions. Simulation experiments are
carried out to test the proposed data assimilation framework, and the results show that the proposed
framework can provide good vehicle density estimation on relatively large urban traffic networks
under moderate sensor quality. The sensitivity analysis proves that the proposed framework is robust
to errors both in the model and in the measurements.

Keywords: data assimilation; vehicle density estimation; platoon based model; event-based data;
particle filters

1. Introduction

Traffic state information, such as the density, speed on road segments and the queue size in front
of an intersection, is the basis of various road traffic management and control strategies. They range
from traffic light control [1], ramp metering [2] to link control [3], and route guidance [4]. Estimation
of the traffic state is necessary due to the limited coverage of sensors and to the noisy measurements
that the sensors produce [5]. Traffic models and traffic simulations play an important role in traffic
engineering and traffic control and are widely used in traffic state estimation [5,6].

However, many factors influence the accuracy of traffic simulation results. Firstly, since every
traffic flow model is a simplification of a real traffic system which is complex and uncertain in
nature, errors from the process of modeling are inevitable. They include both the inaccurate
modeling, the errors in parametric data as well as the uncertainty in traffic systems [7–10]. Moreover,
unpredictable traffic events, such as automobile accidents, make the estimate of traffic simulations
far from the real traffic condition. In order to reduce these errors and improve the accuracy of traffic
simulation results, data assimilation techniques are employed.

Data assimilation aims to incorporate the observed information into the dynamic system model
to produce improved state estimates [11,12] where the three elements of system model, measurement
model and data assimilation algorithm are involved. It has been widely applied in areas such as

Entropy 2019, 21, 358; doi:10.3390/e21040358 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e21040358
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/21/4/358?type=check_update&version=2

Entropy 2019, 21, 358 2 of 20

atmosphere, ocean climatology and hydrology [13–15]. In attempts to estimate the traffic state, efforts
have been made to assimilate traffic data into traffic flow models. For example, Yuan et al. [16,17]
employ the extended Kalman filter (EKF) to assimilate flow, speed data and floating car data into
a Lagrangian macroscopic traffic flow model in order to estimate the traffic density and speed on
freeways. However, EKF can be applied only when the traffic flow model is differentiable with
respective to its state, therefore it excludes many traffic models including the Cell Transmission
Model (CTM) [18] which is widely used in macro-level traffic simulation [19]. In order to avoid this
problem, Thai and Bayen [20] transform the CTM to a switching mode model (SMM) in which the
system switches between some linear models and incorporates sparse density observations from loop
detectors into it using Kalman filter (KF) techniques to estimate densities on a highway. The ensemble
Kalman filter (EnKF), which can address non-differentiable system models but is restricted to Gaussian
model errors, is applied to assimilate the GPS speed and position data into a velocity based macroscopic
traffic model to estimate the mean speed on a highway in [21]. While most data assimilation algorithms
are limited by the assumptions of either linear/continuously differentiable models (e.g., KF, EKF) or
Gaussian errors (e.g., EnKF), the particle filter (PF) imposes no restriction on the dynamics and the
errors of the models and can converge to the true state distribution. It is superior for the estimation of
nonlinear and non-Gaussian system theoretically [22] and has been employed in many related research
works [23,24]. Xie et al. [24] develop a generic particle filter-based data assimilation framework for
reconstructing vehicle trajectories on signalized urban arterials, in which noisy vehicle passages and
sparse travel time observations are assimilated into a microscopic traffic simulation model.

The objective of our study is to estimate vehicle densities on the roads in an urban traffic network.
Vehicle density is one of the main variables describing the urban traffic state and provides important
information for urban traffic control, such as the control of traffic lights [1], and vehicular traffic
guidance [25]. Three classes of traffic simulation models can be used to perform the estimation
of vehicular traffic density. Microscopic traffic models describe the movement of each individual
vehicle in detail. Macroscopic traffic models describe the spatial-temporal evolution of aggregated
traffic variables. Mesoscopic traffic models combine microscopic and macroscopic aspects of traffic
flow dynamics in some forms. On the one hand, mesoscopic traffic models are computationally
faster and more appropriate in large urban traffic networks than microscopic traffic models. On the
other hand, mesoscopic traffic models keep track of more details compared with macroscopic traffic
models. Therefore, we propose a novel data assimilation framework to estimate vehicle densities
on relatively large urban networks. The novelty is twofold. Firstly, it makes a good compromise
between model details and computational cost by using a mesoscopic traffic model. Secondly, this
framework integrates informative event-based data which is rarely used in related research. In this
mesoscopic traffic data assimilation framework, the platoon based model [26] is employed since it not
only explicitly captures the heterogeneity (the gap between successive platoons) characterizing urban
traffic but also is computationally efficient. Vehicle passage times from sensors (e.g., loop detectors)
are considered as the measurement data, which contains errors such as missed and false detections.
Since the mesoscopic traffic model is nonlinear and the measurements of vehicle passage times contain
strongly non-Gaussian noises, we employ particle filters to conduct the data assimilation due to
its advantages mentioned above. We conduct simulation experiments to test the data assimilation
framework, and the results show that this method can provide reasonable estimates of vehicle density
under moderate sensor quality. Further sensitivity analysis indicates its robustness to errors both in
the model and in the data.

The rest of this paper is structured as follows. In Section 2 , we formally present the mesoscopic
traffic model with the Discrete Event System Specification (DEVS) formalism due to its discrete event
nature. Then, Section 3 presents the particle filter based mesoscopic traffic data assimilation framework
for vehicle density estimation on urban traffic networks. The results of experiments and sensitivity
analysis are presented in Section 4. Finally, conclusions are drawn in Section 5.

Entropy 2019, 21, 358 3 of 20

2. Mesoscopic Urban Traffic Model in the DEVS Formalism

Previous research has defined and validated the approach of aggregating vehicles into platoons in
the urban traffic through analyzing real measurements [26]. Since platoon based model (PBM) makes
a good compromise between computational efficiency and simulation accuracy, we employ it as our
traffic flow model with the expectation that our proposed data assimilation framework can be applied
in relatively large urban traffic networks.

The PBM is a typical discrete event system model, so we formally describe it using the DEVS
formalism [27] which is widely adopted in discrete event modeling and simulation. Firstly, we identify
the atomic components of an urban traffic system and present their coupling relations to construct a
network. Then, we depict the dynamic behaviors of some key atomic models with the DEVS formalism.

2.1. The Coupled DEVS Model of the Urban Traffic System

Conceptually, an urban traffic network is composed of links and intersections with specific origins
and destinations of traffic demands. Following the DEVS framework, an urban traffic network is
represented as a coupled model which consists of atomic components. We identify six types of atomic
components in an urban traffic system:

• source model A, which randomly generates platoons of vehicles according to the traffic arrival
flow and sends them into the urban traffic network;

• segment model M, which represents either a section of road links S or a preselection lane P at the
entrance of a intersection and describes the movement of vehicle platoons on it;

• assignment model D, which randomly assigns platoons that will enter an intersection to the
preselection lanes according to the given turning probabilities;

• intersection model I, which imitates the behavior of a physical intersection in urban traffic
networks and transfers platoons from the preselection lanes at entrance points to the exit links;

• traffic light model L, which sends index signals to an intersection model to switch the phase of
traffic light periodically. In our study, the fixed-time traffic light control is employed;

• sink model B, which serves as the destination of vehicles and records information of platoons
leaving the network under study.

For an urban traffic network under consideration, we define a set {So, Sg, Ag, Int, Tl, Sk} to
categorize all related atomic components, where So is the set of all related source models (i.e., So =

{Ai, i = 1, . . . , NA}), Sg is the set of all related segment models (i.e., Sg = {Mi, i = 1, . . . , NM}), Ag
is the set of all related assignment models (i.e., Ag = {Di, i = 1, . . . , ND}), Int is the set of all related
intersection models (i.e., Int = {Ii, i = 1, . . . , NI}), Tl is the set of all related traffic light models (i.e.,
Tl = {Li, i = 1, . . . , NL}), and Sk is the set of all related sink models (i.e., Sk = {Bi, i = 1, . . . , NB}).

In addition, four types of messages which are transmitted between atomic models are defined:

• platoon message, representing a group of vehicles traveling together with the same speed (i.e., the
platoon of vehicles). The platoon message is characterized by variables (Thead, Psize), indicating
the time instant when the head of the platoon arrives at the entrance boundary of the current
segment/intersection and the number of vehicles within the platoon respectively;

• exit message, used to block (exit = 0) or free (exit = 1) the exit boundaries of segment models
(maybe via an intersection model);

• revise message, used to revise the number of vehicles on the downstream segment when a platoon
is split by the red traffic light. The platoon messages and revise messages are transmitted to a
segment model via the same port. A revise message consists of variables (f lagr, Nr), where f lagr

is used to distinguish the revise message from the platoon message (for example, f lagr = −1
when Thead ≥ 0 in platoon messages are assured in a simulation) and Nr indicates the number of
vehicles failing to cross the stop line.

Entropy 2019, 21, 358 4 of 20

• phase_index message, which indexes the phase of the traffic light and is sent to an intersection
model by a traffic light model;

Figure 1 illustrates how the atomic models form a coupled urban traffic network model using
ports. In Figure 1, the rectangles represent atomic models with input and output ports and the
arrows show the connections where messages are sent from an output port to an input port of models.
A road link Linki can be represented by a sequence of segment models (donated as S1, . . . , Ss) where
platoon messages are transmitted from the upstream to the downstream segment and exit messages
are transmitted from the downstream to the upstream segment. The first segment S1 receives platoon
messages from an upstream source Am or Intersection I′j . The last segment Ss sends platoon messages
to the downstream component. If the downstream component is a sink model, platoons can enter it
directly. Otherwise, the downstream of this link is connected to an intersection. In this case, Ss first
sends platoon messages to an assignment model Dj in order to assign the vehicles within a platoon to
different preselection lanes. Then, the platoons are sent to an intersection model Intj by the preselection
lanes. The exit messages are transmitted from the intersection model Intj to Ss via their preselection
lanes. Intersection models transmit platoon and revise messages to the downstream links and receive
exit messages from them. For each intersection, there is a corresponding traffic light model which
sends phase_index messages to it. Notice that the coupled urban traffic network model has no external
input and output.

Figure 1. The coupled DEVS model of an urban traffic network.

2.2. Key Atomic Components of the Urban Traffic System

In this subsection, we will describe the atomic models of source, segment, and intersection in detail.
Each atomic component is modeled into different phases. The phase variable qualitatively partitions
the infinite state space into finite mutually exclusive and collectively exhaustive subsets (i.e., phases)
where the dynamics of atomic models are recognizable. Thus, we can specify the behavior of atomic
models (e.g., the time advance, transition, and output function) in each phase. Phases make models
more understandable, validatable, and communicable [28]. The phases and state variables of these
atomic components are listed in Table 1. Since the other models (i.e., sink model, assignment model and
fixed-time traffic light model) are quite simple, we omit them in this paper due to the limited space.

Entropy 2019, 21, 358 5 of 20

Table 1. Phases and state variables of key atomic models of the urban traffic system.

Model Type Phases State Variables Description

Source active p_time The time when sending a platoon message
p_size The number of vehicles within the generated platoon

Segment

empty
approach
cross
blocked
blocked_in
blocked_ f ull
transient_p
transient_e

platoonList The container of the information of all platoons on the segment
(the platoon that is entering or leaving the segment is also in it)

vn The number of all vehicles in platoonList
out The state of the exit boundary of the segment (blocked or free)

Intersection

empty
cross
transient_p
transient_e

crossPlatoons The container of related information of platoons which are
entering the intersection

currentPhase The current phase of the traffic light in the intersection

2.2.1. Source Model

As a DEVS model, the source model remains active all the time and creates platoons of vehicles
by sending platoon messages to the connected link continuously based on a vehicle arrival rate.

Let the n-th platoon message be sent out at time p_timen in which the number of vehicles is
p_sizen, then the time when sending the (n + 1)-th platoon p_timen+1 is determined by

p_timen+1 = p_timen + p_sizen · hw + ∆ + rgap, (1)

where hw is the average time interval between two successive vehicles within a platoon entering the
network, ∆ is a pre-determined value which represents the minimum time gap between successive
platoons, and rgap is an exponentially distributed random variable.

As a result, the vehicle arrival rate q is determined by

q =
E(p_size)

∆ + E(rgap) + E(p_size) · hw
, (2)

where E(rgap) is the mean value of rgap, E(p_size) is the mean value of the size of the platoon generated
which is drawn from a binomial distribution with size limit of p_sizemax. According to Equation (2),
given the vehicle arrival rate, E(p_size) is calculated by

E(p_size) =
q · (∆ + E(rgap))

1− q · hw
. (3)

2.2.2. Segment Model

The segment model has two pairs of input and output port: InPorts = {“p_in”, “e_in”},
OutPorts = {“p_out”, “e_out”}, where “p_in” is used to receive platoon/revise messages, “p_out”
is used to send platoon messages, “e_in” and “e_out” are used to get and send exit messages.
Three attributes are defined for the segment model: Vmax is the speed limit of the segment, segLength is
the length of the segment, and C represents the maximum number of vehicles on the segment. There are
three state variables in the segment model: platoonList records the information of all platoons on
the segment including the platoon which is entering or leaving the segment; vn is the number of
all vehicles in platoonList; out indicates whether the platoons can leave the segment when arriving
the boundary.

When a platoon characterized by (Thead, Psize) enters a segment, it travels on the segment with
an independently random speed Pv = p · Vmax, where p is a random variable indicating the speed
profiles of platoons on urban roads. The same as in [26], we assume p = 1.0, 0.9, 0.8 with probabilities

Entropy 2019, 21, 358 6 of 20

of 0.8, 0.15 and 0.05, respectively. Then, the element of (Thead, Psize, Pv) is added to platoonList. Notice
that, unlike [26], the queue size is not represented separately in our study, since we focus on the
vehicle density on the segment. However, if we need the queue size (e.g., when the vehicles in the
queue exit the segment as a single platoon), it can be calculated as in [29]. In the platoon based model,
the movements of platoons on the segment are not traced, only the entries and exits of platoons are
dealt with, and overtaking of platoons within a segment is not considered currently. If a faster platoon
catches up with a slower platoon, they merge as a single platoon.

As is shown in Table 1, eight phases are defined to model the dynamical evolution of an urban
road in the segment model:

• empty, which indicates there is no vehicle on the segment (i.e., vn = 0);
• approach, which indicates the first platoon in platoonList is approaching the exit boundary of the

segment;
• cross, which indicates the first platoon in platoonList is crossing the exit boundary of the segment;
• blocked, which indicates the head of the first platoon in platoonList has arrived at the blocked exit

boundary and the segment can contain all the vehicles in platoonList;
• blocked_in, which indicates the head of the first platoon in platoonList has arrived at the blocked

exit boundary and the last platoon in platoonList is entering and will totally occupy the segment;
• blocked_ f ull, which indicates the exit boundary of the segment is blocked and the segment is

totally occupied by vehicles;
• transient_p, which is a transient phase with 0 time duration. The segment model moves to

transient_p in order to output a platoon message;
• transient_e, which is also a transient phase. The segment model moves to transient_e in order to

output an exit message.

Figure 2 shows the phase transitions of the segment model. In the diagram, external transitions
and message outputs are represented by solid arrow lines, while internal transitions are represented
by the dashed arrow lines. Conditions of transitions are indicated together with the arrow lines
representing the internal/external transitions. When a segment is in empty, a phase transition to
approach takes place immediately if receiving a platoon message through “p_in”. The phase stays
approach until the time when the first platoon reaches the exit boundary. If the boundary is free
(i.e., out = free), the phase moves to transient_p to send the platoon message to the downstream model
through “p_out” and instantaneously a phase transition to cross occurs. As soon as the platoon leaves
the segment completely, the segment removes it from platoonList. In this case, if there still are platoons
on the segment (i.e., vn > 0), the phase moves back to approach. Otherwise, the phase moves to empty.

The exit boundary becomes blocked if a segment receives a blocked exit message (i.e., exit = 0)
from “e_in”. If the phase of a segment is approach, a queue forms when the first platoon arrives at the
blocked boundary. In this case, the phase transition depends on the number of vehicles in platoonList.
If vn ≥ C, the phase jumps to blocked_in. Otherwise, the phase moves to blocked. If the phase is cross
when a segment receives a blocked exit message, the crossing platoon is split, and the phase transition
also depends on vn like in the approach case.

In phase blocked, if receiving a platoon message results in excessive vehicles (i.e., vn ≥ C),
the segment also transits to blocked_in. If the segment is full, the phase enters blocked_ f ull via
transient phase transient_e for sending a blocked exit message to the upstream model through “e_out”.
In phase blocked_ f ull, as soon as a free exit message (i.e., exit = 1) is received from “e_in”, the segment
jumps to transient_e and transient_p successively in order to send a free exit message to the upstream
model and send a platoon message to the downstream model, then the phase enters cross. In the case
that the phase is blocked or blocked_in when a free exit message is received, a phase transition to cross
via transient_p occurs.

Entropy 2019, 21, 358 7 of 20

Figure 2. Phase transition graph of the segment model.

In addition, the segment which is connected to the exit point of an intersection can receive revise
messages from “p_in”. In this case, if the segment is in blocked_in and the revised platoon can no
longer totally occupy the segment (i.e., vn < C), the phase moves to blocked.

2.2.3. Intersection Model

An intersection connects the upstream preselection lanes and the downstream exit segments.
Three types of input ports and two types of output ports are defined in the intersection model.
Inports ={{“p_inm”}msize

m=1 , {“e_inn”}nsize
n=1 , “tlc_in”}, Outports = {{“p_outn”}nsize

n=1 , {“e_outm”}msize
m=1 },

where “p_inm” is used to receive platoon messages from an upstream preselection lane, “e_inn” is
used to receive exit messages from a downstream exit segment, “tlc_in” is used to receive phase_index
messages from a traffic light model, “p_outn” is used to send platoon/revise messages to a downstream
segment, “e_outm” is used to send exit messages to an upstream preselection lane, and msize, nsize are
the number of the upstream lanes and downstream segments, respectively. In an intersection model,
each upstream preselection lane im corresponds to a pair of (“p_inm”, “e_outm”) and Ent represents
the set of all preselection lanes (i.e., im ∈ Ent), while each downstream segment on corresponds to a
pair of (“p_outn”, “e_inn”) and Ext represents the set of all downstream segments (i.e., on ∈ Ext).

In order to associate the preselection lanes with the exit segments and enumerate phases of the
traffic light in an intersection, the following variables are defined:

• ODMap, which maps a preselection lane in Ent to an exit segment in Ext.
• DOMap, which maps an exit segment in Ext to several preselection lanes in Ent.
• TLPhases, which contains all phases of the traffic light in an intersection. The phase of the traffic

light is represented by a subset of Ent (i.e., TLPhases(i) ⊂ Ent, where i is the index of the phase),
which lists the preselection lanes for which the traffic light is green.

As is shown in Table 1, there are two state variables in the intersection model: crossPlatoons
contains the related information of platoons which are crossing the entrance boundary of the
intersection; currentPhase records the current phase of the traffic light in the intersection. Four phases
evolve in the intersection model: PhaseI = {empty, cross, transient_p, transient_e}, where transient_p
and transient_e are transient phases which are used to output platoon/revise messages and exit
messages, respectively, by the intersection, empty indicates no platoon is entering the intersection
(i.e., crossPlatoons = NULL), and cross indicates some platoons are entering the intersection
(i.e., crossPlatoons! = NULL). The dynamic of evolution between them is shown in Figure 3.

Entropy 2019, 21, 358 8 of 20

Figure 3. Phase flow graph of the intersection model.

When an intersection receives a platoon message of (Thead, Psize) from im, the platoon information
along with the im is added into crossPlatoons, and the time when the platoon reaches the corresponding
exit segment Thead,e is determined by adding a random delay δI (i.e., Thead,e = Thead + δI). Then, the phase
transits to transition_p in order to send out the platoon message of (Thead,e, Psize) to the exit segment
(i.e., ODMap(im)). Subsequently, the phase transits to cross immediately. In phase cross, if a platoon
enters the intersection completely, the intersection removes the platoon from crossPlatoons. Then, if there
are still platoons in crossPlatoons, the intersection remains cross. Otherwise, the phase jumps to empty.

When receiving a blocked exit message (i.e., exit = 0) from on, the intersection moves to phase
transient_e to send out blocked exit messages to the preselection lanes in DOMap(on). When receiving
a free exit message (i.e., exit = 1) from on, the intersection transits to phase transient_e to send free
exit messages to the preselection lanes in (DOMap(on) ∩ currentPhase). If an external event occurs
on port “tlc_in" and a phase index pi is obtained, the currentPhase is updated. Then, the intersection
moves to transient_e to send out a free exit message to each preselection lane in TLPhases(pi) that is
not blocked by the downstream segment and sends out a blocked exit message to each preselection lane
in (Ent \ TLPhases(pi)). In addition, if a platoon in crossPlatoons comes from the preselection lane im in
(Ent \ TLPhases(pi)), it means the platoon is split by the red traffic light. As a result, a revise message is
sent out to the exit segment ODMap(im) and the platoon information is removed from crossPlatoons.

3. Data Assimilation Framework for Vehicle Density Estimation Based on Particle Filters

In this section, we present the mesoscopic traffic data assimilation framework. Firstly, we formalize
the state evolution based on the mesoscopic traffic model expressed in Section 2. Then, we describe the
available traffic data and the measurement model which relates the measurement data to the system
state. Subsequently, the particle filter for vehicle density estimation is presented. Finally, the weight
computation method is illustrated based on the assumed error model of the noisy measurements.

3.1. The Evolution of Traffic State

According to the description of Section 2 and the formalization for discrete event state evolution
in [30], the state of an urban traffic network can be defined as

Xk̃ = {{θi,k̃i
, ei,k̃i
}i∈{So,Sg,Ag,Int,Tl,Sk}, tk̃}, k̃ = 0, 1, . . . ; k̃i = 0, 1, . . . , (4)

where tk̃ is the time instant when the coupled network model transfers to the current state,
θi,k̃i

represents the state of the atomic component i, ei,k̃i
is the elapsed time since the component

i transfers to state θi,k̃i
, and k̃ and k̃i are, respectively, the state index of the coupled model and atomic

component i. As a result, we formalize the discrete event state evolution of an urban traffic network as

Xk̃ = Tra f f icSim(Xk̃−1) + εk̃−1, k̃ = 1, 2, ..., (5)

Entropy 2019, 21, 358 9 of 20

where Tra f f icSim represents the platoon based traffic model, εk̃−1 represents the system noise resulting
from the randomness of atomic components.

3.2. Measurement Model

In this framework, the configurations of traffic signals in urban networks are assumed to be
known, and sensors are deployed at inflow boundaries of some segments (an urban road is always
subdivided into segments with small length in order to obtain an accurate traffic model, but it is
difficult to deploy sensors that densely in the real traffic system). We assume that the sensors can
detect and report vehicle passage times. The measurement data is available per time interval of length
∆T, and the measurements at the k-th interval are denoted as

zk = {Y1
k , Y2

k , ..., YNs
k }, k = 1, 2, . . ., (6)

where Ns represents the number of sensors in an urban traffic network, and Yi
k is the vehicle passage

times detected by the i-th sensor in the interval ((k − 1)∆T, k∆T]. The detections among sensors
are considered independent and the measurement data is assumed to be noisy where both missed
detection (i.e., the sensor fails to detect vehicle’s passage) and false detection (i.e., the sensor reports a
passage when no vehicle passes by) exist. We define two parameters to model the two types of errors:

• detection accuracy p, representing the probability that a vehicle passage is detected by a sensor
successfully. Consequently, the probability of a missed detection is 1− p.

• occurrence rate of false detection λ, indicating the number of false detections occurring in an unit
time interval, which is assumed to be Poisson distributed.

In this framework, since passage times are related with the state transitions over the measurement
interval, we formalize the measurement model as follows:

zk = hk(XRk−1+1:Rk) + ek, k = 1, 2, ..., (7)

where XRk−1 is the state point retrieved at time (k − 1)∆T, XRk−1+1:Rk represents a sequence of
states indexed from Rk−1 + 1 to Rk (i.e., state trajectory) which records the state transitions during
((k− 1)∆T, k∆T] completely, and ek is the measurement noise as is mentioned above.

3.3. Vehicle Density Estimation Using Particle Filters

3.3.1. Principles of Particle Filters

Consider a general discrete state dynamic evolution as follows:

s0 ∼ p(s̃0),

sk = fk(sk−1) + εk−1, k = 1, 2, ...,
(8)

where p(s̃0) is the prior distribution, sk−1, sk are respectively the state at time k − 1 and k, fk is a
possibly nonlinear function, and εk−1 is a stochastic process noise. The measurement at time k is
given by

mk = hk(sk) + ek, k = 1, 2, ... (9)

in which hk is a possibly nonlinear function mapping the state sk to the measurement mk, and ek is a
measurement noise.

The particle filter aims to estimate the conditional probability density of all states up to time
k based on all measurements until time k, that is, p(s0:k|m1:k), where s0:k = {s0, s1, ..., sk}, m1:k =

{m1, m2, ..., mk}.
Assuming p(s0:k−1|m1:k−1), the estimation at step k − 1 is available, prediction step in

Equation (10) and update step in Equation (11) are used to estimate the p(s0:k|m1:k) according to Bayes

Entropy 2019, 21, 358 10 of 20

theorem [31]. In Equation (11), p(s0:k|m1:k−1) can be substituted with Equation (10) and p(mk|m1:k−1)

is a normalizing constant. As a result, the sequential update is obtained in Equation (12). Note that
p(sk|s0:k−1) = p(sk|sk−1), p(mk|s0:k) = p(mk|sk) according to the Markov property:

p(s0:k|m1:k−1) = p(sk|s0:k−1)p(s0:k−1|m1:k−1), k = 1, 2 . . . , (10)

p(s0:k|m1:k) =
p(mk|s0:k)p(s0:k|m1:k−1)

p(mk|m1:k−1)
, k = 1, 2, . . . , (11)

p(s0:k|m1:k) =
p(mk|s0:k)p(sk|s0:k−1)p(s0:k−1|m1:k−1)

p(mk|m1:k−1)
,

∝ p(mk|s0:k)p(sk|s0:k−1)p(s0:k−1|m1:k−1), k = 1, 2, . . .
(12)

Since it is always difficult to solve p(s0:k|m1:k) analytically, the particle filter approximates the
p(s0:k|m1:k) with a set of Monte Carlo samples (particles) with their corresponding weights [32].
Let {si

0:k, wi
k}

Np
i=1 represent the p(s0:k|m1:k), where Np is the particles size, si

0:k is the i-th particle and wi
k is

its weight. When the weights are normalized (i.e., ∑
Np
i=1 wi

k = 1), the p(s0:k|m1:k) ≈ ∑
Np
i=1 wi

kδ(s0:k− si
0:k),

where δ(x) is the Dirac delta distribution in vector form. Since it is usually intractable to draw from
p(s0:k|m1:k) directly, the importance sampling method is employed in particle filters. In this method,
if {si

0:k}
Np
i=1 can be drawn from a probability q(s0:k|m1:k), which is called importance density [32],

then the weights {wi
k}

Np
i=1 are computed according to Equation (13):

wi
k =

p(si
0:k|m1:k)

q(si
0:k|m1:k)

, k = 1, 2, . . . (13)

In recursive case, at step k, assuming that {si
0:k−1, wi

k−1}
Np
i=1 characterizes the distribution of

p(s0:k−1|m1:k−1) and the particles set {si
0:k−1}

Np
i=1 is distributed according to q(s0:k−1|m1:k−1), then two

steps are performed to generate {si
0:k, wi

k}
Np
i=1 characterizing p(s0:k|m1:k):

• augment each particle si
0:k−1 with sample si

k ∼ q(sk|si
0:k−1, m1:k) to form si

0:k ∼ q(s0:k|m1:k), where
q(s0:k|m1:k) = q(sk|s0:k−1, m1:k)q(s0:k−1|m1:k−1);

• update weights by

wi
k =

p(si
0:k|m1:k)

q(si
0:k|m1:k)

∝
p(mk|si

0:k)p(si
k|s

i
0:k−1)p(si

0:k−1|m1:k−1)

q(si
k|s

i
0:k−1, m1:k)q(si

0:k−1|m1:k−1)
=

p(mk|si
k)p(si

k|s
i
k−1)

q(si
k|s

i
0:k−1, m1:k)

wi
k−1. (14)

The system transition density is a common choice of the importance density, namely,
q(sk|s0:k−1, m1:k) = p(sk|sk−1). Consequently, Equation (14) is simplified to

wi
k = p(mk|si

k)w
i
k−1, k = 1, 2, . . . (15)

In the particle filter, degeneracy phenomenon is a common problem which means most particles
have negligible weights and the effective particle set is reduced to very few particles after a few
iterations. In order to reduce the influence of the degeneracy, a resampling step is performed after the
particles are updated.

3.3.2. Particle Filtering for Vehicle Density Estimation

It has been proven that the variable dimensions of both the system state and the discrete event
state trajectory have no tangible effect on the updating of particles and their weights in particle filters
by previous studies [24,30,33]. Therefore, we can safely apply the particle filter to estimate vehicle
densities in our study. Since we map the traffic state trajectory during the measurement interval to

Entropy 2019, 21, 358 11 of 20

the vehicle passage times in the measurement model of Equation (7), the particle weight should be
updated as

wk = p(zk|XRk−1+1:Rk)wk−1, k = 1, 2, . . .

Algorithm 1 describes the main steps to estimate traffic densities using particle filters.

Algorithm 1: The particle filter for vehicle density estimation

// Initialize Np particles at k = 0
1 k = 0
2 for i = 1 : Np do
3 generate the i-th particle Xi

0
4 assign weight wi

0 = 1/Np

5 end
// Iterate until the end of algorithm

6 for k < kmax do
7 k = k + 1

// the sampling step
8 for i = 1 : Np do
9 run the PBM simulation for one time interval (∆T) starting with initial state Xi

Rk−1
to

generate the traffic state Xi
Rk

. Xi
0:Rk−1

is augmented to Xi
0:Rk

= {Xi
0:Rk−1

, Xi
Rk−1+1:Rk

}.
At the meantime, record the state trajectory during this interval Xi

Rk−1+1:Rk
in order to

compute the weight.
10 update the weight: wi

k = p(zk|Xi
Rk−1+1:Rk

)wi
k−1

11 end

12 C = ∑
Np
i=1 wi

k
13 for i = 1 : Np do
14 wi

k = wi
k/C

15 end
// output estimated vehicle density

16 sort the particles in descending order by their weights
17 output the estimated vehicle densities (i.e., the number of vehicles on segments) using

Algorithm 2 based on the state of the first particle X1
Rk

and current time k∆T
// the resampling step

18 c1 = w1
k

19 for i = 2 : Np do
20 ci = ci−1 + wi

k
21 end
22 for i = 1 : Np do
23 generate uniformly distributed random number ri ∼ Uni f orm(0, 1]

24 Xi
0:Rk

= X j
0:Rk

, where j is the index of ri ∈ (cj−1, cj]

25 wi
k = 1/Np

26 end

27 set {Xi
0:Rk
}Np

i=1 as {Xi
0:Rk
}Np

i=1

28 end

At step k = 0, we randomly generate Np particles by guessing the size, position, and speed of
platoons over the network, and all weights are initialized to 1/Np (lines 2–5). Then, the following
steps are iterated until the end of algorithm:

Entropy 2019, 21, 358 12 of 20

• Sampling step: for each particle, we run the mesoscopic traffic simulation for ∆T, the particle
is updated and the state trajectory over this interval is recorded. Then, the particle’s weight
is calculated based on (noisy) newly available passage times and the recorded state trajectory
(the method of weight computation is depicted in Section 3.3.3). After all particles are updated,
the normalization of the weights is performed to prepare for resampling (lines 8–15).

• Output step: we obtain the estimated vehicle densities (i.e., the number of vehicles on segments)
from the state of the particle with the highest weight (lines 16–17). The number of vehicles on a
segment is calculated by excluding the vehicles which have not entered or have left the segment
from vn, and the detailed process is illustrated in Algorithm 2.

• Resampling step: we resample the newly generated particles by replicating particles in proportion
to their weights (lines 18–27).

Algorithm 2: Calculating the number of vehicles on segments based on the traffic state

Input: state of segments:{platoonListi, vni, phasei, ei}i∈Sg, the time when the last state
transition occurs tk̃, current time of system t, and average time intervals of crossing
{hwi}i∈Sg

Output: the number of vehicles on segments
1 for each i in Sg do
2 if !platoonListi.isEmpty() then
3 (thead, Psize) = platoonListi.lastPlatoon() ;
4 n = vni ;

// exclude the vehicles which have not entered the segment
5 for j = 1 : (Psize − 1) do
6 tveh = thead + j ∗ hwi ;
7 if tveh > t then
8 n = n− (Psize − j);
9 break ;

10 end
11 end

// exclude the vehicles which have left the segment
12 if phasei == cross then
13 n = n− f loor((ei + t− tk̃)/hwi)− 1 ;
14 end
15 vehicleNumbers(i) = n ;
16 else
17 vehicleNumbers(i) = 0 ;
18 end
19 end
20 return vehicleNumbers;

3.3.3. Weight Computation

When a sample is generated, the state trajectory is recorded (i.e., Xi
Rk−1+1:Rk

), newly available

measurement and the error model are used to compute p(zk|Xi
Rk−1+1:Rk

), where zk = {Y1
k , Y2

k , ..., YNs
k }.

Since all sensors detect vehicle passages independently, we have

p({Y1
k , Y2

k , ..., YNs
k }|X

i
Rk−1+1:Rk

) = ∏Ns
j=1 p(Y j

k|X
i
Rk−1+1:Rk

). (16)

In order to compute p(Y j
k|X

i
Rk−1+1:Rk

), we obtain the estimated passage times at the j-th sensor

(denoted as Ỹi,j
k) from Xi

Rk−1+1:Rk
, and, as a result, p(Y j

k|X
i
Rk−1+1:Rk

) = p(Y j
k|Ỹ

i,j
k). Then, a match

procedure [24] is employed to define missed detections and false detections based on the measurement

Entropy 2019, 21, 358 13 of 20

Y j
k and the estimated value Ỹi,j

k . Lastly, according to the error model depicted in Section 3.2, p(Y j
k|Ỹ

i,j
k)

is computed by

p(Y j
k|Ỹ

i,j
k) = pni,j−nm(1− p)nm × (λ∆T)no e−λ∆T

no!
× e−dm , (17)

where ni,j is the number of passage times in Ỹi,j
k , nm is the number of missed detections, and no is the

number of false detections. The term pni,j−nm(1− p)nm represents the probability of missed detection

errors, and the term (λ∆T)no e−λ∆T

no ! represents the probability of false detection errors, and e−dm is a
penalty term where dm is the maximum distance in all matched pairs. More details about the math
procedure can be found in [24].

4. Experiments

4.1. Experimental Design

The urban traffic network used in the experiments is shown in Figure 4, where 11 links are
connected by seven intersections. In this network, two source nodes generate platoons traveling to the
sink, where the mean time gap between successive platoons is 8 s (minimum time gap is 5 s, the mean
of random time gap is 3 s) and the average time interval of crossing a boundary is 1.2 s. Platoons are
always able to exit the network from the sink. Each link is subdivided into road segments with lengths
of 100 m, and 16 sensors are regularly deployed in the network (both the red solid line and the red
dotted line represent the inflow boundary of a road segment. The red solid line also indicates the place
where a sensor is deployed). All road segments have a speed limit of 15 m/s and a capacity of 16
vehicles. Three fixed time traffic lights with a cycle length of 60 s are used to control the conflicting
movements at intersections. The offset and duration of the green lights for each movement at traffic
lights are shown at the right top of Figure 4. At the end of link 1 and link 9, platoons are split and
assigned to different exit links according to the turning probabilities of r1, r2 and r3, r4, respectively.

Figure 4. The urban traffic network used in the experiments.

Firstly, a simulation of the urban traffic network is performed, and all data is recorded.
The simulation is considered as the real system, and the recorded data is regarded as the ground truth
data. Then, the ground truth data are processed based on the assumed error model to produce the
noisy measurement data that will be used in the data assimilation to estimate the vehicle density.

Entropy 2019, 21, 358 14 of 20

Then, we build an imperfect traffic model by adding errors in the model parameters (see Table 2).
The traffic network is simulated again using the imperfect traffic model to get the estimation without
data assimilation (we refer these results as the simulated results). Next, the real measurements from
the real system are assimilated into the imperfect traffic model to generate the estimation with data
assimilation (we refer these results as the filtered results). By assimilating the noisy measurement data,
the filtered results are expected to be more accurate than the simulated results.

Specifically, two cases are tested in our experiments where the vehicle arrival rates of the network
(represented by f low1 and f low2 in Figure 4) and the turning probabilities at intersections (represented
by r1, r2 and r3, r4 in Figure 4) are perturbed to get the imperfect traffic models, respectively.
The configuration of these parameters is illustrated in Table 2. In the real system, an average of
1000 vehicles per hour enter the network from source 1 and 1200 vehicles per hour enter from source
2. A vehicle reaching the exit point of link 1 moves to link 2 and link 3 with probability of 0.4 and
0.6, respectively, at the end of link 9, these probabilities are 0.6 to link 7, and 0.4 to link 10. In case 1,
the imperfect traffic model has inaccurate vehicle arrival rates. Specifically, the flow from source 1 is
200 vehicles per hour more than the real flow, while the flow from source 2 is 200 vehicles per hour
less than the real flow. In case 2, the turning probabilities are erroneous in the imperfect traffic model.
The probability of traveling to link 2 and link 3 from link 1 is set to 0.6 and 0.4, respectively, while the
probability of traveling to link 7 and link 10 from link 9 is set to 0.4 and 0.6, respectively.

We implement an event scheduling based discrete event simulator using c++ on which we run
our simulation model. A simulation of 1200 s is considered in all experiments and the number of
vehicles on the segments in the urban network are recorded every 60 s. We run the real system
for 120 s as a warm-up period. The initial network states of the particles are randomly sampled
based on the real network state at 120 s, and the results of 18 cycles (from 180 s to 1200 s) are used
to evaluate the effectiveness of the data assimilation framework. In the data assimilation system,
the noisy measurement data (i.e., vehicle passage times at each sensor in this network) are available
every 60 s.

Table 2. The configuration of the perturbed parameters in experiments.

f low1 (vehs/hour) f low2 (vehs/hour) r1 r2 r3 r4

Perfect parameters 1000 1200 0.4 0.6 0.6 0.4
Imperfect parameters (Case 1) 1200 1000 0.4 0.6 0.6 0.4
Imperfect parameters (Case 2) 1000 1200 0.6 0.4 0.4 0.6

4.2. Evaluation Criteria

In this section, the measurement error model is fixed with detection accuracy p = 0.9, occurrence
rate of false detection λ = 1/300 s−1, and 1000 particles are employed in the data assimilation system.
The goal of our experiments is twofold: we intend to show that the filtered results are more accurate
than the simulated results when compared with the ground truth, and we want to explore whether the
filtered results can estimate the ground truth accurately.

In order to quantify the proximity between two traffic states, we consider the Root Mean Square
Error (RMSE) of the number of vehicles on segments as the evaluation criteria, that is,

RMSEe,k =

√
∑Ns

i=1(s
e
i,k − sr

i,k)
2

Ns
, (18)

where RMSEe,k represents the RMSE of the estimated results (including the simulated results and the
filtered results) comparing with the ground truth at time step k, Ns is the total number of segments in
the traffic network, sr

i,k indicates the number of vehicles on the i-th segment in the ground-truth traffic
state at time instant k∆T while se

i,k is the corresponding number in the estimated state at the same
time instant.

Entropy 2019, 21, 358 15 of 20

In order to illustrate the accuracy of the estimation to the ground truth, we base our analysis
on the estimation results of the vehicle density on an arbitrarily selected road segment. In our case,
the 17th road segment (the one in dark in Figure 4) is chosen.

4.3. Experimental Results

4.3.1. Test Case 1

Figure 5 displays the experimental results of test case 1 where the vehicle arrival rates are
inaccurate. Figure 5a shows the RMSE errors of the estimation results with and without data
assimilation, respectively. As shown in the figure, the RMSE errors of the estimation results with
data assimilation are smaller than that of the estimation results without data assimilation at all time
steps, which indicates that the data assimilation framework has improved the estimation results of
the whole traffic network with the help of the sensor data. The RMSE errors of the estimation results
without data assimilation are decreased by an average of 19.4% when the noisy measurement data
are assimilated using the proposed data assimilation framework. Figure 5b compares the estimated
number of vehicles using data assimilation (blue line) with the ground-truth value (red line) on the
17th road segment. From the figure, we can see that the estimated number follows the real number at
most of the time steps. The Mean Absolute Percentage Error (MAPE) of the estimated number over 18
cycles is 10.4%, which indicates a promising performance. At some points (for example, t = 540 s, 660 s,
780 s), the estimated numbers contain relatively large errors. One possible reason is that only the most
likely particle is insufficient to represent the whole possibility distribution. Future research is needed
to find a suggestion that can better reflect the “belief histogram" estimated by particle filters.

180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Time(s)

R
M

S
E

Estimation errors without data assimilation

Estimation errors with data assimilation

(a)

180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200
2

4

6

8

10

12

14

16

Time(s)

N
um

be
r

of
 V

eh
ic

le
s

Ground truth
Estimation results with data assimilation

(b)

Figure 5. Experimental results of case 1. (a) RMSE results; (b) The estimated number of vehicles on the
17th road segment with data assimilation.

4.3.2. Test Case 2

This case examines the effectiveness of this proposed data assimilation framework dealing with
the erroneous turning probabilities. The experimental results are displayed in Figure 6. From Figure 6a,
we can see that the RMSE errors of the estimation results without data assimilation are larger than that
in case 1 on the whole. It indicates an increasing challenge of estimating the ground truth. Similar to the
experimental results in case 1, this data assimilation framework reduces the RMSE errors of estimation
results at all time steps by assimilating the sensor data in this case. After assimilating the noisy
measurement data using the proposed data assimilation framework, the RMSE errors of the estimation
results without data assimilation are reduced by 21.1% on average. Figure 6b shows the estimated
number of vehicles with data assimilation and the ground-truth value on the 17th segment. The MAPE
over 18 cycles is 10.7% in this case, which exhibits a comparable effectiveness to that in test case 1.

Entropy 2019, 21, 358 16 of 20

180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Time(s)

R
M

S
E

Estimation errors without data assimilation

Estimation errors with data assimilation

(a)

180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200
2

4

6

8

10

12

14

16

Time(s)

N
um

be
r

of
 V

eh
ic

le
s

Ground truth
Estimation results with data assimilation

(b)

Figure 6. Experimental results of case 2. (a) RMSE results; (b) The estimated number of vehicles on the
17th road segment with data assimilation.

4.4. Sensitivity Analysis

In this section, a series of additional experiments are carried out to analyze the sensitivity of the
estimation results to several key factors of the proposed data assimilation framework. These factors
include the measurement data quality and the number of particles. The average RMSE error over 18
cycles is used to quantify the experimental results:

RMSE =
∑

Ncycles
k=1 RMSEk

Ncycles
. (19)

For each combination of parameters, we present the average result of 10 independent experiments.

4.4.1. Effect of Measurement Data Quality

In the measurement model of this study, detection accuracy p and occurrence rate of false detection
λ characterize the quality of the noisy data. Therefore, we explore the effect of sensor quality by varying
p and λ. The set of parameters used in the case experiments (i.e., Np = 1000, p = 0.9, λ = 1/300 s−1)
are selected as the baseline. When varying p , we remain λ = 1/300 s−1; when varying λ, we keep
p = 0.9. The results are shown in Figure 7a,b, respectively. Coinciding with our expectations, in both
cases, the data assimilation performance deteriorates as the data quality becomes worse. However,
even when the detection accuracy falls to 0.6 or the false rate increases to 1/60 s−1, the performance
is still better than that of the estimation results without data assimilation (in test case 1 and case
2, the RMSE of the estimation results without data assimilation are 1.86 and 2.15, respectively),
which indicates the robustness of this framework to measurement data errors.

Entropy 2019, 21, 358 17 of 20

0.9 0.8 0.7 0.6
1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

p

R
M

S
E

Case 1

Case 2

(a)

1/300 1/240 1/180 1/120 1/60
1.55

1.6

1.65

1.7

1.75

1.8

λ

R
M

S
E

Case 1
Case 2

(b)

Figure 7. The influence of sensor data quality on data assimilation results. (a) The effect of p
(λ = 1/300 s−1, Np = 1000); (b) The effect of λ (p = 0.9, Np = 1000).

4.4.2. Effect of the Number of Particles

We fix p = 0.9, λ = 1/300 s−1 in both cases and vary the number of particles used in the algorithm
from 100 to 2000. The results are displayed in Figure 8a. From the figure, we can see that, as the
number of particles increases from 100 to 2000, the RMSE error decreases in both cases. The more
particles used, the better the performance. However, we note that the decrease of RMSE error is not
proportional to the increase of the number of particles. Figure 8b shows the increased percentage of
RMSE error relative to that at 1000 particles (i.e., (RMSE/RMSE(Np = 1000)− 1)). The plot tells that
a reduction from 1000 to 100 leads to an increase of about 5.6% (6.54% in case 1, 4.83% in case 2) of the
error measure, while doubling the number of particles improves the performance about 1.6% (1.44% in
case 1, 1.84% in case 2).

100 400 700 1000 2000
1.55

1.6

1.65

1.7

1.75

1.8

The number of particles

R
M

S
E

Case 1

Case 2

(a)

100 400 700 1000 2000
−2

−1

0

1

2

3

4

5

6

7

The number of particles

(R
M

S
E
/
R
M

S
E
(N

p
=

1
0
0
0
)
−
1
)(
%
)

Case 1

Case 2

(b)

Figure 8. The influence of number of particles on data assimilation results (p = 0.9, λ = 1/300 s−1).
(a) RMSE error; (b) The increased percentage of RMSE relative to that at Np = 1000.

Entropy 2019, 21, 358 18 of 20

5. Conclusions

In this study, we presented a data assimilation framework for vehicle density estimation on urban
traffic networks. In this data assimilation framework, a mesoscopic traffic model (i.e., platoon based
model) was employed since it is not only able to capture more details compared with macroscopic traffic
models, but also has the advantage of computing faster than microscopic traffic models. The passage
times of individual vehicle were considered as the measurement data, which contains errors of missed
and false detection. Since the mesoscopic traffic model is nonlinear and the vehicle passage times
contain strongly non-Gaussian noises, particle filters, which impose no restriction on the model
dynamics and error assumptions, were applied to conduct the data assimilation.

In order to test this data assimilation framework, we conducted experiments in a simulated
urban traffic network. Experimental results show that the proposed data assimilation framework
can provide more accurate estimation results compared to those produced without data assimilation.
More specifically, the average percentage of reduced errors of 19.4% and 22.1% are achieved in the two
test cases (one with errors in vehicle arrival rates, and the other with errors in turning probabilities),
respectively. With regard to the estimation accuracy, the estimated results are able to follow the real
situation at most time steps. The absolute percentage errors of the estimated vehicle density are
respectively 10.4% and 10.7% in the two cases, which indicates a promising performance.

Sensitivity analysis indicates that this data assimilation framework is robust to both measurement
errors and model errors. In both cases, even with 40% missed passage times or one false detection
per minute, the performance does not deteriorate too much and is still superior to that without data
assimilation. It is noticed that the improvement of performance is not proportional to the increase of
the number of particles. Specifically, an increase of the number of particles from 1000 to 2000 leads to
an improvement of about 1.6%, while a reduction of the number of particles from 1000 to 100 results in
a deterioration of about 5.6%.

Future research directions include looking for an appropriate real-life scenario to further evaluate
and apply the data assimilation framework, and integrating traffic data from different sources
(for example, route choice fractions from automated vehicle identification (AVI) system and travel time
from floating-car data) in the data assimilation framework to improve the accuracy and robustness of
the estimation results further. Another direction is to combine the state estimation framework with
urban traffic control strategies to improve the performance of the urban traffic networks.

Author Contributions: S.W. conceived the presented idea, performed the experiments, and wrote the manuscript;
X.X. guided the entire study and contributed to the final version of the manuscript; R.J. helped shape the research.

Funding: This research is supported by the National Natural Science Foundation of China (No. 61673388).

Acknowledgments: The authors have obtained the patient guidance and great assistance from Kedi Huang.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hao, Z.; Boel, R.; Li, Z. Model based urban traffic control, part I: Local model and local model predictive
controllers. Transp. Res. Part C Emerg. Technol. 2018, 97, 61–81. [CrossRef]

2. Cassidy, M.J.; Rudjanakanoknad, J. Increasing the capacity of an isolated merge by metering its on-ramp.
Transp. Res. Part B Methodol. 2005, 39, 896–913. [CrossRef]

3. Smulders, S. Control of freeway traffic flow by variable speed signs. Transp. Res. Part B Methodol. 1990,
24, 111–132. [CrossRef]

4. Wang, S.; Djahel, S.; Zhang, Z.; McManis, J. Next road rerouting: A multiagent system for mitigating
unexpected urban traffic congestion. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2888–2899. [CrossRef]

5. Seo, T.; Bayen, A.M.; Kusakabe, T.; Asakura, Y. Traffic state estimation on highway: A comprehensive survey.
Annu. Rev. Control 2017, 43, 128–151. [CrossRef]

6. Barceló, J. Fundamentals of Traffic Simulation; Springer: Berlin, Germany, 2010; Volume 145.

http://dx.doi.org/10.1016/j.trc.2018.09.026
http://dx.doi.org/10.1016/j.trb.2004.12.001
http://dx.doi.org/10.1016/0191-2615(90)90023-R
http://dx.doi.org/10.1109/TITS.2016.2531425
http://dx.doi.org/10.1016/j.arcontrol.2017.03.005

Entropy 2019, 21, 358 19 of 20

7. Ciuffo, B.; Punzo, V.; Montanino, M. Global sensitivity analysis techniques to simplify the calibration
of traffic simulation models. Methodology and application to the IDM car-following model. IET Intell.
Transp. Syst. 2014, 8, 479–489. [CrossRef]

8. Lee, J.B.; Ozbay, K. New calibration methodology for microscopic traffic simulation using enhanced
simultaneous perturbation stochastic approximation approach. Transp. Res. Rec. 2009, 2124, 233–240.
[CrossRef]

9. Lemarchand, A.; Koenig, D.; Martinez, J.J. Robust design of a switched pi controller for an uncertain traffic
model. In Proceedings of the 2010 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA,
15–17 December 2010; pp. 2149–2154.

10. Jia, A.; Zhou, X.; Li, M.; Rouphail, N.M.; Williams, B.M. Incorporating stochastic road capacity into
day-to-day traffic simulation and traveler learning framework: Model development and case study.
Transp. Res. Rec. 2011, 2254, 112–121. [CrossRef]

11. Nichols, N. Data assimilation: Aims and basic concepts. In Data Assimilation for the Earth System; Springer:
Berlin, Germany, 2003; pp. 9–20.

12. Lahoz, W.; Ménard, R.; Zeigler, B.P.; Kim, T.G.; Praehofer, H. Data Assimilation: Making Sense of Observations;
Springer: Berlin, Germany, 2010.

13. Navon, I.M. Data assimilation for numerical weather prediction: A review. In Data Assimilation for
Atmospheric, Oceanic and Hydrologic Applications; Springer: Berlin, Germany, 2009; pp. 21–65.

14. Carton, J.A.; Giese, B.S. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA).
Mon. Weather Rev. 2008, 136, 2999–3017. [CrossRef]

15. Reichle, R.H.; McLaughlin, D.B.; Entekhabi, D. Hydrologic data assimilation with the ensemble Kalman
filter. Mon. Weather Rev. 2002, 130, 103–114. [CrossRef]

16. Yuan, Y.; Van Lint, J.; Wilson, R.E.; van Wageningen-Kessels, F.; Hoogendoorn, S.P. Real-time Lagrangian
traffic state estimator for freeways. IEEE Trans. Intell. Transp. Syst. 2012, 13, 59–70. [CrossRef]

17. Yuan, Y.; Van Lint, H.; Van Wageningen-Kessels, F.; Hoogendoorn, S. Network-wide traffic state estimation
using loop detector and floating car data. J. Intell. Transp. Syst. 2014, 18, 41–50. [CrossRef]

18. Daganzo, C.F. The cell transmission model: A dynamic representation of highway traffic consistent with the
hydrodynamic theory. Transp. Res. Part B Methodol. 1994, 28, 269–287. [CrossRef]

19. Blandin, S.; Couque, A.; Bayen, A.; Work, D. On sequential data assimilation for scalar macroscopic traffic
flow models. Phys. D Nonlinear Phenom. 2012, 241, 1421–1440. [CrossRef]

20. Thai, J.; Bayen, A.M. State estimation for polyhedral hybrid systems and applications to the Godunov
scheme for highway traffic estimation. IEEE Trans. Autom. Control 2015, 60, 311–326. [CrossRef]

21. Work, D.B.; Tossavainen, O.P.; Blandin, S.; Bayen, A.M.; Iwuchukwu, T.; Tracton, K. An ensemble Kalman
filtering approach to highway traffic estimation using GPS enabled mobile devices. In Proceedings of
the 47th IEEE Conference on Decision and Control (CDC 2008), Cancun, Mexico, 9–11 December 2008;
pp. 5062–5068.

22. Yuan, Y. Lagrangian Multi-Class Traffic State Estimation. Ph.D. Thesis, Delft University of Technology, Delft,
The Netherlands, 2013.

23. Mihaylova, L.; Boel, R.; Hegyi, A. Freeway traffic estimation within particle filtering framework. Automatica
2007, 43, 290–300. [CrossRef]

24. Xie, X.; van Lint, H.; Verbraeck, A. A generic data assimilation framework for vehicle trajectory reconstruction
on signalized urban arterials using particle filters. Transp. Res. Part C Emerg. Technol. 2018, 92, 364–391.
[CrossRef]

25. Pan, S.J.; Popa, I.S.; Zeitouni, K.; Borcea, C. Proactive Vehicular Traffic Rerouting for Lower Travel Time.
IEEE Trans. Veh. Technol. 2013, 62, 3551–3568. [CrossRef]

26. Marinică, N.; Boel, R. Platoon based model for urban traffic control. In Proceedings of the 2012 IEEE
American Control Conference (ACC), Montreal, QC, Canada, 27–29 June 2012; pp. 6563–6568.

27. Zeigler, B.P.; Kim, T.G.; Praehofer, H. Theory of Modeling and Simulation; Academic Press: Cambridge, MA,
USA, 2000.

28. Honig, H.; Seck, M.D. ΦDEVS: Phase based discrete event modeling. In Proceedings of the 2012 Symposium
on Theory of Modeling and Simulation-DEVS Integrative M&S Symposium, Orlando, FL, USA, 26–30 March
2012; pp. 39:1–39:8.

29. Burghout, W. Hybrid Microscopic-Mesoscopic Traffic Simulation. Ph.D. Thesis, KTH, Stockholm, Sweden, 2004.

http://dx.doi.org/10.1049/iet-its.2013.0064
http://dx.doi.org/10.3141/2124-23
http://dx.doi.org/10.3141/2254-12
http://dx.doi.org/10.1175/2007MWR1978.1
http://dx.doi.org/10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2
http://dx.doi.org/10.1109/TITS.2011.2178837
http://dx.doi.org/10.1080/15472450.2013.773225
http://dx.doi.org/10.1016/0191-2615(94)90002-7
http://dx.doi.org/10.1016/j.physd.2012.05.005
http://dx.doi.org/10.1109/TAC.2014.2342151
http://dx.doi.org/10.1016/j.automatica.2006.08.023
http://dx.doi.org/10.1016/j.trc.2018.05.009
http://dx.doi.org/10.1109/TVT.2013.2260422

Entropy 2019, 21, 358 20 of 20

30. Xie, X.; Verbraeck, A. A particle filter-based data assimilation framework for discrete event simulations.
Simulation 2018. [CrossRef]

31. Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotics; MIT Press: Cambridge, MA, USA, 2005.
32. Arulampalam, M.S.; Maskell, S.; Gordon, N.; Clapp, T. A tutorial on particle filters for online

nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 2002, 50, 174–188. [CrossRef]
33. Xie, X. Data Assimilation in Discrete Event Simulations. Ph.D. Thesis, Delft University of Technology, Delft,

The Netherlands, 2018.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1177/0037549718798466
http://dx.doi.org/10.1109/78.978374
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Mesoscopic Urban Traffic Model in the DEVS Formalism
	The Coupled DEVS Model of the Urban Traffic System
	Key Atomic Components of the Urban Traffic System
	Source Model
	Segment Model
	Intersection Model

	Data Assimilation Framework for Vehicle Density Estimation Based on Particle Filters
	The Evolution of Traffic State
	Measurement Model
	Vehicle Density Estimation Using Particle Filters
	Principles of Particle Filters
	Particle Filtering for Vehicle Density Estimation
	Weight Computation

	Experiments
	Experimental Design
	Evaluation Criteria
	Experimental Results
	Test Case 1
	Test Case 2

	Sensitivity Analysis
	Effect of Measurement Data Quality
	Effect of the Number of Particles

	Conclusions
	References

